1 | /* |
2 | * jdct.h |
3 | * |
4 | * This file was part of the Independent JPEG Group's software: |
5 | * Copyright (C) 1994-1996, Thomas G. Lane. |
6 | * libjpeg-turbo Modifications: |
7 | * Copyright (C) 2015, D. R. Commander. |
8 | * For conditions of distribution and use, see the accompanying README.ijg |
9 | * file. |
10 | * |
11 | * This include file contains common declarations for the forward and |
12 | * inverse DCT modules. These declarations are private to the DCT managers |
13 | * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms. |
14 | * The individual DCT algorithms are kept in separate files to ease |
15 | * machine-dependent tuning (e.g., assembly coding). |
16 | */ |
17 | |
18 | |
19 | /* |
20 | * A forward DCT routine is given a pointer to a work area of type DCTELEM[]; |
21 | * the DCT is to be performed in-place in that buffer. Type DCTELEM is int |
22 | * for 8-bit samples, JLONG for 12-bit samples. (NOTE: Floating-point DCT |
23 | * implementations use an array of type FAST_FLOAT, instead.) |
24 | * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE). |
25 | * The DCT outputs are returned scaled up by a factor of 8; they therefore |
26 | * have a range of +-8K for 8-bit data, +-128K for 12-bit data. This |
27 | * convention improves accuracy in integer implementations and saves some |
28 | * work in floating-point ones. |
29 | * Quantization of the output coefficients is done by jcdctmgr.c. This |
30 | * step requires an unsigned type and also one with twice the bits. |
31 | */ |
32 | |
33 | #if BITS_IN_JSAMPLE == 8 |
34 | #ifndef WITH_SIMD |
35 | typedef int DCTELEM; /* 16 or 32 bits is fine */ |
36 | typedef unsigned int UDCTELEM; |
37 | typedef unsigned long long UDCTELEM2; |
38 | #else |
39 | typedef short DCTELEM; /* prefer 16 bit with SIMD for parellelism */ |
40 | typedef unsigned short UDCTELEM; |
41 | typedef unsigned int UDCTELEM2; |
42 | #endif |
43 | #else |
44 | typedef JLONG DCTELEM; /* must have 32 bits */ |
45 | typedef unsigned long long UDCTELEM2; |
46 | #endif |
47 | |
48 | |
49 | /* |
50 | * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer |
51 | * to an output sample array. The routine must dequantize the input data as |
52 | * well as perform the IDCT; for dequantization, it uses the multiplier table |
53 | * pointed to by compptr->dct_table. The output data is to be placed into the |
54 | * sample array starting at a specified column. (Any row offset needed will |
55 | * be applied to the array pointer before it is passed to the IDCT code.) |
56 | * Note that the number of samples emitted by the IDCT routine is |
57 | * DCT_scaled_size * DCT_scaled_size. |
58 | */ |
59 | |
60 | /* typedef inverse_DCT_method_ptr is declared in jpegint.h */ |
61 | |
62 | /* |
63 | * Each IDCT routine has its own ideas about the best dct_table element type. |
64 | */ |
65 | |
66 | typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */ |
67 | #if BITS_IN_JSAMPLE == 8 |
68 | typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */ |
69 | #define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */ |
70 | #else |
71 | typedef JLONG IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */ |
72 | #define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */ |
73 | #endif |
74 | typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */ |
75 | |
76 | |
77 | /* |
78 | * Each IDCT routine is responsible for range-limiting its results and |
79 | * converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could |
80 | * be quite far out of range if the input data is corrupt, so a bulletproof |
81 | * range-limiting step is required. We use a mask-and-table-lookup method |
82 | * to do the combined operations quickly. See the comments with |
83 | * prepare_range_limit_table (in jdmaster.c) for more info. |
84 | */ |
85 | |
86 | #define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE) |
87 | |
88 | #define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */ |
89 | |
90 | |
91 | /* Extern declarations for the forward and inverse DCT routines. */ |
92 | |
93 | EXTERN(void) jpeg_fdct_islow(DCTELEM *data); |
94 | EXTERN(void) jpeg_fdct_ifast(DCTELEM *data); |
95 | EXTERN(void) jpeg_fdct_float(FAST_FLOAT *data); |
96 | |
97 | EXTERN(void) jpeg_idct_islow(j_decompress_ptr cinfo, |
98 | jpeg_component_info *compptr, JCOEFPTR coef_block, |
99 | JSAMPARRAY output_buf, JDIMENSION output_col); |
100 | EXTERN(void) jpeg_idct_ifast(j_decompress_ptr cinfo, |
101 | jpeg_component_info *compptr, JCOEFPTR coef_block, |
102 | JSAMPARRAY output_buf, JDIMENSION output_col); |
103 | EXTERN(void) jpeg_idct_float(j_decompress_ptr cinfo, |
104 | jpeg_component_info *compptr, JCOEFPTR coef_block, |
105 | JSAMPARRAY output_buf, JDIMENSION output_col); |
106 | EXTERN(void) jpeg_idct_7x7(j_decompress_ptr cinfo, |
107 | jpeg_component_info *compptr, JCOEFPTR coef_block, |
108 | JSAMPARRAY output_buf, JDIMENSION output_col); |
