| 1 | /* | 
|---|
| 2 | * jcdctmgr.c | 
|---|
| 3 | * | 
|---|
| 4 | * This file was part of the Independent JPEG Group's software: | 
|---|
| 5 | * Copyright (C) 1994-1996, Thomas G. Lane. | 
|---|
| 6 | * libjpeg-turbo Modifications: | 
|---|
| 7 | * Copyright (C) 1999-2006, MIYASAKA Masaru. | 
|---|
| 8 | * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB | 
|---|
| 9 | * Copyright (C) 2011, 2014-2015, D. R. Commander. | 
|---|
| 10 | * For conditions of distribution and use, see the accompanying README.ijg | 
|---|
| 11 | * file. | 
|---|
| 12 | * | 
|---|
| 13 | * This file contains the forward-DCT management logic. | 
|---|
| 14 | * This code selects a particular DCT implementation to be used, | 
|---|
| 15 | * and it performs related housekeeping chores including coefficient | 
|---|
| 16 | * quantization. | 
|---|
| 17 | */ | 
|---|
| 18 |  | 
|---|
| 19 | #define JPEG_INTERNALS | 
|---|
| 20 | #include "jinclude.h" | 
|---|
| 21 | #include "jpeglib.h" | 
|---|
| 22 | #include "jdct.h"               /* Private declarations for DCT subsystem */ | 
|---|
| 23 | #include "jsimddct.h" | 
|---|
| 24 |  | 
|---|
| 25 |  | 
|---|
| 26 | /* Private subobject for this module */ | 
|---|
| 27 |  | 
|---|
| 28 | typedef void (*forward_DCT_method_ptr) (DCTELEM *data); | 
|---|
| 29 | typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data); | 
|---|
| 30 |  | 
|---|
| 31 | typedef void (*convsamp_method_ptr) (JSAMPARRAY sample_data, | 
|---|
| 32 | JDIMENSION start_col, | 
|---|
| 33 | DCTELEM *workspace); | 
|---|
| 34 | typedef void (*float_convsamp_method_ptr) (JSAMPARRAY sample_data, | 
|---|
| 35 | JDIMENSION start_col, | 
|---|
| 36 | FAST_FLOAT *workspace); | 
|---|
| 37 |  | 
|---|
| 38 | typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors, | 
|---|
| 39 | DCTELEM *workspace); | 
|---|
| 40 | typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block, | 
|---|
| 41 | FAST_FLOAT *divisors, | 
|---|
| 42 | FAST_FLOAT *workspace); | 
|---|
| 43 |  | 
|---|
| 44 | METHODDEF(void) quantize(JCOEFPTR, DCTELEM *, DCTELEM *); | 
|---|
| 45 |  | 
|---|
| 46 | typedef struct { | 
|---|
| 47 | struct jpeg_forward_dct pub;  /* public fields */ | 
|---|
| 48 |  | 
|---|
| 49 | /* Pointer to the DCT routine actually in use */ | 
|---|
| 50 | forward_DCT_method_ptr dct; | 
|---|
| 51 | convsamp_method_ptr convsamp; | 
|---|
| 52 | quantize_method_ptr quantize; | 
|---|
| 53 |  | 
|---|
| 54 | /* The actual post-DCT divisors --- not identical to the quant table | 
|---|
| 55 | * entries, because of scaling (especially for an unnormalized DCT). | 
|---|
| 56 | * Each table is given in normal array order. | 
|---|
| 57 | */ | 
|---|
| 58 | DCTELEM *divisors[NUM_QUANT_TBLS]; | 
|---|
| 59 |  | 
|---|
| 60 | /* work area for FDCT subroutine */ | 
|---|
| 61 | DCTELEM *workspace; | 
|---|
| 62 |  | 
|---|
| 63 | #ifdef DCT_FLOAT_SUPPORTED | 
|---|
| 64 | /* Same as above for the floating-point case. */ | 
|---|
| 65 | float_DCT_method_ptr float_dct; | 
|---|
| 66 | float_convsamp_method_ptr float_convsamp; | 
|---|
| 67 | float_quantize_method_ptr float_quantize; | 
|---|
| 68 | FAST_FLOAT *float_divisors[NUM_QUANT_TBLS]; | 
|---|
| 69 | FAST_FLOAT *float_workspace; | 
|---|
| 70 | #endif | 
|---|
| 71 | } my_fdct_controller; | 
|---|
| 72 |  | 
|---|
| 73 | typedef my_fdct_controller *my_fdct_ptr; | 
|---|
| 74 |  | 
|---|
| 75 |  | 
|---|
| 76 | #if BITS_IN_JSAMPLE == 8 | 
|---|
| 77 |  | 
|---|
| 78 | /* | 
|---|
| 79 | * Find the highest bit in an integer through binary search. | 
|---|
| 80 | */ | 
|---|
| 81 |  | 
|---|
| 82 | LOCAL(int) | 
|---|
| 83 | flss(UINT16 val) | 
|---|
| 84 | { | 
|---|
| 85 | int bit; | 
|---|
| 86 |  | 
|---|
| 87 | bit = 16; | 
|---|
| 88 |  | 
|---|
| 89 | if (!val) | 
|---|
| 90 | return 0; | 
|---|
| 91 |  | 
|---|
| 92 | if (!(val & 0xff00)) { | 
|---|
| 93 | bit -= 8; | 
|---|
| 94 | val <<= 8; | 
|---|
| 95 | } | 
|---|
| 96 | if (!(val & 0xf000)) { | 
