| 1 | /*****************************************************************************/ |
| 2 | // Copyright 2006-2007 Adobe Systems Incorporated |
| 3 | // All Rights Reserved. |
| 4 | // |
| 5 | // NOTICE: Adobe permits you to use, modify, and distribute this file in |
| 6 | // accordance with the terms of the Adobe license agreement accompanying it. |
| 7 | /*****************************************************************************/ |
| 8 | |
| 9 | /* $Id: //mondo/dng_sdk_1_4/dng_sdk/source/dng_spline.cpp#1 $ */ |
| 10 | /* $DateTime: 2012/05/30 13:28:51 $ */ |
| 11 | /* $Change: 832332 $ */ |
| 12 | /* $Author: tknoll $ */ |
| 13 | |
| 14 | /*****************************************************************************/ |
| 15 | |
| 16 | #include "dng_spline.h" |
| 17 | |
| 18 | #include "dng_assertions.h" |
| 19 | #include "dng_exceptions.h" |
| 20 | |
| 21 | /******************************************************************************/ |
| 22 | |
| 23 | dng_spline_solver::dng_spline_solver () |
| 24 | |
| 25 | : X () |
| 26 | , Y () |
| 27 | , S () |
| 28 | |
| 29 | { |
| 30 | |
| 31 | } |
| 32 | |
| 33 | /******************************************************************************/ |
| 34 | |
| 35 | dng_spline_solver::~dng_spline_solver () |
| 36 | { |
| 37 | |
| 38 | } |
| 39 | |
| 40 | /******************************************************************************/ |
| 41 | |
| 42 | void dng_spline_solver::Reset () |
| 43 | { |
| 44 | |
| 45 | X.clear (); |
| 46 | Y.clear (); |
| 47 | |
| 48 | S.clear (); |
| 49 | |
| 50 | } |
| 51 | |
| 52 | /******************************************************************************/ |
| 53 | |
| 54 | void dng_spline_solver::Add (real64 x, real64 y) |
| 55 | { |
| 56 | |
| 57 | X.push_back (x); |
| 58 | Y.push_back (y); |
| 59 | |
| 60 | } |
| 61 | |
| 62 | /******************************************************************************/ |
| 63 | |
| 64 | void dng_spline_solver::Solve () |
| 65 | { |
| 66 | |
| 67 | // This code computes the unique curve such that: |
| 68 | // It is C0, C1, and C2 continuous |
| 69 | // The second derivative is zero at the end points |
| 70 | |
| 71 | int32 count = (int32) X.size (); |
| 72 | |
| 73 | DNG_ASSERT (count >= 2, "Too few points" ); |
| 74 | |
| 75 | int32 start = 0; |
| 76 | int32 end = count; |
| 77 | |
| 78 | real64 A = X [start+1] - X [start]; |
| 79 | real64 B = (Y [start+1] - Y [start]) / A; |
| 80 | |
| 81 | S.resize (count); |
| 82 | |
| 83 | S [start] = B; |
| 84 | |
| 85 | int32 j; |
| 86 | |
| 87 | // Slopes here are a weighted average of the slopes |
| 88 | // to each of the adjcent control points. |
| 89 | |
| 90 | for (j = start + 2; j < end; ++j) |
| 91 | { |
| 92 | |
| 93 | real64 C = X [j] - X [j-1]; |
| 94 | real64 D = (Y [j] - Y [j-1]) / C; |
| 95 | |
| 96 | S [j-1] = (B * C + D * A) / (A + C); |
| 97 | |
| 98 | A = C; |
| 99 | B = D; |
| 100 | |
| 101 | } |
| 102 | |
| 103 | S [end-1] = 2.0 * B - S [end-2]; |
| 104 | S [start] = 2.0 * S [start] - S [start+1]; |
| 105 | |
| 106 | if ((end - start) > 2) |
| 107 | { |
| 108 | |
| 109 | dng_std_vector<real64> E; |
| 110 | dng_std_vector<real64> F; |
| 111 | dng_std_vector<real64> G; |
| 112 | |
