1 | /* |
2 | * jidctfst.c |
3 | * |
4 | * This file was part of the Independent JPEG Group's software: |
5 | * Copyright (C) 1994-1998, Thomas G. Lane. |
6 | * libjpeg-turbo Modifications: |
7 | * Copyright (C) 2015, D. R. Commander. |
8 | * For conditions of distribution and use, see the accompanying README.ijg |
9 | * file. |
10 | * |
11 | * This file contains a fast, not so accurate integer implementation of the |
12 | * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
13 | * must also perform dequantization of the input coefficients. |
14 | * |
15 | * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
16 | * on each row (or vice versa, but it's more convenient to emit a row at |
17 | * a time). Direct algorithms are also available, but they are much more |
18 | * complex and seem not to be any faster when reduced to code. |
19 | * |
20 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for |
21 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
22 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell |
23 | * JPEG textbook (see REFERENCES section in file README.ijg). The following |
24 | * code is based directly on figure 4-8 in P&M. |
25 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is |
26 | * possible to arrange the computation so that many of the multiplies are |
27 | * simple scalings of the final outputs. These multiplies can then be |
28 | * folded into the multiplications or divisions by the JPEG quantization |
29 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds |
30 | * to be done in the DCT itself. |
31 | * The primary disadvantage of this method is that with fixed-point math, |
32 | * accuracy is lost due to imprecise representation of the scaled |
33 | * quantization values. The smaller the quantization table entry, the less |
34 | * precise the scaled value, so this implementation does worse with high- |
35 | * quality-setting files than with low-quality ones. |
36 | */ |
37 | |
38 | #define JPEG_INTERNALS |
39 | #include "jinclude.h" |
40 | #include "jpeglib.h" |
41 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
42 | |
43 | #ifdef DCT_IFAST_SUPPORTED |
44 | |
45 | |
46 | /* |
47 | * This module is specialized to the case DCTSIZE = 8. |
48 | */ |
49 | |
50 | #if DCTSIZE != 8 |
51 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
52 | #endif |
53 | |
54 | |
55 | /* Scaling decisions are generally the same as in the LL&M algorithm; |
56 | * see jidctint.c for more details. However, we choose to descale |
57 | * (right shift) multiplication products as soon as they are formed, |
58 | * rather than carrying additional fractional bits into subsequent additions. |
59 | * This compromises accuracy slightly, but it lets us save a few shifts. |
60 | * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) |
61 | * everywhere except in the multiplications proper; this saves a good deal |
62 | * of work on 16-bit-int machines. |
63 | * |
64 | * The dequantized coefficients are not integers because the AA&N scaling |
65 | * factors have been incorporated. We represent them scaled up by PASS1_BITS, |
66 | * so that the first and second IDCT rounds have the same input scaling. |
67 | * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to |
68 | * avoid a descaling shift; this compromises accuracy rather drastically |
69 | * for small quantization table entries, but it saves a lot of shifts. |
70 | * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, |
71 | * so we use a much larger scaling factor to preserve accuracy. |
72 | * |
73 | * A final compromise is to represent the multiplicative constants to only |
74 | * 8 fractional bits, rather than 13. This saves some shifting work on some |
75 | * machines, and may also reduce the cost of multiplication (since there |