|---|
| 97 | bit -= 4; | 
|---|
| 98 | val <<= 4; | 
|---|
| 99 | } | 
|---|
| 100 | if (!(val & 0xc000)) { | 
|---|
| 101 | bit -= 2; | 
|---|
| 102 | val <<= 2; | 
|---|
| 103 | } | 
|---|
| 104 | if (!(val & 0x8000)) { | 
|---|
| 105 | bit -= 1; | 
|---|
| 106 | val <<= 1; | 
|---|
| 107 | } | 
|---|
| 108 |  | 
|---|
| 109 | return bit; | 
|---|
| 110 | } | 
|---|
| 111 |  | 
|---|
| 112 |  | 
|---|
| 113 | /* | 
|---|
| 114 | * Compute values to do a division using reciprocal. | 
|---|
| 115 | * | 
|---|
| 116 | * This implementation is based on an algorithm described in | 
|---|
| 117 | *   "How to optimize for the Pentium family of microprocessors" | 
|---|
| 118 | *   (http://www.agner.org/assem/). | 
|---|
| 119 | * More information about the basic algorithm can be found in | 
|---|
| 120 | * the paper "Integer Division Using Reciprocals" by Robert Alverson. | 
|---|
| 121 | * | 
|---|
| 122 | * The basic idea is to replace x/d by x * d^-1. In order to store | 
|---|
| 123 | * d^-1 with enough precision we shift it left a few places. It turns | 
|---|
| 124 | * out that this algoright gives just enough precision, and also fits | 
|---|
| 125 | * into DCTELEM: | 
|---|
| 126 | * | 
|---|
| 127 | *   b = (the number of significant bits in divisor) - 1 | 
|---|
| 128 | *   r = (word size) + b | 
|---|
| 129 | *   f = 2^r / divisor | 
|---|
| 130 | * | 
|---|
| 131 | * f will not be an integer for most cases, so we need to compensate | 
|---|
| 132 | * for the rounding error introduced: | 
|---|
| 133 | * | 
|---|
| 134 | *   no fractional part: | 
|---|
| 135 | * | 
|---|
| 136 | *       result = input >> r | 
|---|
| 137 | * | 
|---|
| 138 | *   fractional part of f < 0.5: | 
|---|
| 139 | * | 
|---|
| 140 | *       round f down to nearest integer | 
|---|
| 141 | *       result = ((input + 1) * f) >> r | 
|---|
| 142 | * | 
|---|
| 143 | *   fractional part of f > 0.5: | 
|---|
| 144 | * | 
|---|
| 145 | *       round f up to nearest integer | 
|---|
| 146 | *       result = (input * f) >> r | 
|---|
| 147 | * | 
|---|
| 148 | * This is the original algorithm that gives truncated results. But we | 
|---|
| 149 | * want properly rounded results, so we replace "input" with | 
|---|
| 150 | * "input + divisor/2". | 
|---|
| 151 | * | 
|---|
| 152 | * In order to allow SIMD implementations we also tweak the values to | 
|---|
| 153 | * allow the same calculation to be made at all times: | 
|---|
| 154 | * | 
|---|
| 155 | *   dctbl[0] = f rounded to nearest integer | 
|---|
| 156 | *   dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5) | 
|---|
| 157 | *   dctbl[2] = 1 << ((word size) * 2 - r) | 
|---|
| 158 | *   dctbl[3] = r - (word size) | 
|---|
| 159 | * | 
|---|
| 160 | * dctbl[2] is for stupid instruction sets where the shift operation | 
|---|
| 161 | * isn't member wise (e.g. MMX). | 
|---|
| 162 | * | 
|---|
| 163 | * The reason dctbl[2] and dctbl[3] reduce the shift with (word size) | 
|---|
| 164 | * is that most SIMD implementations have a "multiply and store top | 
|---|
| 165 | * half" operation. | 
|---|
| 166 | * | 
|---|
| 167 | * Lastly, we store each of the values in their own table instead | 
|---|
| 168 | * of in a consecutive manner, yet again in order to allow SIMD | 
|---|
| 169 | * routines. | 
|---|
| 170 | */ | 
|---|
| 171 |  | 
|---|
| 172 | LOCAL(int) | 
|---|
| 173 | compute_reciprocal(UINT16 divisor, DCTELEM *dtbl) | 
|---|
| 174 | { | 
|---|
| 175 | UDCTELEM2 fq, fr; | 
|---|
| 176 | UDCTELEM c; | 
|---|
| 177 | int b, r; | 
|---|
| 178 |  | 
|---|
| 179 | if (divisor == 1) { | 
|---|
| 180 | /* divisor == 1 means unquantized, so these reciprocal/correction/shift | 
|---|
| 181 | * values will cause the C quantization algorithm to act like the | 
|---|
| 182 | * identity function.  Since only the C quantization algorithm is used in | 
|---|
| 183 | * these cases, the scale value is irrelevant. | 
|---|
| 184 | */ | 
|---|
