1 | /* |
2 | * jidctflt.c |
3 | * |
4 | * This file was part of the Independent JPEG Group's software: |
5 | * Copyright (C) 1994-1998, Thomas G. Lane. |
6 | * Modified 2010 by Guido Vollbeding. |
7 | * libjpeg-turbo Modifications: |
8 | * Copyright (C) 2014, D. R. Commander. |
9 | * For conditions of distribution and use, see the accompanying README.ijg |
10 | * file. |
11 | * |
12 | * This file contains a floating-point implementation of the |
13 | * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
14 | * must also perform dequantization of the input coefficients. |
15 | * |
16 | * This implementation should be more accurate than either of the integer |
17 | * IDCT implementations. However, it may not give the same results on all |
18 | * machines because of differences in roundoff behavior. Speed will depend |
19 | * on the hardware's floating point capacity. |
20 | * |
21 | * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
22 | * on each row (or vice versa, but it's more convenient to emit a row at |
23 | * a time). Direct algorithms are also available, but they are much more |
24 | * complex and seem not to be any faster when reduced to code. |
25 | * |
26 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for |
27 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
28 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell |
29 | * JPEG textbook (see REFERENCES section in file README.ijg). The following |
30 | * code is based directly on figure 4-8 in P&M. |
31 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is |
32 | * possible to arrange the computation so that many of the multiplies are |
33 | * simple scalings of the final outputs. These multiplies can then be |
34 | * folded into the multiplications or divisions by the JPEG quantization |
35 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds |
36 | * to be done in the DCT itself. |
37 | * The primary disadvantage of this method is that with a fixed-point |
38 | * implementation, accuracy is lost due to imprecise representation of the |
39 | * scaled quantization values. However, that problem does not arise if |
40 | * we use floating point arithmetic. |
41 | */ |
42 | |
43 | #define JPEG_INTERNALS |
44 | #include "jinclude.h" |
45 | #include "jpeglib.h" |
46 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
47 | |
48 | #ifdef DCT_FLOAT_SUPPORTED |
49 | |
50 | |
51 | /* |
52 | * This module is specialized to the case DCTSIZE = 8. |
53 | */ |
54 | |
55 | #if DCTSIZE != 8 |
56 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
57 | #endif |
58 | |
59 | |
60 | /* Dequantize a coefficient by multiplying it by the multiplier-table |
61 | * entry; produce a float result. |
62 | */ |
63 | |
64 | #define DEQUANTIZE(coef, quantval) (((FAST_FLOAT)(coef)) * (quantval)) |
65 | |
66 | |
67 | /* |
68 | * Perform dequantization and inverse DCT on one block of coefficients. |
69 | */ |
70 | |
71 | GLOBAL(void) |
72 | jpeg_idct_float(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
73 | JCOEFPTR coef_block, JSAMPARRAY output_buf, |
74 | JDIMENSION output_col) |
75 | { |
76 | FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
77 | FAST_FLOAT tmp10, tmp11, tmp12, tmp13; |
78 | FAST_FLOAT z5, z10, z11, z12, z13; |
79 | JCOEFPTR inptr; |
80 | FLOAT_MULT_TYPE *quantptr; |
81 | FAST_FLOAT *wsptr; |
82 | JSAMPROW outptr; |
83 | JSAMPLE *range_limit = cinfo->sample_range_limit; |
84 | int ctr; |
85 | FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ |
86 | #define _0_125 ((FLOAT_MULT_TYPE)0.125) |
87 | |
88 | /* Pass 1: process columns from input, store into work array. */ |
89 | |
90 | inptr = coef_block; |
91 | quantptr = (FLOAT_MULT_TYPE *)compptr->dct_table; |
92 | wsptr = workspace; |
93 | for (ctr = DCTSIZE; ctr > 0; ctr--) { |
94 | /* Due to quantization, we will usually find that many of the input |
95 | * coefficients are zero, especially the AC terms. We can exploit this |
96 | * by short-circuiting the IDCT calculation for any column in which all |
97 | * the AC terms are zero. In that case each output is equal to the |
98 | * DC coefficient (with scale factor as needed). |
99 | * With typical images and quantization tables, half or more of the |
100 | * column DCT calculations can be simplified this way. |
101 | */ |
102 | |
103 | if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 && |
104 | inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 4] == 0 && |
105 | inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 6] == 0 && |
106 | inptr[DCTSIZE * 7] == 0) { |
107 | /* AC terms all zero */ |
108 | FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE * 0], |
109 | quantptr[DCTSIZE * 0] * _0_125); |
110 | |
111 | wsptr[DCTSIZE * 0] = dcval; |
112 | wsptr[DCTSIZE * 1] = dcval; |
113 | wsptr[DCTSIZE * 2] = dcval; |
114 | wsptr[DCTSIZE * 3] = dcval; |
