1 | /* |
2 | * Copyright 2020 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/gpu/tessellate/GrPathParser.h" |
9 | |
10 | #include "include/private/SkTArray.h" |
11 | #include "src/core/SkPathPriv.h" |
12 | #include "src/gpu/GrEagerVertexAllocator.h" |
13 | |
14 | static SkPoint lerp(const SkPoint& a, const SkPoint& b, float T) { |
15 | SkASSERT(1 != T); // The below does not guarantee lerp(a, b, 1) === b. |
16 | return (b - a) * T + a; |
17 | } |
18 | |
19 | static SkPoint write_line_as_cubic(SkPoint* data, const SkPoint& p0, const SkPoint& p1) { |
20 | data[0] = p0; |
21 | data[1] = lerp(p0, p1, 1/3.f); |
22 | data[2] = lerp(p0, p1, 2/3.f); |
23 | data[3] = p1; |
24 | return data[3]; |
25 | } |
26 | |
27 | static SkPoint write_quadratic_as_cubic(SkPoint* data, const SkPoint& p0, const SkPoint& p1, |
28 | const SkPoint& p2) { |
29 | data[0] = p0; |
30 | data[1] = lerp(p0, p1, 2/3.f); |
31 | data[2] = lerp(p1, p2, 1/3.f); |
32 | data[3] = p2; |
33 | return data[3]; |
34 | } |
35 | |
36 | static SkPoint write_cubic(SkPoint* data, const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, |
37 | const SkPoint& p3) { |
38 | data[0] = p0; |
39 | data[1] = p1; |
40 | data[2] = p2; |
41 | data[3] = p3; |
42 | return data[3]; |
43 | } |
44 | |
45 | // SkTPathContourParser specialization that calculates the contour's midpoint. |
46 | class MidpointContourParser : public SkTPathContourParser<MidpointContourParser> { |
47 | public: |
48 | MidpointContourParser(const SkPath& path) : SkTPathContourParser(path) {} |
49 | |
50 | bool parseNextContour() { |
51 | if (!this->SkTPathContourParser::parseNextContour()) { |
52 | return false; |
53 | } |
54 | if (fMidpointWeight > 1) { |
55 | fMidpoint *= 1.f / fMidpointWeight; |
56 | fMidpointWeight = 1; |
57 | } |
58 | return true; |
59 | } |
60 | |
61 | SkPoint midpoint() const { SkASSERT(1 == fMidpointWeight); return fMidpoint; } |
62 | |
63 | private: |
64 | friend class SkTPathContourParser<MidpointContourParser>; |
65 | |
66 | void resetGeometry(const SkPoint& startPoint) { |
67 | fMidpoint = startPoint; |
68 | fMidpointWeight = 1; |
69 | } |
70 | |
71 | void geometryTo(SkPathVerb, const SkPoint& endpoint) { |
72 | fMidpoint += endpoint; |
73 | ++fMidpointWeight; |
74 | } |
75 | |
76 | SkPoint fMidpoint; |
77 | int fMidpointWeight; |
78 | }; |
79 | |
80 | constexpr int max_wedge_vertex_count(int numPathVerbs) { |
81 | // No initial moveTo, one wedge per verb, plus an implicit close at the end. |
82 | // Each wedge has 5 vertices. |
83 | return (numPathVerbs + 1) * 5; |
84 | } |
85 | |
86 | int GrPathParser::EmitCenterWedgePatches(const SkPath& path, GrEagerVertexAllocator* vertexAlloc) { |
87 | int maxVertices = max_wedge_vertex_count(path.countVerbs()); |
88 | auto* vertexData = vertexAlloc->lock<SkPoint>(maxVertices); |
89 | if (!vertexData) { |
90 | return 0; |
91 | } |
92 | |
93 | int vertexCount = 0; |
94 | MidpointContourParser parser(path); |
95 | while (parser.parseNextContour()) { |
96 | int ptsIdx = 0; |
97 | SkPoint lastPoint = parser.startPoint(); |
98 | for (int i = 0; i < parser.countVerbs(); ++i) { |
99 | switch (parser.atVerb(i)) { |
100 | case SkPathVerb::kClose: |
101 | case SkPathVerb::kDone: |
102 | if (parser.startPoint() != lastPoint) { |
103 | lastPoint = write_line_as_cubic( |
104 | vertexData + vertexCount, lastPoint, parser.startPoint()); |
105 | break; |
106 | } // fallthru |
107 | default: |
108 | continue; |
109 | |
110 | case SkPathVerb::kConic: |
111 | SK_ABORT("Conics are not yet supported." ); |
112 | continue; |
113 | |
114 | case SkPathVerb::kLine: |
115 | lastPoint = write_line_as_cubic(vertexData + vertexCount, lastPoint, |
116 | parser.atPoint(ptsIdx)); |
117 | ++ptsIdx; |
118 | break; |
119 | case SkPathVerb::kQuad: |
120 | lastPoint = write_quadratic_as_cubic(vertexData + vertexCount, lastPoint, |
121 | parser.atPoint(ptsIdx), |
122 | parser.atPoint(ptsIdx + 1)); |
123 | ptsIdx += 2; |
124 | break; |
125 | case SkPathVerb::kCubic: |
126 | lastPoint = write_cubic(vertexData + vertexCount, lastPoint, |
127 | parser.atPoint(ptsIdx), parser.atPoint(ptsIdx + 1), |
128 | parser.atPoint(ptsIdx + 2)); |
129 | ptsIdx += 3; |
130 | break; |
131 | } |
132 | vertexData[vertexCount + 4] = parser.midpoint(); |
133 | vertexCount += 5; |
134 | } |
135 | } |
136 | |
137 | vertexAlloc->unlock(vertexCount); |
138 | return vertexCount; |
139 | } |
140 | |
141 | // Triangulates the polygon defined by the points in the range [first..last] inclusive. |