| 185 | dtbl[DCTSIZE2 * 0] = (DCTELEM)1;                        /* reciprocal */ | 
|---|
| 186 | dtbl[DCTSIZE2 * 1] = (DCTELEM)0;                        /* correction */ | 
|---|
| 187 | dtbl[DCTSIZE2 * 2] = (DCTELEM)1;                        /* scale */ | 
|---|
| 188 | dtbl[DCTSIZE2 * 3] = -(DCTELEM)(sizeof(DCTELEM) * 8);   /* shift */ | 
|---|
| 189 | return 0; | 
|---|
| 190 | } | 
|---|
| 191 |  | 
|---|
| 192 | b = flss(divisor) - 1; | 
|---|
| 193 | r  = sizeof(DCTELEM) * 8 + b; | 
|---|
| 194 |  | 
|---|
| 195 | fq = ((UDCTELEM2)1 << r) / divisor; | 
|---|
| 196 | fr = ((UDCTELEM2)1 << r) % divisor; | 
|---|
| 197 |  | 
|---|
| 198 | c = divisor / 2;                      /* for rounding */ | 
|---|
| 199 |  | 
|---|
| 200 | if (fr == 0) {                        /* divisor is power of two */ | 
|---|
| 201 | /* fq will be one bit too large to fit in DCTELEM, so adjust */ | 
|---|
| 202 | fq >>= 1; | 
|---|
| 203 | r--; | 
|---|
| 204 | } else if (fr <= (divisor / 2U)) {    /* fractional part is < 0.5 */ | 
|---|
| 205 | c++; | 
|---|
| 206 | } else {                              /* fractional part is > 0.5 */ | 
|---|
| 207 | fq++; | 
|---|
| 208 | } | 
|---|
| 209 |  | 
|---|
| 210 | dtbl[DCTSIZE2 * 0] = (DCTELEM)fq;     /* reciprocal */ | 
|---|
| 211 | dtbl[DCTSIZE2 * 1] = (DCTELEM)c;      /* correction + roundfactor */ | 
|---|
| 212 | #ifdef WITH_SIMD | 
|---|
| 213 | dtbl[DCTSIZE2 * 2] = (DCTELEM)(1 << (sizeof(DCTELEM) * 8 * 2 - r)); /* scale */ | 
|---|
| 214 | #else | 
|---|
| 215 | dtbl[DCTSIZE2 * 2] = 1; | 
|---|
| 216 | #endif | 
|---|
| 217 | dtbl[DCTSIZE2 * 3] = (DCTELEM)r - sizeof(DCTELEM) * 8; /* shift */ | 
|---|
| 218 |  | 
|---|
| 219 | if (r <= 16) return 0; | 
|---|
| 220 | else return 1; | 
|---|
| 221 | } | 
|---|
| 222 |  | 
|---|
| 223 | #endif | 
|---|
| 224 |  | 
|---|
| 225 |  | 
|---|
| 226 | /* | 
|---|
| 227 | * Initialize for a processing pass. | 
|---|
| 228 | * Verify that all referenced Q-tables are present, and set up | 
|---|
| 229 | * the divisor table for each one. | 
|---|
| 230 | * In the current implementation, DCT of all components is done during | 
|---|
| 231 | * the first pass, even if only some components will be output in the | 
|---|
| 232 | * first scan.  Hence all components should be examined here. | 
|---|
| 233 | */ | 
|---|
| 234 |  | 
|---|
| 235 | METHODDEF(void) | 
|---|
| 236 | start_pass_fdctmgr(j_compress_ptr cinfo) | 
|---|
| 237 | { | 
|---|
| 238 | my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; | 
|---|
| 239 | int ci, qtblno, i; | 
|---|
| 240 | jpeg_component_info *compptr; | 
|---|
| 241 | JQUANT_TBL *qtbl; | 
|---|
| 242 | DCTELEM *dtbl; | 
|---|
| 243 |  | 
|---|
| 244 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | 
|---|
| 245 | ci++, compptr++) { | 
|---|
| 246 | qtblno = compptr->quant_tbl_no; | 
|---|
| 247 | /* Make sure specified quantization table is present */ | 
|---|
| 248 | if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || | 
|---|
| 249 | cinfo->quant_tbl_ptrs[qtblno] == NULL) | 
|---|
| 250 | ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); | 
|---|
| 251 | qtbl = cinfo->quant_tbl_ptrs[qtblno]; | 
|---|
| 252 | /* Compute divisors for this quant table */ | 
|---|
| 253 | /* We may do this more than once for same table, but it's not a big deal */ | 
|---|
| 254 | switch (cinfo->dct_method) { | 
|---|
| 255 | #ifdef DCT_ISLOW_SUPPORTED | 
|---|
| 256 | case JDCT_ISLOW: | 
|---|
| 257 | /* For LL&M IDCT method, divisors are equal to raw quantization | 
|---|
| 258 | * coefficients multiplied by 8 (to counteract scaling). | 
|---|
| 259 | */ | 
|---|
| 260 | if (fdct->divisors[qtblno] == NULL) { | 
|---|
| 261 | fdct->divisors[qtblno] = (DCTELEM *) | 
|---|
| 262 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 
|---|
| 263 | (DCTSIZE2 * 4) * sizeof(DCTELEM)); | 
|---|
| 264 | } | 
|---|
| 265 | dtbl = fdct->divisors[qtblno]; | 
|---|
| 266 | for (i = 0; i < DCTSIZE2; i++) { | 
|---|
| 267 | #if BITS_IN_JSAMPLE == 8 | 
