| 1 | /* |
| 2 | * Copyright 2015 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #ifndef SkPathPriv_DEFINED |
| 9 | #define SkPathPriv_DEFINED |
| 10 | |
| 11 | #include "include/core/SkPath.h" |
| 12 | #include "include/private/SkIDChangeListener.h" |
| 13 | |
| 14 | static_assert(0 == static_cast<int>(SkPathFillType::kWinding), "fill_type_mismatch" ); |
| 15 | static_assert(1 == static_cast<int>(SkPathFillType::kEvenOdd), "fill_type_mismatch" ); |
| 16 | static_assert(2 == static_cast<int>(SkPathFillType::kInverseWinding), "fill_type_mismatch" ); |
| 17 | static_assert(3 == static_cast<int>(SkPathFillType::kInverseEvenOdd), "fill_type_mismatch" ); |
| 18 | |
| 19 | class SkPathPriv { |
| 20 | public: |
| 21 | #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK |
| 22 | static const int kPathRefGenIDBitCnt = 30; // leave room for the fill type (skbug.com/1762) |
| 23 | #else |
| 24 | static const int kPathRefGenIDBitCnt = 32; |
| 25 | #endif |
| 26 | |
| 27 | static constexpr SkScalar kW0PlaneDistance = 0.05f; |
| 28 | |
| 29 | enum FirstDirection : int { |
| 30 | kCW_FirstDirection, // == SkPathDirection::kCW |
| 31 | kCCW_FirstDirection, // == SkPathDirection::kCCW |
| 32 | kUnknown_FirstDirection, |
| 33 | }; |
| 34 | |
| 35 | static FirstDirection AsFirstDirection(SkPathDirection dir) { |
| 36 | // since we agree numerically for the values in Direction, we can just cast. |
| 37 | return (FirstDirection)dir; |
| 38 | } |
| 39 | |
| 40 | /** |
| 41 | * Return the opposite of the specified direction. kUnknown is its own |
| 42 | * opposite. |
| 43 | */ |
| 44 | static FirstDirection OppositeFirstDirection(FirstDirection dir) { |
| 45 | static const FirstDirection gOppositeDir[] = { |
| 46 | kCCW_FirstDirection, kCW_FirstDirection, kUnknown_FirstDirection, |
| 47 | }; |
| 48 | return gOppositeDir[dir]; |
| 49 | } |
| 50 | |
| 51 | /** |
| 52 | * Tries to quickly compute the direction of the first non-degenerate |
| 53 | * contour. If it can be computed, return true and set dir to that |
| 54 | * direction. If it cannot be (quickly) determined, return false and ignore |
| 55 | * the dir parameter. If the direction was determined, it is cached to make |
| 56 | * subsequent calls return quickly. |
| 57 | */ |
| 58 | static bool CheapComputeFirstDirection(const SkPath&, FirstDirection* dir); |
| 59 | |
| 60 | /** |
| 61 | * Returns true if the path's direction can be computed via |
| 62 | * cheapComputDirection() and if that computed direction matches the |
| 63 | * specified direction. If dir is kUnknown, returns true if the direction |
| 64 | * cannot be computed. |
| 65 | */ |
| 66 | static bool CheapIsFirstDirection(const SkPath& path, FirstDirection dir) { |
| 67 | FirstDirection computedDir = kUnknown_FirstDirection; |
| 68 | (void)CheapComputeFirstDirection(path, &computedDir); |
| 69 | return computedDir == dir; |
| 70 | } |
| 71 | |
| 72 | static bool IsClosedSingleContour(const SkPath& path) { |
| 73 | int verbCount = path.countVerbs(); |
| 74 | if (verbCount == 0) |
| 75 | return false; |
| 76 | int moveCount = 0; |
| 77 | auto verbs = path.fPathRef->verbsBegin(); |
| 78 | for (int i = 0; i < verbCount; i++) { |
