| 1 | /* |
| 2 | * Copyright 2020 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/gpu/tessellate/GrPathParser.h" |
| 9 | |
| 10 | #include "include/private/SkTArray.h" |
| 11 | #include "src/core/SkPathPriv.h" |
| 12 | #include "src/gpu/GrEagerVertexAllocator.h" |
| 13 | |
| 14 | static SkPoint lerp(const SkPoint& a, const SkPoint& b, float T) { |
| 15 | SkASSERT(1 != T); // The below does not guarantee lerp(a, b, 1) === b. |
| 16 | return (b - a) * T + a; |
| 17 | } |
| 18 | |
| 19 | static SkPoint write_line_as_cubic(SkPoint* data, const SkPoint& p0, const SkPoint& p1) { |
| 20 | data[0] = p0; |
| 21 | data[1] = lerp(p0, p1, 1/3.f); |
| 22 | data[2] = lerp(p0, p1, 2/3.f); |
| 23 | data[3] = p1; |
| 24 | return data[3]; |
| 25 | } |
| 26 | |
| 27 | static SkPoint write_quadratic_as_cubic(SkPoint* data, const SkPoint& p0, const SkPoint& p1, |
| 28 | const SkPoint& p2) { |
| 29 | data[0] = p0; |
| 30 | data[1] = lerp(p0, p1, 2/3.f); |
| 31 | data[2] = lerp(p1, p2, 1/3.f); |
| 32 | data[3] = p2; |
| 33 | return data[3]; |
| 34 | } |
| 35 | |
| 36 | static SkPoint write_cubic(SkPoint* data, const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, |
| 37 | const SkPoint& p3) { |
| 38 | data[0] = p0; |
| 39 | data[1] = p1; |
| 40 | data[2] = p2; |
| 41 | data[3] = p3; |
| 42 | return data[3]; |
| 43 | } |
| 44 | |
| 45 | // SkTPathContourParser specialization that calculates the contour's midpoint. |
| 46 | class MidpointContourParser : public SkTPathContourParser<MidpointContourParser> { |
| 47 | public: |
| 48 | MidpointContourParser(const SkPath& path) : SkTPathContourParser(path) {} |
| 49 | |
| 50 | bool parseNextContour() { |
| 51 | if (!this->SkTPathContourParser::parseNextContour()) { |
| 52 | return false; |
| 53 | } |
| 54 | if (fMidpointWeight > 1) { |
| 55 | fMidpoint *= 1.f / fMidpointWeight; |
| 56 | fMidpointWeight = 1; |
| 57 | } |
| 58 | return true; |
| 59 | } |
| 60 | |
| 61 | SkPoint midpoint() const { SkASSERT(1 == fMidpointWeight); return fMidpoint; } |
| 62 | |
| 63 | private: |
| 64 | friend class SkTPathContourParser<MidpointContourParser>; |
| 65 | |
| 66 | void resetGeometry(const SkPoint& startPoint) { |
| 67 | fMidpoint = startPoint; |
| 68 | fMidpointWeight = 1; |
| 69 | } |
| 70 | |
| 71 | void geometryTo(SkPathVerb, const SkPoint& endpoint) { |
| 72 | fMidpoint += endpoint; |
| 73 | ++fMidpointWeight; |
| 74 | } |
| 75 | |
| 76 | SkPoint fMidpoint; |
| 77 | int fMidpointWeight; |
| 78 | }; |
| 79 | |
| 80 | constexpr int max_wedge_vertex_count(int numPathVerbs) { |
| 81 | // No initial moveTo, one wedge per verb, plus an implicit close at the end. |
| 82 | // Each wedge has 5 vertices. |
| 83 | return (numPathVerbs + 1) * 5; |
| 84 | } |
| 85 | |
| 86 | int GrPathParser::EmitCenterWedgePatches(const SkPath& path, GrEagerVertexAllocator* vertexAlloc) { |
| 87 | int maxVertices = max_wedge_vertex_count(path.countVerbs()); |
| 88 | auto* vertexData = vertexAlloc->lock<SkPoint>(maxVertices); |
| 89 | if (!vertexData) { |
| 90 | return 0; |
| 91 | } |
| 92 | |
| 93 | int vertexCount = 0; |
| 94 | MidpointContourParser parser(path); |
| 95 | while (parser.parseNextContour()) { |
| 96 | int ptsIdx = 0; |