|---|
| 268 | if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) && | 
|---|
| 269 | fdct->quantize == jsimd_quantize) | 
|---|
| 270 | fdct->quantize = quantize; | 
|---|
| 271 | #else | 
|---|
| 272 | dtbl[i] = ((DCTELEM)qtbl->quantval[i]) << 3; | 
|---|
| 273 | #endif | 
|---|
| 274 | } | 
|---|
| 275 | break; | 
|---|
| 276 | #endif | 
|---|
| 277 | #ifdef DCT_IFAST_SUPPORTED | 
|---|
| 278 | case JDCT_IFAST: | 
|---|
| 279 | { | 
|---|
| 280 | /* For AA&N IDCT method, divisors are equal to quantization | 
|---|
| 281 | * coefficients scaled by scalefactor[row]*scalefactor[col], where | 
|---|
| 282 | *   scalefactor[0] = 1 | 
|---|
| 283 | *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7 | 
|---|
| 284 | * We apply a further scale factor of 8. | 
|---|
| 285 | */ | 
|---|
| 286 | #define CONST_BITS  14 | 
|---|
| 287 | static const INT16 aanscales[DCTSIZE2] = { | 
|---|
| 288 | /* precomputed values scaled up by 14 bits */ | 
|---|
| 289 | 16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520, | 
|---|
| 290 | 22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270, | 
|---|
| 291 | 21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906, | 
|---|
| 292 | 19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315, | 
|---|
| 293 | 16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520, | 
|---|
| 294 | 12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552, | 
|---|
| 295 | 8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446, | 
|---|
| 296 | 4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247 | 
|---|
| 297 | }; | 
|---|
| 298 | SHIFT_TEMPS | 
|---|
| 299 |  | 
|---|
| 300 | if (fdct->divisors[qtblno] == NULL) { | 
|---|
| 301 | fdct->divisors[qtblno] = (DCTELEM *) | 
|---|
| 302 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 
|---|
| 303 | (DCTSIZE2 * 4) * sizeof(DCTELEM)); | 
|---|
| 304 | } | 
|---|
| 305 | dtbl = fdct->divisors[qtblno]; | 
|---|
| 306 | for (i = 0; i < DCTSIZE2; i++) { | 
|---|
| 307 | #if BITS_IN_JSAMPLE == 8 | 
|---|
| 308 | if (!compute_reciprocal( | 
|---|
| 309 | DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], | 
|---|
| 310 | (JLONG)aanscales[i]), | 
|---|
| 311 | CONST_BITS - 3), &dtbl[i]) && | 
|---|
| 312 | fdct->quantize == jsimd_quantize) | 
|---|
| 313 | fdct->quantize = quantize; | 
|---|
| 314 | #else | 
|---|
| 315 | dtbl[i] = (DCTELEM) | 
|---|
| 316 | DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], | 
|---|
| 317 | (JLONG)aanscales[i]), | 
|---|
| 318 | CONST_BITS - 3); | 
|---|
| 319 | #endif | 
|---|
| 320 | } | 
|---|
| 321 | } | 
|---|
| 322 | break; | 
|---|
| 323 | #endif | 
|---|
| 324 | #ifdef DCT_FLOAT_SUPPORTED | 
|---|
| 325 | case JDCT_FLOAT: | 
|---|
| 326 | { | 
|---|
| 327 | /* For float AA&N IDCT method, divisors are equal to quantization | 
|---|
| 328 | * coefficients scaled by scalefactor[row]*scalefactor[col], where | 
|---|
| 329 | *   scalefactor[0] = 1 | 
|---|
| 330 | *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7 | 
|---|
| 331 | * We apply a further scale factor of 8. | 
|---|
| 332 | * What's actually stored is 1/divisor so that the inner loop can | 
|---|
| 333 | * use a multiplication rather than a division. | 
|---|
| 334 | */ | 
|---|
| 335 | FAST_FLOAT *fdtbl; | 
|---|
| 336 | int row, col; | 
|---|
| 337 | static const double aanscalefactor[DCTSIZE] = { | 
|---|
| 338 | 1.0, 1.387039845, 1.306562965, 1.175875602, | 
|---|
| 339 | 1.0, 0.785694958, 0.541196100, 0.275899379 | 
|---|
| 340 | }; | 
|---|
| 341 |  | 
|---|
| 342 | if (fdct->float_divisors[qtblno] == NULL) { | 
|---|
| 343 | fdct->float_divisors[qtblno] = (FAST_FLOAT *) | 
|---|
| 344 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 
|---|
| 345 | DCTSIZE2 * sizeof(FAST_FLOAT)); | 
|---|
| 346 | } | 
|---|
| 347 | fdtbl = fdct->float_divisors[qtblno]; | 
|---|
| 348 | i = 0; | 
|---|
| 349 | for (row = 0; row < DCTSIZE; row++) { | 
|---|
| 350 | for (col = 0; col < DCTSIZE; col++) { | 