| 79 | switch (verbs[i]) { |
| 80 | case SkPath::Verb::kMove_Verb: |
| 81 | moveCount += 1; |
| 82 | if (moveCount > 1) { |
| 83 | return false; |
| 84 | } |
| 85 | break; |
| 86 | case SkPath::Verb::kClose_Verb: |
| 87 | if (i == verbCount - 1) { |
| 88 | return true; |
| 89 | } |
| 90 | return false; |
| 91 | default: break; |
| 92 | } |
| 93 | } |
| 94 | return false; |
| 95 | } |
| 96 | |
| 97 | static void AddGenIDChangeListener(const SkPath& path, sk_sp<SkIDChangeListener> listener) { |
| 98 | path.fPathRef->addGenIDChangeListener(std::move(listener)); |
| 99 | } |
| 100 | |
| 101 | /** |
| 102 | * This returns true for a rect that begins and ends at the same corner and has either a move |
| 103 | * followed by four lines or a move followed by 3 lines and a close. None of the parameters are |
| 104 | * optional. This does not permit degenerate line or point rectangles. |
| 105 | */ |
| 106 | static bool IsSimpleClosedRect(const SkPath& path, SkRect* rect, SkPathDirection* direction, |
| 107 | unsigned* start); |
| 108 | |
| 109 | /** |
| 110 | * Creates a path from arc params using the semantics of SkCanvas::drawArc. This function |
| 111 | * assumes empty ovals and zero sweeps have already been filtered out. |
| 112 | */ |
| 113 | static void CreateDrawArcPath(SkPath* path, const SkRect& oval, SkScalar startAngle, |
| 114 | SkScalar sweepAngle, bool useCenter, bool isFillNoPathEffect); |
| 115 | |
| 116 | /** |
| 117 | * Determines whether an arc produced by CreateDrawArcPath will be convex. Assumes a non-empty |
| 118 | * oval. |
| 119 | */ |
| 120 | static bool DrawArcIsConvex(SkScalar sweepAngle, bool useCenter, bool isFillNoPathEffect); |
| 121 | |
| 122 | /** |
| 123 | * Returns a C++11-iterable object that traverses a path's verbs in order. e.g: |
| 124 | * |
| 125 | * for (SkPath::Verb verb : SkPathPriv::Verbs(path)) { |
| 126 | * ... |
| 127 | * } |
| 128 | */ |
| 129 | struct Verbs { |
| 130 | public: |
| 131 | Verbs(const SkPath& path) : fPathRef(path.fPathRef.get()) {} |
| 132 | struct Iter { |
| 133 | void operator++() { fVerb++; } |
| 134 | bool operator!=(const Iter& b) { return fVerb != b.fVerb; } |
| 135 | SkPath::Verb operator*() { return static_cast<SkPath::Verb>(*fVerb); } |
| 136 | const uint8_t* fVerb; |
| 137 | }; |
| 138 | Iter begin() { return Iter{fPathRef->verbsBegin()}; } |
| 139 | Iter end() { return Iter{fPathRef->verbsEnd()}; } |
| 140 | private: |
| 141 | Verbs(const Verbs&) = delete; |
| 142 | Verbs& operator=(const Verbs&) = delete; |
| 143 | SkPathRef* fPathRef; |
| 144 | }; |
| 145 | |
| 146 | /** |
| 147 | * Returns a pointer to the verb data. |
| 148 | */ |
| 149 | static const uint8_t* VerbData(const SkPath& path) { |
| 150 | return path.fPathRef->verbsBegin(); |
| 151 | } |
| 152 | |
| 153 | /** Returns a raw pointer to the path points */ |
| 154 | static const SkPoint* PointData(const SkPath& path) { |
| 155 | return path.fPathRef->points(); |
| 156 | } |
| 157 | |
| 158 | /** Returns the number of conic weights in the path */ |
| 159 | static int ConicWeightCnt(const SkPath& path) { |
| 160 | return path.fPathRef->countWeights(); |
| 161 | } |
| 162 | |