76 | * are fewer one-bits in the constants). |
77 | */ |
78 | |
79 | #if BITS_IN_JSAMPLE == 8 |
80 | #define CONST_BITS 8 |
81 | #define PASS1_BITS 2 |
82 | #else |
83 | #define CONST_BITS 8 |
84 | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
85 | #endif |
86 | |
87 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
88 | * causing a lot of useless floating-point operations at run time. |
89 | * To get around this we use the following pre-calculated constants. |
90 | * If you change CONST_BITS you may want to add appropriate values. |
91 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
92 | */ |
93 | |
94 | #if CONST_BITS == 8 |
95 | #define FIX_1_082392200 ((JLONG)277) /* FIX(1.082392200) */ |
96 | #define FIX_1_414213562 ((JLONG)362) /* FIX(1.414213562) */ |
97 | #define FIX_1_847759065 ((JLONG)473) /* FIX(1.847759065) */ |
98 | #define FIX_2_613125930 ((JLONG)669) /* FIX(2.613125930) */ |
99 | #else |
100 | #define FIX_1_082392200 FIX(1.082392200) |
101 | #define FIX_1_414213562 FIX(1.414213562) |
102 | #define FIX_1_847759065 FIX(1.847759065) |
103 | #define FIX_2_613125930 FIX(2.613125930) |
104 | #endif |
105 | |
106 | |
107 | /* We can gain a little more speed, with a further compromise in accuracy, |
108 | * by omitting the addition in a descaling shift. This yields an incorrectly |
109 | * rounded result half the time... |
110 | */ |
111 | |
112 | #ifndef USE_ACCURATE_ROUNDING |
113 | #undef DESCALE |
114 | #define DESCALE(x, n) RIGHT_SHIFT(x, n) |
115 | #endif |
116 | |
117 | |
118 | /* Multiply a DCTELEM variable by an JLONG constant, and immediately |
119 | * descale to yield a DCTELEM result. |
120 | */ |
121 | |
122 | #define MULTIPLY(var, const) ((DCTELEM)DESCALE((var) * (const), CONST_BITS)) |
123 | |
124 | |
125 | /* Dequantize a coefficient by multiplying it by the multiplier-table |
126 | * entry; produce a DCTELEM result. For 8-bit data a 16x16->16 |
127 | * multiplication will do. For 12-bit data, the multiplier table is |
128 | * declared JLONG, so a 32-bit multiply will be used. |
129 | */ |
130 | |
131 | #if BITS_IN_JSAMPLE == 8 |
132 | #define DEQUANTIZE(coef, quantval) (((IFAST_MULT_TYPE)(coef)) * (quantval)) |
133 | #else |
134 | #define DEQUANTIZE(coef, quantval) \ |
135 | DESCALE((coef) * (quantval), IFAST_SCALE_BITS - PASS1_BITS) |
136 | #endif |
137 | |
138 | |
139 | /* Like DESCALE, but applies to a DCTELEM and produces an int. |
140 | * We assume that int right shift is unsigned if JLONG right shift is. |
141 | */ |
142 | |
143 | #ifdef RIGHT_SHIFT_IS_UNSIGNED |
144 | #define ISHIFT_TEMPS DCTELEM ishift_temp; |
145 | #if BITS_IN_JSAMPLE == 8 |
146 | #define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */ |
147 | #else |
148 | #define DCTELEMBITS 32 /* DCTELEM must be 32 bits */ |
149 | #endif |
150 | #define IRIGHT_SHIFT(x, shft) \ |
151 | ((ishift_temp = (x)) < 0 ? \ |
152 | (ishift_temp >> (shft)) | ((~((DCTELEM)0)) << (DCTELEMBITS - (shft))) : \ |
153 | (ishift_temp >> (shft))) |
154 | #else |
155 | #define ISHIFT_TEMPS |
156 | #define IRIGHT_SHIFT(x, shft) ((x) >> (shft)) |
157 | #endif |
158 | |
159 | #ifdef USE_ACCURATE_ROUNDING |
160 | #define IDESCALE(x, n) ((int)IRIGHT_SHIFT((x) + (1 << ((n) - 1)), n)) |
161 | #else |
162 | #define IDESCALE(x, n) ((int)IRIGHT_SHIFT(x, n)) |
163 | #endif |
164 | |
165 | |
166 | /* |
167 | * Perform dequantization and inverse DCT on one block of coefficients. |
168 | */ |
169 | |
170 | GLOBAL(void) |
171 | jpeg_idct_ifast(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
172 | JCOEFPTR coef_block, JSAMPARRAY output_buf, |
173 | JDIMENSION output_col) |
174 | { |
175 | DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
176 | DCTELEM tmp10, tmp11, tmp12, tmp13; |
177 | DCTELEM z5, z10, z11, z12, z13; |