142 | // Called by InnerPolygonContourParser::emitInnerPolygon() (and recursively). |
143 | static int emit_subpolygon(const SkPoint* points, int first, int last, SkPoint* vertexData) { |
144 | if (last - first < 2) { |
145 | return 0; |
146 | } |
147 | |
148 | // For sub-polygons we subdivide the points in two and connect the endpoints. |
149 | int mid = (first + last) / 2; |
150 | vertexData[0] = points[first]; |
151 | vertexData[1] = points[mid]; |
152 | vertexData[2] = points[last]; |
153 | |
154 | // Emit the sub-polygon at each outer-edge of our new triangle. |
155 | int vertexCount = 3; |
156 | vertexCount += emit_subpolygon(points, first, mid, vertexData + vertexCount); |
157 | vertexCount += emit_subpolygon(points, mid, last, vertexData + vertexCount); |
158 | return vertexCount; |
159 | } |
160 | |
161 | class InnerPolygonContourParser : public SkTPathContourParser<InnerPolygonContourParser> { |
162 | public: |
163 | InnerPolygonContourParser(const SkPath& path, int vertexReserveCount) |
164 | : SkTPathContourParser(path) |
165 | , fPolyPoints(vertexReserveCount) { |
166 | } |
167 | |
168 | int emitInnerPolygon(SkPoint* vertexData) { |
169 | if (fPolyPoints.size() < 3) { |
170 | return 0; |
171 | } |
172 | |
173 | // For the first triangle in the polygon, subdivide our points into thirds. |
174 | int i1 = fPolyPoints.size() / 3; |
175 | int i2 = (2 * fPolyPoints.size()) / 3; |
176 | vertexData[0] = fPolyPoints[0]; |
177 | vertexData[1] = fPolyPoints[i1]; |
178 | vertexData[2] = fPolyPoints[i2]; |
179 | |
180 | // Emit the sub-polygons at all three edges of our first triangle. |
181 | int vertexCount = 3; |
182 | vertexCount += emit_subpolygon(fPolyPoints.begin(), 0, i1, vertexData + vertexCount); |
183 | vertexCount += emit_subpolygon(fPolyPoints.begin(), i1, i2, vertexData + vertexCount); |
184 | int i3 = fPolyPoints.size(); |
185 | fPolyPoints.push_back(fPolyPoints.front()); |
186 | vertexCount += emit_subpolygon(fPolyPoints.begin(), i2, i3, vertexData + vertexCount); |
187 | fPolyPoints.pop_back(); |
188 | |
189 | return vertexCount; |
190 | } |
191 | |
192 | int numCurves() const { return fNumCurves; } |
193 | |
194 | private: |
195 | friend class SkTPathContourParser<InnerPolygonContourParser>; |
196 | |
197 | void resetGeometry(const SkPoint& startPoint) { |
198 | fPolyPoints.pop_back_n(fPolyPoints.count()); |
199 | fPolyPoints.push_back(startPoint); |
200 | fNumCurves = 0; |
201 | } |
202 | |
203 | void geometryTo(SkPathVerb verb, const SkPoint& endpoint) { |
204 | fPolyPoints.push_back(endpoint); |
205 | if (SkPathVerb::kLine != verb) { |
206 | ++fNumCurves; |
207 | } |
208 | } |
209 | |
210 | SkSTArray<128, SkPoint> fPolyPoints; |
211 | int fNumCurves; |
212 | }; |
213 | |
214 | constexpr int max_inner_poly_vertex_count(int numPathVerbs) { |
215 | // No initial moveTo, plus an implicit close at the end; n-2 trianles fill an n-gon. |
216 | // Each triangle has 3 vertices. |
217 | return (numPathVerbs - 1) * 3; |
218 | } |
219 | |
220 | int GrPathParser::EmitInnerPolygonTriangles(const SkPath& path, |
221 | GrEagerVertexAllocator* vertexAlloc) { |
222 | int maxVertices = max_inner_poly_vertex_count(path.countVerbs()); |
223 | InnerPolygonContourParser parser(path, maxVertices); |
224 | auto* vertexData = vertexAlloc->lock<SkPoint>(maxVertices); |
225 | if (!vertexData) { |
226 | return 0; |
227 | } |
228 | |
229 | int vertexCount = 0; |
230 | while (parser.parseNextContour()) { |
231 | vertexCount += parser.emitInnerPolygon(vertexData + vertexCount); |
232 | } |
233 | |
234 | vertexAlloc->unlock(vertexCount); |
235 | return vertexCount; |
236 | } |
237 | |
238 | int GrPathParser::EmitCubicInstances(const SkPath& path, GrEagerVertexAllocator* vertexAlloc) { |
239 | auto* instanceData = vertexAlloc->lock<std::array<SkPoint, 4>>(path.countVerbs()); |
240 | if (!instanceData) { |
241 | return 0; |
242 | } |
243 | |
244 | int instanceCount = 0; |
245 | SkPath::Iter iter(path, false); |
246 | SkPath::Verb verb; |
247 | SkPoint pts[4]; |
248 | while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
249 | if (SkPath::kQuad_Verb == verb) { |
250 | write_quadratic_as_cubic(instanceData[instanceCount++].data(), pts[0], pts[1], pts[2]); |
251 | continue; |
252 | } |
253 | if (SkPath::kCubic_Verb == verb) { |
254 | instanceData[instanceCount++] = {pts[0], pts[1], pts[2], pts[3]}; |
255 | continue; |
256 | } |
257 | } |
258 | |
259 | vertexAlloc->unlock(instanceCount); |
260 | return instanceCount; |
261 | } |
262 | |