|---|
| 351 | fdtbl[i] = (FAST_FLOAT) | 
|---|
| 352 | (1.0 / (((double)qtbl->quantval[i] * | 
|---|
| 353 | aanscalefactor[row] * aanscalefactor[col] * 8.0))); | 
|---|
| 354 | i++; | 
|---|
| 355 | } | 
|---|
| 356 | } | 
|---|
| 357 | } | 
|---|
| 358 | break; | 
|---|
| 359 | #endif | 
|---|
| 360 | default: | 
|---|
| 361 | ERREXIT(cinfo, JERR_NOT_COMPILED); | 
|---|
| 362 | break; | 
|---|
| 363 | } | 
|---|
| 364 | } | 
|---|
| 365 | } | 
|---|
| 366 |  | 
|---|
| 367 |  | 
|---|
| 368 | /* | 
|---|
| 369 | * Load data into workspace, applying unsigned->signed conversion. | 
|---|
| 370 | */ | 
|---|
| 371 |  | 
|---|
| 372 | METHODDEF(void) | 
|---|
| 373 | convsamp(JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) | 
|---|
| 374 | { | 
|---|
| 375 | register DCTELEM *workspaceptr; | 
|---|
| 376 | register JSAMPROW elemptr; | 
|---|
| 377 | register int elemr; | 
|---|
| 378 |  | 
|---|
| 379 | workspaceptr = workspace; | 
|---|
| 380 | for (elemr = 0; elemr < DCTSIZE; elemr++) { | 
|---|
| 381 | elemptr = sample_data[elemr] + start_col; | 
|---|
| 382 |  | 
|---|
| 383 | #if DCTSIZE == 8                /* unroll the inner loop */ | 
|---|
| 384 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
|---|
| 385 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
|---|
| 386 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
|---|
| 387 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
|---|
| 388 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
|---|
| 389 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
|---|
| 390 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
|---|
| 391 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
|---|
| 392 | #else | 
|---|
| 393 | { | 
|---|
| 394 | register int elemc; | 
|---|
| 395 | for (elemc = DCTSIZE; elemc > 0; elemc--) | 
|---|
| 396 | *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
|---|
| 397 | } | 
|---|
| 398 | #endif | 
|---|
| 399 | } | 
|---|
| 400 | } | 
|---|
| 401 |  | 
|---|
| 402 |  | 
|---|
| 403 | /* | 
|---|
| 404 | * Quantize/descale the coefficients, and store into coef_blocks[]. | 
|---|
| 405 | */ | 
|---|
| 406 |  | 
|---|
| 407 | METHODDEF(void) | 
|---|
| 408 | quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) | 
|---|
| 409 | { | 
|---|
| 410 | int i; | 
|---|
| 411 | DCTELEM temp; | 
|---|
| 412 | JCOEFPTR output_ptr = coef_block; | 
|---|
| 413 |  | 
|---|
| 414 | #if BITS_IN_JSAMPLE == 8 | 
|---|
| 415 |  | 
|---|
| 416 | UDCTELEM recip, corr; | 
|---|
| 417 | int shift; | 
|---|
| 418 | UDCTELEM2 product; | 
|---|
| 419 |  | 
|---|
| 420 | for (i = 0; i < DCTSIZE2; i++) { | 
|---|
| 421 | temp = workspace[i]; | 
|---|
| 422 | recip = divisors[i + DCTSIZE2 * 0]; | 
|---|
| 423 | corr =  divisors[i + DCTSIZE2 * 1]; | 
|---|
| 424 | shift = divisors[i + DCTSIZE2 * 3]; | 
|---|
| 425 |  | 
|---|
| 426 | if (temp < 0) { | 
|---|
| 427 | temp = -temp; | 
|---|
| 428 | product = (UDCTELEM2)(temp + corr) * recip; | 
|---|
| 429 | product >>= shift + sizeof(DCTELEM) * 8; | 
|---|
| 430 | temp = (DCTELEM)product; | 
|---|
| 431 | temp = -temp; | 
|---|
| 432 | } else { | 
|---|
| 433 | product = (UDCTELEM2)(temp + corr) * recip; | 
|---|
| 434 | product >>= shift + sizeof(DCTELEM) * 8; | 
|---|
| 435 | temp = (DCTELEM)product; | 
|---|
| 436 | } | 
|---|
| 437 | output_ptr[i] = (JCOEF)temp; | 
|---|
| 438 | } | 
|---|
| 439 |  | 
|---|
| 440 | #else | 
|---|
| 441 |  | 
|---|
| 442 | register DCTELEM qval; | 
|---|
| 443 |  | 
|---|
| 444 | for (i = 0; i < DCTSIZE2; i++) { | 
|---|
| 445 | qval = divisors[i]; | 
|---|
| 446 | temp = workspace[i]; | 
|---|
| 447 | /* Divide the coefficient value by qval, ensuring proper rounding. | 
|---|
| 448 | * Since C does not specify the direction of rounding for negative | 
|---|
| 449 | * quotients, we have to force the dividend positive for portability. | 
|---|
| 450 | * | 
|---|
| 451 | * In most files, at least half of the output values will be zero | 