109 | EXTERN(void) jpeg_idct_6x6(j_decompress_ptr cinfo, |
110 | jpeg_component_info *compptr, JCOEFPTR coef_block, |
111 | JSAMPARRAY output_buf, JDIMENSION output_col); |
112 | EXTERN(void) jpeg_idct_5x5(j_decompress_ptr cinfo, |
113 | jpeg_component_info *compptr, JCOEFPTR coef_block, |
114 | JSAMPARRAY output_buf, JDIMENSION output_col); |
115 | EXTERN(void) jpeg_idct_4x4(j_decompress_ptr cinfo, |
116 | jpeg_component_info *compptr, JCOEFPTR coef_block, |
117 | JSAMPARRAY output_buf, JDIMENSION output_col); |
118 | EXTERN(void) jpeg_idct_3x3(j_decompress_ptr cinfo, |
119 | jpeg_component_info *compptr, JCOEFPTR coef_block, |
120 | JSAMPARRAY output_buf, JDIMENSION output_col); |
121 | EXTERN(void) jpeg_idct_2x2(j_decompress_ptr cinfo, |
122 | jpeg_component_info *compptr, JCOEFPTR coef_block, |
123 | JSAMPARRAY output_buf, JDIMENSION output_col); |
124 | EXTERN(void) jpeg_idct_1x1(j_decompress_ptr cinfo, |
125 | jpeg_component_info *compptr, JCOEFPTR coef_block, |
126 | JSAMPARRAY output_buf, JDIMENSION output_col); |
127 | EXTERN(void) jpeg_idct_9x9(j_decompress_ptr cinfo, |
128 | jpeg_component_info *compptr, JCOEFPTR coef_block, |
129 | JSAMPARRAY output_buf, JDIMENSION output_col); |
130 | EXTERN(void) jpeg_idct_10x10(j_decompress_ptr cinfo, |
131 | jpeg_component_info *compptr, JCOEFPTR coef_block, |
132 | JSAMPARRAY output_buf, JDIMENSION output_col); |
133 | EXTERN(void) jpeg_idct_11x11(j_decompress_ptr cinfo, |
134 | jpeg_component_info *compptr, JCOEFPTR coef_block, |
135 | JSAMPARRAY output_buf, JDIMENSION output_col); |
136 | EXTERN(void) jpeg_idct_12x12(j_decompress_ptr cinfo, |
137 | jpeg_component_info *compptr, JCOEFPTR coef_block, |
138 | JSAMPARRAY output_buf, JDIMENSION output_col); |
139 | EXTERN(void) jpeg_idct_13x13(j_decompress_ptr cinfo, |
140 | jpeg_component_info *compptr, JCOEFPTR coef_block, |
141 | JSAMPARRAY output_buf, JDIMENSION output_col); |
142 | EXTERN(void) jpeg_idct_14x14(j_decompress_ptr cinfo, |
143 | jpeg_component_info *compptr, JCOEFPTR coef_block, |
144 | JSAMPARRAY output_buf, JDIMENSION output_col); |
145 | EXTERN(void) jpeg_idct_15x15(j_decompress_ptr cinfo, |
146 | jpeg_component_info *compptr, JCOEFPTR coef_block, |
147 | JSAMPARRAY output_buf, JDIMENSION output_col); |
148 | EXTERN(void) jpeg_idct_16x16(j_decompress_ptr cinfo, |
149 | jpeg_component_info *compptr, JCOEFPTR coef_block, |
150 | JSAMPARRAY output_buf, JDIMENSION output_col); |
151 | |
152 | |
153 | /* |
154 | * Macros for handling fixed-point arithmetic; these are used by many |
155 | * but not all of the DCT/IDCT modules. |
156 | * |
157 | * All values are expected to be of type JLONG. |
158 | * Fractional constants are scaled left by CONST_BITS bits. |
159 | * CONST_BITS is defined within each module using these macros, |
160 | * and may differ from one module to the next. |
161 | */ |
162 | |
163 | #define ONE ((JLONG)1) |
164 | #define CONST_SCALE (ONE << CONST_BITS) |
165 | |
166 | /* Convert a positive real constant to an integer scaled by CONST_SCALE. |
167 | * Caution: some C compilers fail to reduce "FIX(constant)" at compile time, |
168 | * thus causing a lot of useless floating-point operations at run time. |
169 | */ |
170 | |
171 | #define FIX(x) ((JLONG)((x) * CONST_SCALE + 0.5)) |
172 | |
173 | /* Descale and correctly round a JLONG value that's scaled by N bits. |
174 | * We assume RIGHT_SHIFT rounds towards minus infinity, so adding |
175 | * the fudge factor is correct for either sign of X. |
176 | */ |
177 | |
178 | #define DESCALE(x, n) RIGHT_SHIFT((x) + (ONE << ((n) - 1)), n) |
179 | |
180 | /* Multiply a JLONG variable by a JLONG constant to yield a JLONG result. |
181 | * This macro is used only when the two inputs will actually be no more than |
182 | * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a |
183 | * full 32x32 multiply. This provides a useful speedup on many machines. |
184 | * Unfortunately there is no way to specify a 16x16->32 multiply portably |
185 | * in C, but some C compilers will do the right thing if you provide the |
186 | * correct combination of casts. |
187 | */ |
188 | |
189 | #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ |
190 | #define MULTIPLY16C16(var, const) (((INT16)(var)) * ((INT16)(const))) |
191 | #endif |
192 | #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ |
193 | #define MULTIPLY16C16(var, const) (((INT16)(var)) * ((JLONG)(const))) |
194 | #endif |
195 | |
196 | #ifndef MULTIPLY16C16 /* default definition */ |
197 | #define MULTIPLY16C16(var, const) ((var) * (const)) |
198 | #endif |
199 | |
200 | /* Same except both inputs are variables. */ |
201 | |
202 | #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ |
203 | #define MULTIPLY16V16(var1, var2) (((INT16)(var1)) * ((INT16)(var2))) |
204 | #endif |
205 | |
206 | #ifndef MULTIPLY16V16 /* default definition */ |
207 | #define MULTIPLY16V16(var1, var2) ((var1) * (var2)) |
208 | #endif |
209 | |