115 | wsptr[DCTSIZE * 4] = dcval; |
116 | wsptr[DCTSIZE * 5] = dcval; |
117 | wsptr[DCTSIZE * 6] = dcval; |
118 | wsptr[DCTSIZE * 7] = dcval; |
119 | |
120 | inptr++; /* advance pointers to next column */ |
121 | quantptr++; |
122 | wsptr++; |
123 | continue; |
124 | } |
125 | |
126 | /* Even part */ |
127 | |
128 | tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0] * _0_125); |
129 | tmp1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2] * _0_125); |
130 | tmp2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4] * _0_125); |
131 | tmp3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6] * _0_125); |
132 | |
133 | tmp10 = tmp0 + tmp2; /* phase 3 */ |
134 | tmp11 = tmp0 - tmp2; |
135 | |
136 | tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
137 | tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT)1.414213562) - tmp13; /* 2*c4 */ |
138 | |
139 | tmp0 = tmp10 + tmp13; /* phase 2 */ |
140 | tmp3 = tmp10 - tmp13; |
141 | tmp1 = tmp11 + tmp12; |
142 | tmp2 = tmp11 - tmp12; |
143 | |
144 | /* Odd part */ |
145 | |
146 | tmp4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1] * _0_125); |
147 | tmp5 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3] * _0_125); |
148 | tmp6 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5] * _0_125); |
149 | tmp7 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7] * _0_125); |
150 | |
151 | z13 = tmp6 + tmp5; /* phase 6 */ |
152 | z10 = tmp6 - tmp5; |
153 | z11 = tmp4 + tmp7; |
154 | z12 = tmp4 - tmp7; |
155 | |
156 | tmp7 = z11 + z13; /* phase 5 */ |
157 | tmp11 = (z11 - z13) * ((FAST_FLOAT)1.414213562); /* 2*c4 */ |
158 | |
159 | z5 = (z10 + z12) * ((FAST_FLOAT)1.847759065); /* 2*c2 */ |
160 | tmp10 = z5 - z12 * ((FAST_FLOAT)1.082392200); /* 2*(c2-c6) */ |
161 | tmp12 = z5 - z10 * ((FAST_FLOAT)2.613125930); /* 2*(c2+c6) */ |
162 | |
163 | tmp6 = tmp12 - tmp7; /* phase 2 */ |
164 | tmp5 = tmp11 - tmp6; |
165 | tmp4 = tmp10 - tmp5; |
166 | |
167 | wsptr[DCTSIZE * 0] = tmp0 + tmp7; |
168 | wsptr[DCTSIZE * 7] = tmp0 - tmp7; |
169 | wsptr[DCTSIZE * 1] = tmp1 + tmp6; |
170 | wsptr[DCTSIZE * 6] = tmp1 - tmp6; |
171 | wsptr[DCTSIZE * 2] = tmp2 + tmp5; |
172 | wsptr[DCTSIZE * 5] = tmp2 - tmp5; |
173 | wsptr[DCTSIZE * 3] = tmp3 + tmp4; |
174 | wsptr[DCTSIZE * 4] = tmp3 - tmp4; |
175 | |
176 | inptr++; /* advance pointers to next column */ |
177 | quantptr++; |
178 | wsptr++; |
179 | } |
180 | |
181 | /* Pass 2: process rows from work array, store into output array. */ |
182 | |
183 | wsptr = workspace; |
184 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
185 | outptr = output_buf[ctr] + output_col; |
186 | /* Rows of zeroes can be exploited in the same way as we did with columns. |
187 | * However, the column calculation has created many nonzero AC terms, so |
188 | * the simplification applies less often (typically 5% to 10% of the time). |
189 | * And testing floats for zero is relatively expensive, so we don't bother. |
190 | */ |
191 | |
192 | /* Even part */ |
193 | |
194 | /* Apply signed->unsigned and prepare float->int conversion */ |
195 | z5 = wsptr[0] + ((FAST_FLOAT)CENTERJSAMPLE + (FAST_FLOAT)0.5); |
196 | tmp10 = z5 + wsptr[4]; |
197 | tmp11 = z5 - wsptr[4]; |
198 | |
199 | tmp13 = wsptr[2] + wsptr[6]; |
200 | tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT)1.414213562) - tmp13; |
201 | |
202 | tmp0 = tmp10 + tmp13; |
203 | tmp3 = tmp10 - tmp13; |
204 | tmp1 = tmp11 + tmp12; |
205 | tmp2 = tmp11 - tmp12; |
206 | |
207 | /* Odd part */ |
208 | |
209 | z13 = wsptr[5] + wsptr[3]; |
210 | z10 = wsptr[5] - wsptr[3]; |
211 | z11 = wsptr[1] + wsptr[7]; |
212 | z12 = wsptr[1] - wsptr[7]; |
213 | |
214 | tmp7 = z11 + z13; |
215 | tmp11 = (z11 - z13) * ((FAST_FLOAT)1.414213562); |
216 | |
217 | z5 = (z10 + z12) * ((FAST_FLOAT)1.847759065); /* 2*c2 */ |
218 | tmp10 = z5 - z12 * ((FAST_FLOAT)1.082392200); /* 2*(c2-c6) */ |
219 | tmp12 = z5 - z10 * ((FAST_FLOAT)2.613125930); /* 2*(c2+c6) */ |
220 | |
221 | tmp6 = tmp12 - tmp7; |
222 | tmp5 = tmp11 - tmp6; |
223 | tmp4 = tmp10 - tmp5; |
224 | |
225 | /* Final output stage: float->int conversion and range-limit */ |
226 | |
227 | outptr[0] = range_limit[((int)(tmp0 + tmp7)) & RANGE_MASK]; |
228 | outptr[7] = range_limit[((int)(tmp0 - tmp7)) & RANGE_MASK]; |
229 | outptr[1] = range_limit[((int)(tmp1 + tmp6)) & RANGE_MASK]; |
230 | outptr[6] = range_limit[((int)(tmp1 - tmp6)) & RANGE_MASK]; |
231 | outptr[2] = range_limit[((int)(tmp2 + tmp5)) & RANGE_MASK]; |
232 | outptr[5] = range_limit[((int)(tmp2 - tmp5)) & RANGE_MASK]; |
233 | outptr[3] = range_limit[((int)(tmp3 + tmp4)) & RANGE_MASK]; |
234 | outptr[4] = range_limit[((int)(tmp3 - tmp4)) & RANGE_MASK]; |
235 | |
236 | wsptr += DCTSIZE; /* advance pointer to next row */ |
237 | } |
238 | } |
239 | |
240 | #endif /* DCT_FLOAT_SUPPORTED */ |
241 | |