| 97 | SkPoint lastPoint = parser.startPoint(); |
| 98 | for (int i = 0; i < parser.countVerbs(); ++i) { |
| 99 | switch (parser.atVerb(i)) { |
| 100 | case SkPathVerb::kClose: |
| 101 | case SkPathVerb::kDone: |
| 102 | if (parser.startPoint() != lastPoint) { |
| 103 | lastPoint = write_line_as_cubic( |
| 104 | vertexData + vertexCount, lastPoint, parser.startPoint()); |
| 105 | break; |
| 106 | } // fallthru |
| 107 | default: |
| 108 | continue; |
| 109 | |
| 110 | case SkPathVerb::kConic: |
| 111 | SK_ABORT("Conics are not yet supported." ); |
| 112 | continue; |
| 113 | |
| 114 | case SkPathVerb::kLine: |
| 115 | lastPoint = write_line_as_cubic(vertexData + vertexCount, lastPoint, |
| 116 | parser.atPoint(ptsIdx)); |
| 117 | ++ptsIdx; |
| 118 | break; |
| 119 | case SkPathVerb::kQuad: |
| 120 | lastPoint = write_quadratic_as_cubic(vertexData + vertexCount, lastPoint, |
| 121 | parser.atPoint(ptsIdx), |
| 122 | parser.atPoint(ptsIdx + 1)); |
| 123 | ptsIdx += 2; |
| 124 | break; |
| 125 | case SkPathVerb::kCubic: |
| 126 | lastPoint = write_cubic(vertexData + vertexCount, lastPoint, |
| 127 | parser.atPoint(ptsIdx), parser.atPoint(ptsIdx + 1), |
| 128 | parser.atPoint(ptsIdx + 2)); |
| 129 | ptsIdx += 3; |
| 130 | break; |
| 131 | } |
| 132 | vertexData[vertexCount + 4] = parser.midpoint(); |
| 133 | vertexCount += 5; |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | vertexAlloc->unlock(vertexCount); |
| 138 | return vertexCount; |
| 139 | } |
| 140 | |
| 141 | // Triangulates the polygon defined by the points in the range [first..last] inclusive. |
| 142 | // Called by InnerPolygonContourParser::emitInnerPolygon() (and recursively). |
| 143 | static int emit_subpolygon(const SkPoint* points, int first, int last, SkPoint* vertexData) { |
| 144 | if (last - first < 2) { |
| 145 | return 0; |
| 146 | } |
| 147 | |
| 148 | // For sub-polygons we subdivide the points in two and connect the endpoints. |
| 149 | int mid = (first + last) / 2; |
| 150 | vertexData[0] = points[first]; |
| 151 | vertexData[1] = points[mid]; |
| 152 | vertexData[2] = points[last]; |
| 153 | |
| 154 | // Emit the sub-polygon at each outer-edge of our new triangle. |
| 155 | int vertexCount = 3; |
| 156 | vertexCount += emit_subpolygon(points, first, mid, vertexData + vertexCount); |
| 157 | vertexCount += emit_subpolygon(points, mid, last, vertexData + vertexCount); |
| 158 | return vertexCount; |
| 159 | } |
| 160 | |
| 161 | class InnerPolygonContourParser : public SkTPathContourParser<InnerPolygonContourParser> { |
| 162 | public: |
| 163 | InnerPolygonContourParser(const SkPath& path, int vertexReserveCount) |
| 164 | : SkTPathContourParser(path) |
| 165 | , fPolyPoints(vertexReserveCount) { |
| 166 | } |
| 167 | |
| 168 | int emitInnerPolygon(SkPoint* vertexData) { |
| 169 | if (fPolyPoints.size() < 3) { |
| 170 | return 0; |
| 171 | } |
| 172 | |
| 173 | // For the first triangle in the polygon, subdivide our points into thirds. |
| 174 | int i1 = fPolyPoints.size() / 3; |
| 175 | int i2 = (2 * fPolyPoints.size()) / 3; |
| 176 | vertexData[0] = fPolyPoints[0]; |
| 177 | vertexData[1] = fPolyPoints[i1]; |
| 178 | vertexData[2] = fPolyPoints[i2]; |