| 163 | /** Returns a raw pointer to the path conic weights. */ |
| 164 | static const SkScalar* ConicWeightData(const SkPath& path) { |
| 165 | return path.fPathRef->conicWeights(); |
| 166 | } |
| 167 | |
| 168 | /** Returns true if path formed by pts is convex. |
| 169 | |
| 170 | @param pts SkPoint array of path |
| 171 | @param count number of entries in array |
| 172 | |
| 173 | @return true if pts represent a convex geometry |
| 174 | */ |
| 175 | static bool IsConvex(const SkPoint pts[], int count); |
| 176 | |
| 177 | /** Returns true if the underlying SkPathRef has one single owner. */ |
| 178 | static bool TestingOnly_unique(const SkPath& path) { |
| 179 | return path.fPathRef->unique(); |
| 180 | } |
| 181 | |
| 182 | /** Returns true if constructed by addCircle(), addOval(); and in some cases, |
| 183 | addRoundRect(), addRRect(). SkPath constructed with conicTo() or rConicTo() will not |
| 184 | return true though SkPath draws oval. |
| 185 | |
| 186 | rect receives bounds of oval. |
| 187 | dir receives SkPathDirection of oval: kCW_Direction if clockwise, kCCW_Direction if |
| 188 | counterclockwise. |
| 189 | start receives start of oval: 0 for top, 1 for right, 2 for bottom, 3 for left. |
| 190 | |
| 191 | rect, dir, and start are unmodified if oval is not found. |
| 192 | |
| 193 | Triggers performance optimizations on some GPU surface implementations. |
| 194 | |
| 195 | @param rect storage for bounding SkRect of oval; may be nullptr |
| 196 | @param dir storage for SkPathDirection; may be nullptr |
| 197 | @param start storage for start of oval; may be nullptr |
| 198 | @return true if SkPath was constructed by method that reduces to oval |
| 199 | */ |
| 200 | static bool IsOval(const SkPath& path, SkRect* rect, SkPathDirection* dir, unsigned* start) { |
| 201 | bool isCCW = false; |
| 202 | bool result = path.fPathRef->isOval(rect, &isCCW, start); |
| 203 | if (dir && result) { |
| 204 | *dir = isCCW ? SkPathDirection::kCCW : SkPathDirection::kCW; |
| 205 | } |
| 206 | return result; |
| 207 | } |
| 208 | |
| 209 | /** Returns true if constructed by addRoundRect(), addRRect(); and if construction |
| 210 | is not empty, not SkRect, and not oval. SkPath constructed with other calls |
| 211 | will not return true though SkPath draws SkRRect. |
| 212 | |
| 213 | rrect receives bounds of SkRRect. |
| 214 | dir receives SkPathDirection of oval: kCW_Direction if clockwise, kCCW_Direction if |
| 215 | counterclockwise. |
| 216 | start receives start of SkRRect: 0 for top, 1 for right, 2 for bottom, 3 for left. |
| 217 | |
| 218 | rrect, dir, and start are unmodified if SkRRect is not found. |
| 219 | |
| 220 | Triggers performance optimizations on some GPU surface implementations. |
| 221 | |
| 222 | @param rrect storage for bounding SkRect of SkRRect; may be nullptr |
| 223 | @param dir storage for SkPathDirection; may be nullptr |
| 224 | @param start storage for start of SkRRect; may be nullptr |
| 225 | @return true if SkPath contains only SkRRect |
| 226 | */ |
| 227 | static bool IsRRect(const SkPath& path, SkRRect* rrect, SkPathDirection* dir, |
| 228 | unsigned* start) { |
| 229 | bool isCCW = false; |