|---|
| 452 | * (at default quantization settings, more like three-quarters...) | 
|---|
| 453 | * so we should ensure that this case is fast.  On many machines, | 
|---|
| 454 | * a comparison is enough cheaper than a divide to make a special test | 
|---|
| 455 | * a win.  Since both inputs will be nonnegative, we need only test | 
|---|
| 456 | * for a < b to discover whether a/b is 0. | 
|---|
| 457 | * If your machine's division is fast enough, define FAST_DIVIDE. | 
|---|
| 458 | */ | 
|---|
| 459 | #ifdef FAST_DIVIDE | 
|---|
| 460 | #define DIVIDE_BY(a, b)  a /= b | 
|---|
| 461 | #else | 
|---|
| 462 | #define DIVIDE_BY(a, b)  if (a >= b) a /= b;  else a = 0 | 
|---|
| 463 | #endif | 
|---|
| 464 | if (temp < 0) { | 
|---|
| 465 | temp = -temp; | 
|---|
| 466 | temp += qval >> 1;        /* for rounding */ | 
|---|
| 467 | DIVIDE_BY(temp, qval); | 
|---|
| 468 | temp = -temp; | 
|---|
| 469 | } else { | 
|---|
| 470 | temp += qval >> 1;        /* for rounding */ | 
|---|
| 471 | DIVIDE_BY(temp, qval); | 
|---|
| 472 | } | 
|---|
| 473 | output_ptr[i] = (JCOEF)temp; | 
|---|
| 474 | } | 
|---|
| 475 |  | 
|---|
| 476 | #endif | 
|---|
| 477 |  | 
|---|
| 478 | } | 
|---|
| 479 |  | 
|---|
| 480 |  | 
|---|
| 481 | /* | 
|---|
| 482 | * Perform forward DCT on one or more blocks of a component. | 
|---|
| 483 | * | 
|---|
| 484 | * The input samples are taken from the sample_data[] array starting at | 
|---|
| 485 | * position start_row/start_col, and moving to the right for any additional | 
|---|
| 486 | * blocks. The quantized coefficients are returned in coef_blocks[]. | 
|---|
| 487 | */ | 
|---|
| 488 |  | 
|---|
| 489 | METHODDEF(void) | 
|---|
| 490 | forward_DCT(j_compress_ptr cinfo, jpeg_component_info *compptr, | 
|---|
| 491 | JSAMPARRAY sample_data, JBLOCKROW coef_blocks, | 
|---|
| 492 | JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks) | 
|---|
| 493 | /* This version is used for integer DCT implementations. */ | 
|---|
| 494 | { | 
|---|
| 495 | /* This routine is heavily used, so it's worth coding it tightly. */ | 
|---|
| 496 | my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; | 
|---|
| 497 | DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no]; | 
|---|
| 498 | DCTELEM *workspace; | 
|---|
| 499 | JDIMENSION bi; | 
|---|
| 500 |  | 
|---|
| 501 | /* Make sure the compiler doesn't look up these every pass */ | 
|---|
| 502 | forward_DCT_method_ptr do_dct = fdct->dct; | 
|---|
| 503 | convsamp_method_ptr do_convsamp = fdct->convsamp; | 
|---|
| 504 | quantize_method_ptr do_quantize = fdct->quantize; | 
|---|
| 505 | workspace = fdct->workspace; | 
|---|
| 506 |  | 
|---|
| 507 | sample_data += start_row;     /* fold in the vertical offset once */ | 
|---|
| 508 |  | 
|---|
| 509 | for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { | 
|---|
| 510 | /* Load data into workspace, applying unsigned->signed conversion */ | 
|---|
| 511 | (*do_convsamp) (sample_data, start_col, workspace); | 
|---|
| 512 |  | 
|---|
| 513 | /* Perform the DCT */ | 
|---|
| 514 | (*do_dct) (workspace); | 
|---|
| 515 |  | 
|---|
| 516 | /* Quantize/descale the coefficients, and store into coef_blocks[] */ | 
|---|
| 517 | (*do_quantize) (coef_blocks[bi], divisors, workspace); | 
|---|
| 518 | } | 
|---|
| 519 | } | 
|---|
| 520 |  | 
|---|
| 521 |  | 
|---|
| 522 | #ifdef DCT_FLOAT_SUPPORTED | 
|---|
| 523 |  | 
|---|
| 524 | METHODDEF(void) | 
|---|
| 525 | convsamp_float(JSAMPARRAY sample_data, JDIMENSION start_col, | 
|---|
| 526 | FAST_FLOAT *workspace) | 
|---|
| 527 | { | 
|---|
| 528 | register FAST_FLOAT *workspaceptr; | 
|---|
| 529 | register JSAMPROW elemptr; | 
|---|
| 530 | register int elemr; | 
|---|
| 531 |  | 
|---|
| 532 | workspaceptr = workspace; | 
|---|
| 533 | for (elemr = 0; elemr < DCTSIZE; elemr++) { | 
|---|
| 534 | elemptr = sample_data[elemr] + start_col; | 
|---|
| 535 | #if DCTSIZE == 8                /* unroll the inner loop */ | 