| 179 | |
| 180 | // Emit the sub-polygons at all three edges of our first triangle. |
| 181 | int vertexCount = 3; |
| 182 | vertexCount += emit_subpolygon(fPolyPoints.begin(), 0, i1, vertexData + vertexCount); |
| 183 | vertexCount += emit_subpolygon(fPolyPoints.begin(), i1, i2, vertexData + vertexCount); |
| 184 | int i3 = fPolyPoints.size(); |
| 185 | fPolyPoints.push_back(fPolyPoints.front()); |
| 186 | vertexCount += emit_subpolygon(fPolyPoints.begin(), i2, i3, vertexData + vertexCount); |
| 187 | fPolyPoints.pop_back(); |
| 188 | |
| 189 | return vertexCount; |
| 190 | } |
| 191 | |
| 192 | int numCurves() const { return fNumCurves; } |
| 193 | |
| 194 | private: |
| 195 | friend class SkTPathContourParser<InnerPolygonContourParser>; |
| 196 | |
| 197 | void resetGeometry(const SkPoint& startPoint) { |
| 198 | fPolyPoints.pop_back_n(fPolyPoints.count()); |
| 199 | fPolyPoints.push_back(startPoint); |
| 200 | fNumCurves = 0; |
| 201 | } |
| 202 | |
| 203 | void geometryTo(SkPathVerb verb, const SkPoint& endpoint) { |
| 204 | fPolyPoints.push_back(endpoint); |
| 205 | if (SkPathVerb::kLine != verb) { |
| 206 | ++fNumCurves; |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | SkSTArray<128, SkPoint> fPolyPoints; |
| 211 | int fNumCurves; |
| 212 | }; |
| 213 | |
| 214 | constexpr int max_inner_poly_vertex_count(int numPathVerbs) { |
| 215 | // No initial moveTo, plus an implicit close at the end; n-2 trianles fill an n-gon. |
| 216 | // Each triangle has 3 vertices. |
| 217 | return (numPathVerbs - 1) * 3; |
| 218 | } |
| 219 | |
| 220 | int GrPathParser::EmitInnerPolygonTriangles(const SkPath& path, |
| 221 | GrEagerVertexAllocator* vertexAlloc) { |
| 222 | int maxVertices = max_inner_poly_vertex_count(path.countVerbs()); |
| 223 | InnerPolygonContourParser parser(path, maxVertices); |
| 224 | auto* vertexData = vertexAlloc->lock<SkPoint>(maxVertices); |
| 225 | if (!vertexData) { |
| 226 | return 0; |
| 227 | } |
| 228 | |
| 229 | int vertexCount = 0; |
| 230 | while (parser.parseNextContour()) { |
| 231 | vertexCount += parser.emitInnerPolygon(vertexData + vertexCount); |
| 232 | } |
| 233 | |
| 234 | vertexAlloc->unlock(vertexCount); |
| 235 | return vertexCount; |
| 236 | } |
| 237 | |
| 238 | int GrPathParser::EmitCubicInstances(const SkPath& path, GrEagerVertexAllocator* vertexAlloc) { |
| 239 | auto* instanceData = vertexAlloc->lock<std::array<SkPoint, 4>>(path.countVerbs()); |
| 240 | if (!instanceData) { |
| 241 | return 0; |
| 242 | } |
| 243 | |
| 244 | int instanceCount = 0; |
| 245 | SkPath::Iter iter(path, false); |
| 246 | SkPath::Verb verb; |
| 247 | SkPoint pts[4]; |
| 248 | while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
| 249 | if (SkPath::kQuad_Verb == verb) { |
| 250 | write_quadratic_as_cubic(instanceData[instanceCount++].data(), pts[0], pts[1], pts[2]); |
| 251 | continue; |
| 252 | } |
| 253 | if (SkPath::kCubic_Verb == verb) { |
| 254 | instanceData[instanceCount++] = {pts[0], pts[1], pts[2], pts[3]}; |
| 255 | continue; |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | vertexAlloc->unlock(instanceCount); |
| 260 | return instanceCount; |
| 261 | } |
| 262 | |