| 230 | bool result = path.fPathRef->isRRect(rrect, &isCCW, start); |
| 231 | if (dir && result) { |
| 232 | *dir = isCCW ? SkPathDirection::kCCW : SkPathDirection::kCW; |
| 233 | } |
| 234 | return result; |
| 235 | } |
| 236 | |
| 237 | /** |
| 238 | * Sometimes in the drawing pipeline, we have to perform math on path coordinates, even after |
| 239 | * the path is in device-coordinates. Tessellation and clipping are two examples. Usually this |
| 240 | * is pretty modest, but it can involve subtracting/adding coordinates, or multiplying by |
| 241 | * small constants (e.g. 2,3,4). To try to preflight issues where these optionations could turn |
| 242 | * finite path values into infinities (or NaNs), we allow the upper drawing code to reject |
| 243 | * the path if its bounds (in device coordinates) is too close to max float. |
| 244 | */ |
| 245 | static bool TooBigForMath(const SkRect& bounds) { |
| 246 | // This value is just a guess. smaller is safer, but we don't want to reject largish paths |
| 247 | // that we don't have to. |
| 248 | constexpr SkScalar scale_down_to_allow_for_small_multiplies = 0.25f; |
| 249 | constexpr SkScalar max = SK_ScalarMax * scale_down_to_allow_for_small_multiplies; |
| 250 | |
| 251 | // use ! expression so we return true if bounds contains NaN |
| 252 | return !(bounds.fLeft >= -max && bounds.fTop >= -max && |
| 253 | bounds.fRight <= max && bounds.fBottom <= max); |
| 254 | } |
| 255 | static bool TooBigForMath(const SkPath& path) { |
| 256 | return TooBigForMath(path.getBounds()); |
| 257 | } |
| 258 | |
| 259 | // Returns number of valid points for each SkPath::Iter verb |
| 260 | static int PtsInIter(unsigned verb) { |
| 261 | static const uint8_t gPtsInVerb[] = { |
| 262 | 1, // kMove pts[0] |
| 263 | 2, // kLine pts[0..1] |
| 264 | 3, // kQuad pts[0..2] |
| 265 | 3, // kConic pts[0..2] |
| 266 | 4, // kCubic pts[0..3] |
| 267 | 0, // kClose |
| 268 | 0 // kDone |
| 269 | }; |
| 270 | |
| 271 | SkASSERT(verb < SK_ARRAY_COUNT(gPtsInVerb)); |
| 272 | return gPtsInVerb[verb]; |
| 273 | } |
| 274 | |
| 275 | static bool IsAxisAligned(const SkPath& path) { |
| 276 | SkRect tmp; |
| 277 | return (path.fPathRef->fIsRRect | path.fPathRef->fIsOval) || path.isRect(&tmp); |
| 278 | } |
| 279 | |
| 280 | static bool AllPointsEq(const SkPoint pts[], int count) { |
| 281 | for (int i = 1; i < count; ++i) { |
| 282 | if (pts[0] != pts[i]) { |
| 283 | return false; |
| 284 | } |
| 285 | } |
| 286 | return true; |
| 287 | } |
| 288 | |
| 289 | static bool IsRectContour(const SkPath&, bool allowPartial, int* currVerb, |
| 290 | const SkPoint** ptsPtr, bool* isClosed, SkPathDirection* direction, |
| 291 | SkRect* rect); |
| 292 | |
| 293 | /** Returns true if SkPath is equivalent to nested SkRect pair when filled. |
| 294 | If false, rect and dirs are unchanged. |
| 295 | If true, rect and dirs are written to if not nullptr: |
| 296 | setting rect[0] to outer SkRect, and rect[1] to inner SkRect; |
| 297 | setting dirs[0] to SkPathDirection of outer SkRect, and dirs[1] to SkPathDirection of |
| 298 | inner SkRect. |
| 299 | |
| 300 | @param rect storage for SkRect pair; may be nullptr |
| 301 | @param dirs storage for SkPathDirection pair; may be nullptr |