178 | JCOEFPTR inptr; |
179 | IFAST_MULT_TYPE *quantptr; |
180 | int *wsptr; |
181 | JSAMPROW outptr; |
182 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
183 | int ctr; |
184 | int workspace[DCTSIZE2]; /* buffers data between passes */ |
185 | SHIFT_TEMPS /* for DESCALE */ |
186 | ISHIFT_TEMPS /* for IDESCALE */ |
187 | |
188 | /* Pass 1: process columns from input, store into work array. */ |
189 | |
190 | inptr = coef_block; |
191 | quantptr = (IFAST_MULT_TYPE *)compptr->dct_table; |
192 | wsptr = workspace; |
193 | for (ctr = DCTSIZE; ctr > 0; ctr--) { |
194 | /* Due to quantization, we will usually find that many of the input |
195 | * coefficients are zero, especially the AC terms. We can exploit this |
196 | * by short-circuiting the IDCT calculation for any column in which all |
197 | * the AC terms are zero. In that case each output is equal to the |
198 | * DC coefficient (with scale factor as needed). |
199 | * With typical images and quantization tables, half or more of the |
200 | * column DCT calculations can be simplified this way. |
201 | */ |
202 | |
203 | if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 && |
204 | inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 4] == 0 && |
205 | inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 6] == 0 && |
206 | inptr[DCTSIZE * 7] == 0) { |
207 | /* AC terms all zero */ |
208 | int dcval = (int)DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); |
209 | |
210 | wsptr[DCTSIZE * 0] = dcval; |
211 | wsptr[DCTSIZE * 1] = dcval; |
212 | wsptr[DCTSIZE * 2] = dcval; |
213 | wsptr[DCTSIZE * 3] = dcval; |
214 | wsptr[DCTSIZE * 4] = dcval; |
215 | wsptr[DCTSIZE * 5] = dcval; |
216 | wsptr[DCTSIZE * 6] = dcval; |
217 | wsptr[DCTSIZE * 7] = dcval; |
218 | |
219 | inptr++; /* advance pointers to next column */ |
220 | quantptr++; |
221 | wsptr++; |
222 | continue; |
223 | } |
224 | |
225 | /* Even part */ |
226 | |
227 | tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); |
228 | tmp1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); |
229 | tmp2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); |
230 | tmp3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); |
231 | |
232 | tmp10 = tmp0 + tmp2; /* phase 3 */ |
233 | tmp11 = tmp0 - tmp2; |
234 | |
235 | tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
236 | tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ |
237 | |
238 | tmp0 = tmp10 + tmp13; /* phase 2 */ |
239 | tmp3 = tmp10 - tmp13; |
240 | tmp1 = tmp11 + tmp12; |
241 | tmp2 = tmp11 - tmp12; |
242 | |
243 | /* Odd part */ |
244 | |
245 | tmp4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); |
246 | tmp5 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); |
247 | tmp6 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); |
248 | tmp7 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); |
249 | |
250 | z13 = tmp6 + tmp5; /* phase 6 */ |
251 | z10 = tmp6 - tmp5; |
252 | z11 = tmp4 + tmp7; |
253 | z12 = tmp4 - tmp7; |
254 | |
255 | tmp7 = z11 + z13; /* phase 5 */ |
256 | tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ |
257 | |
258 | z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ |
259 | tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ |
260 | tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */ |
261 | |
262 | tmp6 = tmp12 - tmp7; /* phase 2 */ |
263 | tmp5 = tmp11 - tmp6; |
264 | tmp4 = tmp10 + tmp5; |
265 | |
266 | wsptr[DCTSIZE * 0] = (int)(tmp0 + tmp7); |
267 | wsptr[DCTSIZE * 7] = (int)(tmp0 - tmp7); |
268 | wsptr[DCTSIZE * 1] = (int)(tmp1 + tmp6); |
269 | wsptr[DCTSIZE * 6] = (int)(tmp1 - tmp6); |
270 | wsptr[DCTSIZE * 2] = (int)(tmp2 + tmp5); |
271 | wsptr[DCTSIZE * 5] = (int)(tmp2 - tmp5); |
272 | wsptr[DCTSIZE * 4] = (int)(tmp3 + tmp4); |
