1 | /* |
2 | * jfdctint.c |
3 | * |
4 | * This file was part of the Independent JPEG Group's software. |
5 | * Copyright (C) 1991-1996, Thomas G. Lane. |
6 | * libjpeg-turbo Modifications: |
7 | * Copyright (C) 2015, D. R. Commander. |
8 | * For conditions of distribution and use, see the accompanying README.ijg |
9 | * file. |
10 | * |
11 | * This file contains a slow-but-accurate integer implementation of the |
12 | * forward DCT (Discrete Cosine Transform). |
13 | * |
14 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
15 | * on each column. Direct algorithms are also available, but they are |
16 | * much more complex and seem not to be any faster when reduced to code. |
17 | * |
18 | * This implementation is based on an algorithm described in |
19 | * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT |
20 | * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, |
21 | * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. |
22 | * The primary algorithm described there uses 11 multiplies and 29 adds. |
23 | * We use their alternate method with 12 multiplies and 32 adds. |
24 | * The advantage of this method is that no data path contains more than one |
25 | * multiplication; this allows a very simple and accurate implementation in |
26 | * scaled fixed-point arithmetic, with a minimal number of shifts. |
27 | */ |
28 | |
29 | #define JPEG_INTERNALS |
30 | #include "jinclude.h" |
31 | #include "jpeglib.h" |
32 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
33 | |
34 | #ifdef DCT_ISLOW_SUPPORTED |
35 | |
36 | |
37 | /* |
38 | * This module is specialized to the case DCTSIZE = 8. |
39 | */ |
40 | |
41 | #if DCTSIZE != 8 |
42 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
43 | #endif |
44 | |
45 | |
46 | /* |
47 | * The poop on this scaling stuff is as follows: |
48 | * |
49 | * Each 1-D DCT step produces outputs which are a factor of sqrt(N) |
50 | * larger than the true DCT outputs. The final outputs are therefore |
51 | * a factor of N larger than desired; since N=8 this can be cured by |
52 | * a simple right shift at the end of the algorithm. The advantage of |
53 | * this arrangement is that we save two multiplications per 1-D DCT, |
54 | * because the y0 and y4 outputs need not be divided by sqrt(N). |
55 | * In the IJG code, this factor of 8 is removed by the quantization step |
56 | * (in jcdctmgr.c), NOT in this module. |
57 | * |
58 | * We have to do addition and subtraction of the integer inputs, which |
59 | * is no problem, and multiplication by fractional constants, which is |
60 | * a problem to do in integer arithmetic. We multiply all the constants |
61 | * by CONST_SCALE and convert them to integer constants (thus retaining |
62 | * CONST_BITS bits of precision in the constants). After doing a |
63 | * multiplication we have to divide the product by CONST_SCALE, with proper |
64 | * rounding, to produce the correct output. This division can be done |
65 | * cheaply as a right shift of CONST_BITS bits. We postpone shifting |
66 | * as long as possible so that partial sums can be added together with |
67 | * full fractional precision. |
68 | * |
69 | * The outputs of the first pass are scaled up by PASS1_BITS bits so that |
70 | * they are represented to better-than-integral precision. These outputs |
71 | * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word |
72 | * with the recommended scaling. (For 12-bit sample data, the intermediate |
73 | * array is JLONG anyway.) |
74 | * |
75 | * To avoid overflow of the 32-bit intermediate results in pass 2, we must |
76 | * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis |
77 | * shows that the values given below are the most effective. |
78 | */ |
79 | |
80 | #if BITS_IN_JSAMPLE == 8 |
81 | #define CONST_BITS 13 |
82 | #define PASS1_BITS 2 |
83 | #else |
84 | #define CONST_BITS 13 |
85 | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
86 | #endif |
87 | |
88 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
89 | * causing a lot of useless floating-point operations at run time. |
90 | * To get around this we use the following pre-calculated constants. |