| 302 | @return true if SkPath contains nested SkRect pair |
| 303 | */ |
| 304 | static bool IsNestedFillRects(const SkPath&, SkRect rect[2], |
| 305 | SkPathDirection dirs[2] = nullptr); |
| 306 | |
| 307 | static bool IsInverseFillType(SkPathFillType fill) { |
| 308 | return (static_cast<int>(fill) & 2) != 0; |
| 309 | } |
| 310 | |
| 311 | /** Returns equivalent SkPath::FillType representing SkPath fill inside its bounds. |
| 312 | . |
| 313 | |
| 314 | @param fill one of: kWinding_FillType, kEvenOdd_FillType, |
| 315 | kInverseWinding_FillType, kInverseEvenOdd_FillType |
| 316 | @return fill, or kWinding_FillType or kEvenOdd_FillType if fill is inverted |
| 317 | */ |
| 318 | static SkPathFillType ConvertToNonInverseFillType(SkPathFillType fill) { |
| 319 | return (SkPathFillType)(static_cast<int>(fill) & 1); |
| 320 | } |
| 321 | |
| 322 | /** |
| 323 | * If needed (to not blow-up under a perspective matrix), clip the path, returning the |
| 324 | * answer in "result", and return true. |
| 325 | * |
| 326 | * Note result might be empty (if the path was completely clipped out). |
| 327 | * |
| 328 | * If no clipping is needed, returns false and "result" is left unchanged. |
| 329 | */ |
| 330 | static bool PerspectiveClip(const SkPath& src, const SkMatrix&, SkPath* result); |
| 331 | |
| 332 | /** |
| 333 | * Gets the number of GenIDChangeListeners. If another thread has access to this path then |
| 334 | * this may be stale before return and only indicates that the count was the return value |
| 335 | * at some point during the execution of the function. |
| 336 | */ |
| 337 | static int GenIDChangeListenersCount(const SkPath&); |
| 338 | }; |
| 339 | |
| 340 | // Lightweight variant of SkPath::Iter that only returns segments (e.g. lines/conics). |
| 341 | // Does not return kMove or kClose. |
| 342 | // Always "auto-closes" each contour. |
| 343 | // Roughly the same as SkPath::Iter(path, true), but does not return moves or closes |
| 344 | // |
| 345 | class SkPathEdgeIter { |
| 346 | const uint8_t* fVerbs; |
| 347 | const uint8_t* fVerbsStop; |
| 348 | const SkPoint* fPts; |
| 349 | const SkPoint* fMoveToPtr; |
| 350 | const SkScalar* fConicWeights; |
| 351 | SkPoint fScratch[2]; // for auto-close lines |
| 352 | bool fNeedsCloseLine; |
| 353 | bool fNextIsNewContour; |
| 354 | SkDEBUGCODE(bool fIsConic); |
| 355 | |
| 356 | enum { |
| 357 | kIllegalEdgeValue = 99 |
| 358 | }; |
| 359 | |
| 360 | public: |
| 361 | SkPathEdgeIter(const SkPath& path); |
| 362 | |
| 363 | SkScalar conicWeight() const { |
| 364 | SkASSERT(fIsConic); |
| 365 | return *fConicWeights; |
| 366 | } |
| 367 | |
| 368 | enum class Edge { |
| 369 | kLine = SkPath::kLine_Verb, |
| 370 | kQuad = SkPath::kQuad_Verb, |
| 371 | kConic = SkPath::kConic_Verb, |
| 372 | kCubic = SkPath::kCubic_Verb, |
| 373 | }; |
| 374 | |
| 375 | static SkPath::Verb EdgeToVerb(Edge e) { |
| 376 | return SkPath::Verb(e); |
| 377 | } |
| 378 | |
| 379 | struct Result { |
| 380 | const SkPoint* fPts; // points for the segment, or null if done |
| 381 | Edge fEdge; |
| 382 | bool fIsNewContour; |
| 383 | |
| 384 | // Returns true when it holds an Edge, false when the path is done. |