| 113 | E.resize (count); |
| 114 | F.resize (count); |
| 115 | G.resize (count); |
| 116 | |
| 117 | F [start] = 0.5; |
| 118 | E [end-1] = 0.5; |
| 119 | G [start] = 0.75 * (S [start] + S [start+1]); |
| 120 | G [end-1] = 0.75 * (S [end-2] + S [end-1]); |
| 121 | |
| 122 | for (j = start+1; j < end - 1; ++j) |
| 123 | { |
| 124 | |
| 125 | A = (X [j+1] - X [j-1]) * 2.0; |
| 126 | |
| 127 | E [j] = (X [j+1] - X [j]) / A; |
| 128 | F [j] = (X [j] - X [j-1]) / A; |
| 129 | G [j] = 1.5 * S [j]; |
| 130 | |
| 131 | } |
| 132 | |
| 133 | for (j = start+1; j < end; ++j) |
| 134 | { |
| 135 | |
| 136 | A = 1.0 - F [j-1] * E [j]; |
| 137 | |
| 138 | if (j != end-1) F [j] /= A; |
| 139 | |
| 140 | G [j] = (G [j] - G [j-1] * E [j]) / A; |
| 141 | |
| 142 | } |
| 143 | |
| 144 | for (j = end - 2; j >= start; --j) |
| 145 | G [j] = G [j] - F [j] * G [j+1]; |
| 146 | |
| 147 | for (j = start; j < end; ++j) |
| 148 | S [j] = G [j]; |
| 149 | |
| 150 | } |
| 151 | |
| 152 | } |
| 153 | |
| 154 | /******************************************************************************/ |
| 155 | |
| 156 | bool dng_spline_solver::IsIdentity () const |
| 157 | { |
| 158 | |
| 159 | int32 count = (int32) X.size (); |
| 160 | |
| 161 | if (count != 2) |
| 162 | return false; |
| 163 | |
| 164 | if (X [0] != 0.0 || X [1] != 1.0 || |
| 165 | Y [0] != 0.0 || Y [1] != 1.0) |
| 166 | return false; |
| 167 | |
| 168 | return true; |
| 169 | |
| 170 | } |
| 171 | |
| 172 | /******************************************************************************/ |
| 173 | |
| 174 | real64 dng_spline_solver::Evaluate (real64 x) const |
| 175 | { |
| 176 | |
| 177 | int32 count = (int32) X.size (); |
| 178 | |
| 179 | // Check for off each end of point list. |
| 180 | |
| 181 | if (x <= X [0]) |
| 182 | return Y [0]; |
| 183 | |
| 184 | if (x >= X [count-1]) |
| 185 | return Y [count-1]; |
| 186 | |
| 187 | // Binary search for the index. |
| 188 | |
| 189 | int32 lower = 1; |
| 190 | int32 upper = count - 1; |
| 191 | |
| 192 | while (upper > lower) |
| 193 | { |
| 194 | |
| 195 | int32 mid = (lower + upper) >> 1; |
| 196 | |
| 197 | if (x == X [mid]) |
| 198 | { |
| 199 | return Y [mid]; |
| 200 | } |
| 201 | |
| 202 | if (x > X [mid]) |
| 203 | lower = mid + 1; |
| 204 | else |
| 205 | upper = mid; |
| 206 | |
| 207 | } |
| 208 | |
| 209 | DNG_ASSERT (upper == lower, "Binary search error in point list" ); |
| 210 | |
| 211 | int32 j = lower; |
| 212 | |
| 213 | // X [j - 1] < x <= X [j] |
| 214 | // A is the distance between the X [j] and X [j - 1] |
| 215 | // B and C describe the fractional distance to either side. B + C = 1. |
| 216 | |
| 217 | // We compute a cubic spline between the two points with slopes |
| 218 | // S[j-1] and S[j] at either end. Specifically, we compute the 1-D Bezier |
| 219 | // with control values: |
| 220 | // |
| 221 | // Y[j-1], Y[j-1] + S[j-1]*A, Y[j]-S[j]*A, Y[j] |
| 222 | |
| 223 | return EvaluateSplineSegment (x, |
| 224 | X [j - 1], |
| 225 | Y [j - 1], |
| 226 | S [j - 1], |
| 227 | X [j ], |
| 228 | Y [j ], |
| 229 | S [j ]); |
| 230 | |
| 231 | } |
| 232 | |
| 233 | /*****************************************************************************/ |
| 234 | |