273 | wsptr[DCTSIZE * 3] = (int)(tmp3 - tmp4); |
274 | |
275 | inptr++; /* advance pointers to next column */ |
276 | quantptr++; |
277 | wsptr++; |
278 | } |
279 | |
280 | /* Pass 2: process rows from work array, store into output array. */ |
281 | /* Note that we must descale the results by a factor of 8 == 2**3, */ |
282 | /* and also undo the PASS1_BITS scaling. */ |
283 | |
284 | wsptr = workspace; |
285 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
286 | outptr = output_buf[ctr] + output_col; |
287 | /* Rows of zeroes can be exploited in the same way as we did with columns. |
288 | * However, the column calculation has created many nonzero AC terms, so |
289 | * the simplification applies less often (typically 5% to 10% of the time). |
290 | * On machines with very fast multiplication, it's possible that the |
291 | * test takes more time than it's worth. In that case this section |
292 | * may be commented out. |
293 | */ |
294 | |
295 | #ifndef NO_ZERO_ROW_TEST |
296 | if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && |
297 | wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { |
298 | /* AC terms all zero */ |
299 | JSAMPLE dcval = |
300 | range_limit[IDESCALE(wsptr[0], PASS1_BITS + 3) & RANGE_MASK]; |
301 | |
302 | outptr[0] = dcval; |
303 | outptr[1] = dcval; |
304 | outptr[2] = dcval; |
305 | outptr[3] = dcval; |
306 | outptr[4] = dcval; |
307 | outptr[5] = dcval; |
308 | outptr[6] = dcval; |
309 | outptr[7] = dcval; |
310 | |
311 | wsptr += DCTSIZE; /* advance pointer to next row */ |
312 | continue; |
313 | } |
314 | #endif |
315 | |
316 | /* Even part */ |
317 | |
318 | tmp10 = ((DCTELEM)wsptr[0] + (DCTELEM)wsptr[4]); |
319 | tmp11 = ((DCTELEM)wsptr[0] - (DCTELEM)wsptr[4]); |
320 | |
321 | tmp13 = ((DCTELEM)wsptr[2] + (DCTELEM)wsptr[6]); |
322 | tmp12 = |
323 | MULTIPLY((DCTELEM)wsptr[2] - (DCTELEM)wsptr[6], FIX_1_414213562) - tmp13; |
324 | |
325 | tmp0 = tmp10 + tmp13; |
326 | tmp3 = tmp10 - tmp13; |
327 | tmp1 = tmp11 + tmp12; |
328 | tmp2 = tmp11 - tmp12; |
329 | |
330 | /* Odd part */ |
331 | |
332 | z13 = (DCTELEM)wsptr[5] + (DCTELEM)wsptr[3]; |
333 | z10 = (DCTELEM)wsptr[5] - (DCTELEM)wsptr[3]; |
334 | z11 = (DCTELEM)wsptr[1] + (DCTELEM)wsptr[7]; |
335 | z12 = (DCTELEM)wsptr[1] - (DCTELEM)wsptr[7]; |
336 | |
337 | tmp7 = z11 + z13; /* phase 5 */ |
338 | tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ |
339 | |
340 | z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ |
341 | tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ |
342 | tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */ |
343 | |
344 | tmp6 = tmp12 - tmp7; /* phase 2 */ |
345 | tmp5 = tmp11 - tmp6; |
346 | tmp4 = tmp10 + tmp5; |
347 | |
348 | /* Final output stage: scale down by a factor of 8 and range-limit */ |
349 | |
350 | outptr[0] = |
351 | range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS + 3) & RANGE_MASK]; |
352 | outptr[7] = |
353 | range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS + 3) & RANGE_MASK]; |
354 | outptr[1] = |
355 | range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS + 3) & RANGE_MASK]; |
356 | outptr[6] = |
357 | range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS + 3) & RANGE_MASK]; |
358 | outptr[2] = |
359 | range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS + 3) & RANGE_MASK]; |
360 | outptr[5] = |
361 | range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS + 3) & RANGE_MASK]; |
362 | outptr[4] = |
363 | range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS + 3) & RANGE_MASK]; |
364 | outptr[3] = |
365 | range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS + 3) & RANGE_MASK]; |
366 | |
367 | wsptr += DCTSIZE; /* advance pointer to next row */ |
368 | } |
369 | } |
370 | |
371 | #endif /* DCT_IFAST_SUPPORTED */ |
372 | |