| 385 | operator bool() { return fPts != nullptr; } |
| 386 | }; |
| 387 | |
| 388 | Result next() { |
| 389 | auto closeline = [&]() { |
| 390 | fScratch[0] = fPts[-1]; |
| 391 | fScratch[1] = *fMoveToPtr; |
| 392 | fNeedsCloseLine = false; |
| 393 | fNextIsNewContour = true; |
| 394 | return Result{ fScratch, Edge::kLine, false }; |
| 395 | }; |
| 396 | |
| 397 | for (;;) { |
| 398 | SkASSERT(fVerbs <= fVerbsStop); |
| 399 | if (fVerbs == fVerbsStop) { |
| 400 | return fNeedsCloseLine |
| 401 | ? closeline() |
| 402 | : Result{ nullptr, Edge(kIllegalEdgeValue), false }; |
| 403 | } |
| 404 | |
| 405 | SkDEBUGCODE(fIsConic = false;) |
| 406 | |
| 407 | const auto v = *fVerbs++; |
| 408 | switch (v) { |
| 409 | case SkPath::kMove_Verb: { |
| 410 | if (fNeedsCloseLine) { |
| 411 | auto res = closeline(); |
| 412 | fMoveToPtr = fPts++; |
| 413 | return res; |
| 414 | } |
| 415 | fMoveToPtr = fPts++; |
| 416 | } break; |
| 417 | case SkPath::kClose_Verb: |
| 418 | if (fNeedsCloseLine) return closeline(); |
| 419 | break; |
| 420 | default: { |
| 421 | // Actual edge. |
| 422 | const int pts_count = (v+2) / 2, |
| 423 | cws_count = (v & (v-1)) / 2; |
| 424 | SkASSERT(pts_count == SkPathPriv::PtsInIter(v) - 1); |
| 425 | |
| 426 | fNeedsCloseLine = true; |
| 427 | fPts += pts_count; |
| 428 | fConicWeights += cws_count; |
| 429 | |
| 430 | SkDEBUGCODE(fIsConic = (v == SkPath::kConic_Verb);) |
| 431 | SkASSERT(fIsConic == (cws_count > 0)); |
| 432 | |
| 433 | bool isNewContour = fNextIsNewContour; |
| 434 | fNextIsNewContour = false; |
| 435 | return { &fPts[-(pts_count + 1)], Edge(v), isNewContour }; |
| 436 | } |
| 437 | } |
| 438 | } |
| 439 | } |
| 440 | }; |
| 441 | |
| 442 | // Parses out each contour in a path. Example usage: |
| 443 | // |
| 444 | // SkTPathContourParser parser; |
| 445 | // while (parser.parseNextContour()) { |
| 446 | // for (int i = 0; i < parser.countVerbs(); ++i) { |
| 447 | // switch (parser.atVerb(i)) { |
| 448 | // ... |
| 449 | // } |
| 450 | // } |
| 451 | // } |
| 452 | // |
| 453 | // TSubclass must inherit from "SkTPathContourParser<TSubclass>", and must contain two methods: |
| 454 | // |
| 455 | // // Called on each implicit or explicit moveTo. |
| 456 | // void resetGeometry(const SkPoint& startPoint); |
| 457 | // |
| 458 | // // Called on each lineTo, quadTo, conicTo, and cubicTo. |
| 459 | // void geometryTo(SkPathVerb, const SkPoint& endpoint); |
| 460 | // |
| 461 | // If no special tracking of endpoints is required, then use SkPathContourParser below. |
| 462 | template<typename TSubclass> class SkTPathContourParser { |
| 463 | public: |
| 464 | SkTPathContourParser(const SkPath& path) |
| 465 | : fPath(path) |
| 466 | , fVerbs(SkPathPriv::VerbData(fPath)) |
| 467 | , fNumRemainingVerbs(fPath.countVerbs()) |
| 468 | , fPoints(SkPathPriv::PointData(fPath)) {} |
| 469 | |
| 470 | // Returns the number of verbs in the current contour, plus 1 so we can inject kDone at the end. |
| 471 | int countVerbs() const { return fVerbsIdx + 1; } |
| 472 | |
| 473 | // Returns the ith non-move verb in the current contour. |
| 474 | SkPathVerb atVerb(int i) const { |