91 | * If you change CONST_BITS you may want to add appropriate values. |
92 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
93 | */ |
94 | |
95 | #if CONST_BITS == 13 |
96 | #define FIX_0_298631336 ((JLONG)2446) /* FIX(0.298631336) */ |
97 | #define FIX_0_390180644 ((JLONG)3196) /* FIX(0.390180644) */ |
98 | #define FIX_0_541196100 ((JLONG)4433) /* FIX(0.541196100) */ |
99 | #define FIX_0_765366865 ((JLONG)6270) /* FIX(0.765366865) */ |
100 | #define FIX_0_899976223 ((JLONG)7373) /* FIX(0.899976223) */ |
101 | #define FIX_1_175875602 ((JLONG)9633) /* FIX(1.175875602) */ |
102 | #define FIX_1_501321110 ((JLONG)12299) /* FIX(1.501321110) */ |
103 | #define FIX_1_847759065 ((JLONG)15137) /* FIX(1.847759065) */ |
104 | #define FIX_1_961570560 ((JLONG)16069) /* FIX(1.961570560) */ |
105 | #define FIX_2_053119869 ((JLONG)16819) /* FIX(2.053119869) */ |
106 | #define FIX_2_562915447 ((JLONG)20995) /* FIX(2.562915447) */ |
107 | #define FIX_3_072711026 ((JLONG)25172) /* FIX(3.072711026) */ |
108 | #else |
109 | #define FIX_0_298631336 FIX(0.298631336) |
110 | #define FIX_0_390180644 FIX(0.390180644) |
111 | #define FIX_0_541196100 FIX(0.541196100) |
112 | #define FIX_0_765366865 FIX(0.765366865) |
113 | #define FIX_0_899976223 FIX(0.899976223) |
114 | #define FIX_1_175875602 FIX(1.175875602) |
115 | #define FIX_1_501321110 FIX(1.501321110) |
116 | #define FIX_1_847759065 FIX(1.847759065) |
117 | #define FIX_1_961570560 FIX(1.961570560) |
118 | #define FIX_2_053119869 FIX(2.053119869) |
119 | #define FIX_2_562915447 FIX(2.562915447) |
120 | #define FIX_3_072711026 FIX(3.072711026) |
121 | #endif |
122 | |
123 | |
124 | /* Multiply an JLONG variable by an JLONG constant to yield an JLONG result. |
125 | * For 8-bit samples with the recommended scaling, all the variable |
126 | * and constant values involved are no more than 16 bits wide, so a |
127 | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. |
128 | * For 12-bit samples, a full 32-bit multiplication will be needed. |
129 | */ |
130 | |
131 | #if BITS_IN_JSAMPLE == 8 |
132 | #define MULTIPLY(var, const) MULTIPLY16C16(var, const) |
133 | #else |
134 | #define MULTIPLY(var, const) ((var) * (const)) |
135 | #endif |
136 | |
137 | |
138 | /* |
139 | * Perform the forward DCT on one block of samples. |
140 | */ |
141 | |
142 | GLOBAL(void) |
143 | jpeg_fdct_islow(DCTELEM *data) |
144 | { |
145 | JLONG tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
146 | JLONG tmp10, tmp11, tmp12, tmp13; |
147 | JLONG z1, z2, z3, z4, z5; |
148 | DCTELEM *dataptr; |
149 | int ctr; |
150 | SHIFT_TEMPS |
151 | |
152 | /* Pass 1: process rows. */ |
153 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
154 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
155 | |
156 | dataptr = data; |
157 | for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) { |
158 | tmp0 = dataptr[0] + dataptr[7]; |
159 | tmp7 = dataptr[0] - dataptr[7]; |
160 | tmp1 = dataptr[1] + dataptr[6]; |
161 | tmp6 = dataptr[1] - dataptr[6]; |
162 | tmp2 = dataptr[2] + dataptr[5]; |
163 | tmp5 = dataptr[2] - dataptr[5]; |
164 | tmp3 = dataptr[3] + dataptr[4]; |
165 | tmp4 = dataptr[3] - dataptr[4]; |
166 | |
167 | /* Even part per LL&M figure 1 --- note that published figure is faulty; |
168 | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
169 | */ |
170 | |
171 | tmp10 = tmp0 + tmp3; |
172 | tmp13 = tmp0 - tmp3; |
173 | tmp11 = tmp1 + tmp2; |
174 | tmp12 = tmp1 - tmp2; |
175 | |
176 | dataptr[0] = (DCTELEM)LEFT_SHIFT(tmp10 + tmp11, PASS1_BITS); |
177 | dataptr[4] = (DCTELEM)LEFT_SHIFT(tmp10 - tmp11, PASS1_BITS); |
178 | |
179 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
180 | dataptr[2] = (DCTELEM)DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), |
181 | CONST_BITS - PASS1_BITS); |
182 | dataptr[6] = (DCTELEM)DESCALE(z1 + MULTIPLY(tmp12, -FIX_1_847759065), |
183 | CONST_BITS - PASS1_BITS); |
184 | |
185 | /* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
186 | * cK represents cos(K*pi/16). |
187 | * i0..i3 in the paper are tmp4..tmp7 here. |
188 | */ |
189 | |
190 | z1 = tmp4 + tmp7; |