|---|
| 536 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
|---|
| 537 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
|---|
| 538 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
|---|
| 539 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
|---|
| 540 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
|---|
| 541 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
|---|
| 542 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
|---|
| 543 | *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
|---|
| 544 | #else | 
|---|
| 545 | { | 
|---|
| 546 | register int elemc; | 
|---|
| 547 | for (elemc = DCTSIZE; elemc > 0; elemc--) | 
|---|
| 548 | *workspaceptr++ = (FAST_FLOAT) | 
|---|
| 549 | (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
|---|
| 550 | } | 
|---|
| 551 | #endif | 
|---|
| 552 | } | 
|---|
| 553 | } | 
|---|
| 554 |  | 
|---|
| 555 |  | 
|---|
| 556 | METHODDEF(void) | 
|---|
| 557 | quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors, | 
|---|
| 558 | FAST_FLOAT *workspace) | 
|---|
| 559 | { | 
|---|
| 560 | register FAST_FLOAT temp; | 
|---|
| 561 | register int i; | 
|---|
| 562 | register JCOEFPTR output_ptr = coef_block; | 
|---|
| 563 |  | 
|---|
| 564 | for (i = 0; i < DCTSIZE2; i++) { | 
|---|
| 565 | /* Apply the quantization and scaling factor */ | 
|---|
| 566 | temp = workspace[i] * divisors[i]; | 
|---|
| 567 |  | 
|---|
| 568 | /* Round to nearest integer. | 
|---|
| 569 | * Since C does not specify the direction of rounding for negative | 
|---|
| 570 | * quotients, we have to force the dividend positive for portability. | 
|---|
| 571 | * The maximum coefficient size is +-16K (for 12-bit data), so this | 
|---|
| 572 | * code should work for either 16-bit or 32-bit ints. | 
|---|
| 573 | */ | 
|---|
| 574 | output_ptr[i] = (JCOEF)((int)(temp + (FAST_FLOAT)16384.5) - 16384); | 
|---|
| 575 | } | 
|---|
| 576 | } | 
|---|
| 577 |  | 
|---|
| 578 |  | 
|---|
| 579 | METHODDEF(void) | 
|---|
| 580 | forward_DCT_float(j_compress_ptr cinfo, jpeg_component_info *compptr, | 
|---|
| 581 | JSAMPARRAY sample_data, JBLOCKROW coef_blocks, | 
|---|
| 582 | JDIMENSION start_row, JDIMENSION start_col, | 
|---|
| 583 | JDIMENSION num_blocks) | 
|---|
| 584 | /* This version is used for floating-point DCT implementations. */ | 
|---|
| 585 | { | 
|---|
| 586 | /* This routine is heavily used, so it's worth coding it tightly. */ | 
|---|
| 587 | my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; | 
|---|
| 588 | FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no]; | 
|---|
| 589 | FAST_FLOAT *workspace; | 
|---|
| 590 | JDIMENSION bi; | 
|---|
| 591 |  | 
|---|
| 592 |  | 
|---|
| 593 | /* Make sure the compiler doesn't look up these every pass */ | 
|---|
| 594 | float_DCT_method_ptr do_dct = fdct->float_dct; | 
|---|
| 595 | float_convsamp_method_ptr do_convsamp = fdct->float_convsamp; | 
|---|
| 596 | float_quantize_method_ptr do_quantize = fdct->float_quantize; | 
|---|
| 597 | workspace = fdct->float_workspace; | 
|---|
| 598 |  | 
|---|
| 599 | sample_data += start_row;     /* fold in the vertical offset once */ | 
|---|
| 600 |  | 
|---|
| 601 | for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { | 
|---|
| 602 | /* Load data into workspace, applying unsigned->signed conversion */ | 
|---|
| 603 | (*do_convsamp) (sample_data, start_col, workspace); | 
|---|
| 604 |  | 
|---|
| 605 | /* Perform the DCT */ | 
|---|
| 606 | (*do_dct) (workspace); | 
|---|
| 607 |  | 
|---|
| 608 | /* Quantize/descale the coefficients, and store into coef_blocks[] */ | 
|---|
| 609 | (*do_quantize) (coef_blocks[bi], divisors, workspace); | 
|---|
| 610 | } | 
|---|
| 611 | } | 
|---|
| 612 |  | 
|---|
| 613 | #endif /* DCT_FLOAT_SUPPORTED */ | 
|---|
| 614 |  | 
|---|
| 615 |  | 
|---|
| 616 | /* | 
|---|
| 617 | * Initialize FDCT manager. | 
|---|
| 618 | */ | 
|---|
| 619 |  | 
|---|
| 620 | GLOBAL(void) | 
|---|