| 475 | SkASSERT(i >= 0 && i <= fVerbsIdx); |
| 476 | SkPathVerb verb = (i < fVerbsIdx) ? (SkPathVerb)fVerbs[i] : SkPathVerb::kDone; |
| 477 | SkASSERT(SkPathVerb::kMove != verb); |
| 478 | return verb; |
| 479 | } |
| 480 | |
| 481 | // Returns the current contour's starting point. |
| 482 | SkPoint startPoint() const { return fStartPoint; } |
| 483 | |
| 484 | // Returns the ith point in the current contour, not including the start point. (i.e., index 0 |
| 485 | // is the first point immediately following the start point from the path's point array.) |
| 486 | const SkPoint& atPoint(int i) const { |
| 487 | SkASSERT(i >= 0 && i < fPtsIdx); |
| 488 | return fPoints[i]; |
| 489 | } |
| 490 | |
| 491 | // Advances the internal state to the next contour in the path. Returns false if there are no |
| 492 | // more contours. |
| 493 | // |
| 494 | // SkTPathContourParser parser; |
| 495 | // while (parser.parseNextContour()) { |
| 496 | // ... |
| 497 | // } |
| 498 | bool parseNextContour() { |
| 499 | this->advance(); |
| 500 | fStartPoint = {0, 0}; |
| 501 | static_cast<TSubclass*>(this)->resetGeometry(fStartPoint); |
| 502 | |
| 503 | bool hasGeometry = false; |
| 504 | |
| 505 | while (fVerbsIdx < fNumRemainingVerbs) { |
| 506 | switch (uint8_t verb = fVerbs[fVerbsIdx]) { |
| 507 | case SkPath::kMove_Verb: |
| 508 | if (!hasGeometry) { |
| 509 | fStartPoint = fPoints[fPtsIdx]; |
| 510 | static_cast<TSubclass*>(this)->resetGeometry(fStartPoint); |
| 511 | ++fVerbsIdx; |
| 512 | ++fPtsIdx; |
| 513 | this->advance(); |
| 514 | continue; |
| 515 | } |
| 516 | return true; |
| 517 | |
| 518 | static_assert(SkPath::kLine_Verb == 1); case 1: |
| 519 | static_assert(SkPath::kQuad_Verb == 2); case 2: |
| 520 | static_assert(SkPath::kConic_Verb == 3); case 3: |
| 521 | static_assert(SkPath::kCubic_Verb == 4); case 4: |
| 522 | static constexpr int kPtsAdvance[] = {0, 1, 2, 2, 3}; |
| 523 | fPtsIdx += kPtsAdvance[verb]; |
| 524 | static_cast<TSubclass*>(this)->geometryTo((SkPathVerb)verb, |
| 525 | fPoints[fPtsIdx - 1]); |
| 526 | hasGeometry = true; |
| 527 | break; |
| 528 | } |
| 529 | ++fVerbsIdx; |
| 530 | } |
| 531 | |
| 532 | return hasGeometry; |
| 533 | } |
| 534 | |
| 535 | private: |
| 536 | void advance() { |
| 537 | fVerbs += fVerbsIdx; |
| 538 | fNumRemainingVerbs -= fVerbsIdx; |
| 539 | fVerbsIdx = 0; |
| 540 | fPoints += fPtsIdx; |
| 541 | fPtsIdx = 0; |
| 542 | } |
| 543 | |
| 544 | const SkPath& fPath; |
| 545 | |
| 546 | const uint8_t* fVerbs; |
| 547 | int fNumRemainingVerbs = 0; |
| 548 | int fVerbsIdx = 0; |
| 549 | |
| 550 | const SkPoint* fPoints; |
| 551 | SkPoint fStartPoint; |
| 552 | int fPtsIdx = 0; |
| 553 | }; |
| 554 | |
| 555 | class SkPathContourParser : public SkTPathContourParser<SkPathContourParser> { |
| 556 | public: |
| 557 | SkPathContourParser(const SkPath& path) : SkTPathContourParser(path) {} |
| 558 | // Called on each implicit or explicit moveTo. |
| 559 | void resetGeometry(const SkPoint& startPoint) { /* No-op */ } |
| 560 | // Called on each lineTo, quadTo, conicTo, and cubicTo. |
| 561 | void geometryTo(SkPathVerb, const SkPoint& endpoint) { /* No-op */ } |
| 562 | }; |
| 563 | |
| 564 | #endif |
| 565 | |