191 | z2 = tmp5 + tmp6; |
192 | z3 = tmp4 + tmp6; |
193 | z4 = tmp5 + tmp7; |
194 | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ |
195 | |
196 | tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
197 | tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
198 | tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
199 | tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
200 | z1 = MULTIPLY(z1, -FIX_0_899976223); /* sqrt(2) * ( c7-c3) */ |
201 | z2 = MULTIPLY(z2, -FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
202 | z3 = MULTIPLY(z3, -FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
203 | z4 = MULTIPLY(z4, -FIX_0_390180644); /* sqrt(2) * ( c5-c3) */ |
204 | |
205 | z3 += z5; |
206 | z4 += z5; |
207 | |
208 | dataptr[7] = (DCTELEM)DESCALE(tmp4 + z1 + z3, CONST_BITS - PASS1_BITS); |
209 | dataptr[5] = (DCTELEM)DESCALE(tmp5 + z2 + z4, CONST_BITS - PASS1_BITS); |
210 | dataptr[3] = (DCTELEM)DESCALE(tmp6 + z2 + z3, CONST_BITS - PASS1_BITS); |
211 | dataptr[1] = (DCTELEM)DESCALE(tmp7 + z1 + z4, CONST_BITS - PASS1_BITS); |
212 | |
213 | dataptr += DCTSIZE; /* advance pointer to next row */ |
214 | } |
215 | |
216 | /* Pass 2: process columns. |
217 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
218 | * by an overall factor of 8. |
219 | */ |
220 | |
221 | dataptr = data; |
222 | for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) { |
223 | tmp0 = dataptr[DCTSIZE * 0] + dataptr[DCTSIZE * 7]; |
224 | tmp7 = dataptr[DCTSIZE * 0] - dataptr[DCTSIZE * 7]; |
225 | tmp1 = dataptr[DCTSIZE * 1] + dataptr[DCTSIZE * 6]; |
226 | tmp6 = dataptr[DCTSIZE * 1] - dataptr[DCTSIZE * 6]; |
227 | tmp2 = dataptr[DCTSIZE * 2] + dataptr[DCTSIZE * 5]; |
228 | tmp5 = dataptr[DCTSIZE * 2] - dataptr[DCTSIZE * 5]; |
229 | tmp3 = dataptr[DCTSIZE * 3] + dataptr[DCTSIZE * 4]; |
230 | tmp4 = dataptr[DCTSIZE * 3] - dataptr[DCTSIZE * 4]; |
231 | |
232 | /* Even part per LL&M figure 1 --- note that published figure is faulty; |
233 | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
234 | */ |
235 | |
236 | tmp10 = tmp0 + tmp3; |
237 | tmp13 = tmp0 - tmp3; |
238 | tmp11 = tmp1 + tmp2; |
239 | tmp12 = tmp1 - tmp2; |
240 | |
241 | dataptr[DCTSIZE * 0] = (DCTELEM)DESCALE(tmp10 + tmp11, PASS1_BITS); |
242 | dataptr[DCTSIZE * 4] = (DCTELEM)DESCALE(tmp10 - tmp11, PASS1_BITS); |
243 | |
244 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
245 | dataptr[DCTSIZE * 2] = |
246 | (DCTELEM)DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), |
247 | CONST_BITS + PASS1_BITS); |
248 | dataptr[DCTSIZE * 6] = |
249 | (DCTELEM)DESCALE(z1 + MULTIPLY(tmp12, -FIX_1_847759065), |
250 | CONST_BITS + PASS1_BITS); |
251 | |
252 | /* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
253 | * cK represents cos(K*pi/16). |
254 | * i0..i3 in the paper are tmp4..tmp7 here. |
255 | */ |
256 | |
257 | z1 = tmp4 + tmp7; |
258 | z2 = tmp5 + tmp6; |
259 | z3 = tmp4 + tmp6; |
260 | z4 = tmp5 + tmp7; |
261 | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ |
262 | |
263 | tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
264 | tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
265 | tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
266 | tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
267 | z1 = MULTIPLY(z1, -FIX_0_899976223); /* sqrt(2) * ( c7-c3) */ |
268 | z2 = MULTIPLY(z2, -FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
269 | z3 = MULTIPLY(z3, -FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
270 | z4 = MULTIPLY(z4, -FIX_0_390180644); /* sqrt(2) * ( c5-c3) */ |
271 | |
272 | z3 += z5; |
273 | z4 += z5; |
274 | |
275 | dataptr[DCTSIZE * 7] = (DCTELEM)DESCALE(tmp4 + z1 + z3, |
276 | CONST_BITS + PASS1_BITS); |
277 | dataptr[DCTSIZE * 5] = (DCTELEM)DESCALE(tmp5 + z2 + z4, |
278 | CONST_BITS + PASS1_BITS); |
279 | dataptr[DCTSIZE * 3] = (DCTELEM)DESCALE(tmp6 + z2 + z3, |
280 | CONST_BITS + PASS1_BITS); |
281 | dataptr[DCTSIZE * 1] = (DCTELEM)DESCALE(tmp7 + z1 + z4, |
282 | CONST_BITS + PASS1_BITS); |
283 | |
284 | dataptr++; /* advance pointer to next column */ |
285 | } |
286 | } |
287 | |
288 | #endif /* DCT_ISLOW_SUPPORTED */ |
289 | |