| 621 | jinit_forward_dct(j_compress_ptr cinfo) | 
|---|
| 622 | { | 
|---|
| 623 | my_fdct_ptr fdct; | 
|---|
| 624 | int i; | 
|---|
| 625 |  | 
|---|
| 626 | fdct = (my_fdct_ptr) | 
|---|
| 627 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 
|---|
| 628 | sizeof(my_fdct_controller)); | 
|---|
| 629 | cinfo->fdct = (struct jpeg_forward_dct *)fdct; | 
|---|
| 630 | fdct->pub.start_pass = start_pass_fdctmgr; | 
|---|
| 631 |  | 
|---|
| 632 | /* First determine the DCT... */ | 
|---|
| 633 | switch (cinfo->dct_method) { | 
|---|
| 634 | #ifdef DCT_ISLOW_SUPPORTED | 
|---|
| 635 | case JDCT_ISLOW: | 
|---|
| 636 | fdct->pub.forward_DCT = forward_DCT; | 
|---|
| 637 | if (jsimd_can_fdct_islow()) | 
|---|
| 638 | fdct->dct = jsimd_fdct_islow; | 
|---|
| 639 | else | 
|---|
| 640 | fdct->dct = jpeg_fdct_islow; | 
|---|
| 641 | break; | 
|---|
| 642 | #endif | 
|---|
| 643 | #ifdef DCT_IFAST_SUPPORTED | 
|---|
| 644 | case JDCT_IFAST: | 
|---|
| 645 | fdct->pub.forward_DCT = forward_DCT; | 
|---|
| 646 | if (jsimd_can_fdct_ifast()) | 
|---|
| 647 | fdct->dct = jsimd_fdct_ifast; | 
|---|
| 648 | else | 
|---|
| 649 | fdct->dct = jpeg_fdct_ifast; | 
|---|
| 650 | break; | 
|---|
| 651 | #endif | 
|---|
| 652 | #ifdef DCT_FLOAT_SUPPORTED | 
|---|
| 653 | case JDCT_FLOAT: | 
|---|
| 654 | fdct->pub.forward_DCT = forward_DCT_float; | 
|---|
| 655 | if (jsimd_can_fdct_float()) | 
|---|
| 656 | fdct->float_dct = jsimd_fdct_float; | 
|---|
| 657 | else | 
|---|
| 658 | fdct->float_dct = jpeg_fdct_float; | 
|---|
| 659 | break; | 
|---|
| 660 | #endif | 
|---|
| 661 | default: | 
|---|
| 662 | ERREXIT(cinfo, JERR_NOT_COMPILED); | 
|---|
| 663 | break; | 
|---|
| 664 | } | 
|---|
| 665 |  | 
|---|
| 666 | /* ...then the supporting stages. */ | 
|---|
| 667 | switch (cinfo->dct_method) { | 
|---|
| 668 | #ifdef DCT_ISLOW_SUPPORTED | 
|---|
| 669 | case JDCT_ISLOW: | 
|---|
| 670 | #endif | 
|---|
| 671 | #ifdef DCT_IFAST_SUPPORTED | 
|---|
| 672 | case JDCT_IFAST: | 
|---|
| 673 | #endif | 
|---|
| 674 | #if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED) | 
|---|
| 675 | if (jsimd_can_convsamp()) | 
|---|
| 676 | fdct->convsamp = jsimd_convsamp; | 
|---|
| 677 | else | 
|---|
| 678 | fdct->convsamp = convsamp; | 
|---|
| 679 | if (jsimd_can_quantize()) | 
|---|
| 680 | fdct->quantize = jsimd_quantize; | 
|---|
| 681 | else | 
|---|
| 682 | fdct->quantize = quantize; | 
|---|
| 683 | break; | 
|---|
| 684 | #endif | 
|---|
| 685 | #ifdef DCT_FLOAT_SUPPORTED | 
|---|
| 686 | case JDCT_FLOAT: | 
|---|
| 687 | if (jsimd_can_convsamp_float()) | 
|---|
| 688 | fdct->float_convsamp = jsimd_convsamp_float; | 
|---|
| 689 | else | 
|---|
| 690 | fdct->float_convsamp = convsamp_float; | 
|---|
| 691 | if (jsimd_can_quantize_float()) | 
|---|
| 692 | fdct->float_quantize = jsimd_quantize_float; | 
|---|
| 693 | else | 
|---|
| 694 | fdct->float_quantize = quantize_float; | 
|---|
| 695 | break; | 
|---|
| 696 | #endif | 
|---|
| 697 | default: | 
|---|
| 698 | ERREXIT(cinfo, JERR_NOT_COMPILED); | 
|---|
| 699 | break; | 
|---|
| 700 | } | 
|---|
| 701 |  | 
|---|
| 702 | /* Allocate workspace memory */ | 
|---|
| 703 | #ifdef DCT_FLOAT_SUPPORTED | 
|---|
| 704 | if (cinfo->dct_method == JDCT_FLOAT) | 
|---|
| 705 | fdct->float_workspace = (FAST_FLOAT *) | 
|---|
| 706 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 
|---|
| 707 | sizeof(FAST_FLOAT) * DCTSIZE2); | 
|---|
| 708 | else | 
|---|
| 709 | #endif | 
|---|
| 710 | fdct->workspace = (DCTELEM *) | 
|---|
| 711 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 
|---|
| 712 | sizeof(DCTELEM) * DCTSIZE2); | 
|---|
| 713 |  | 
|---|
| 714 | /* Mark divisor tables unallocated */ | 
|---|
| 715 | for (i = 0; i < NUM_QUANT_TBLS; i++) { | 
|---|
| 716 | fdct->divisors[i] = NULL; | 
|---|
| 717 | #ifdef DCT_FLOAT_SUPPORTED | 
|---|
| 718 | fdct->float_divisors[i] = NULL; | 
|---|
| 719 | #endif | 
|---|
| 720 | } | 
|---|
| 721 | } | 
|---|
| 722 |  | 
|---|