1 | /* |
2 | * jidctred.c |
3 | * |
4 | * This file was part of the Independent JPEG Group's software. |
5 | * Copyright (C) 1994-1998, Thomas G. Lane. |
6 | * libjpeg-turbo Modifications: |
7 | * Copyright (C) 2015, D. R. Commander. |
8 | * For conditions of distribution and use, see the accompanying README.ijg |
9 | * file. |
10 | * |
11 | * This file contains inverse-DCT routines that produce reduced-size output: |
12 | * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block. |
13 | * |
14 | * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M) |
15 | * algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step |
16 | * with an 8-to-4 step that produces the four averages of two adjacent outputs |
17 | * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output). |
18 | * These steps were derived by computing the corresponding values at the end |
19 | * of the normal LL&M code, then simplifying as much as possible. |
20 | * |
21 | * 1x1 is trivial: just take the DC coefficient divided by 8. |
22 | * |
23 | * See jidctint.c for additional comments. |
24 | */ |
25 | |
26 | #define JPEG_INTERNALS |
27 | #include "jinclude.h" |
28 | #include "jpeglib.h" |
29 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
30 | |
31 | #ifdef IDCT_SCALING_SUPPORTED |
32 | |
33 | |
34 | /* |
35 | * This module is specialized to the case DCTSIZE = 8. |
36 | */ |
37 | |
38 | #if DCTSIZE != 8 |
39 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
40 | #endif |
41 | |
42 | |
43 | /* Scaling is the same as in jidctint.c. */ |
44 | |
45 | #if BITS_IN_JSAMPLE == 8 |
46 | #define CONST_BITS 13 |
47 | #define PASS1_BITS 2 |
48 | #else |
49 | #define CONST_BITS 13 |
50 | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
51 | #endif |
52 | |
53 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
54 | * causing a lot of useless floating-point operations at run time. |
55 | * To get around this we use the following pre-calculated constants. |
56 | * If you change CONST_BITS you may want to add appropriate values. |
57 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
58 | */ |
59 | |
60 | #if CONST_BITS == 13 |
61 | #define FIX_0_211164243 ((JLONG)1730) /* FIX(0.211164243) */ |
62 | #define FIX_0_509795579 ((JLONG)4176) /* FIX(0.509795579) */ |
63 | #define FIX_0_601344887 ((JLONG)4926) /* FIX(0.601344887) */ |
64 | #define FIX_0_720959822 ((JLONG)5906) /* FIX(0.720959822) */ |
65 | #define FIX_0_765366865 ((JLONG)6270) /* FIX(0.765366865) */ |
66 | #define FIX_0_850430095 ((JLONG)6967) /* FIX(0.850430095) */ |
67 | #define FIX_0_899976223 ((JLONG)7373) /* FIX(0.899976223) */ |
68 | #define FIX_1_061594337 ((JLONG)8697) /* FIX(1.061594337) */ |
69 | #define FIX_1_272758580 ((JLONG)10426) /* FIX(1.272758580) */ |
70 | #define FIX_1_451774981 ((JLONG)11893) /* FIX(1.451774981) */ |
71 | #define FIX_1_847759065 ((JLONG)15137) /* FIX(1.847759065) */ |
72 | #define FIX_2_172734803 ((JLONG)17799) /* FIX(2.172734803) */ |
73 | #define FIX_2_562915447 ((JLONG)20995) /* FIX(2.562915447) */ |
74 | #define FIX_3_624509785 ((JLONG)29692) /* FIX(3.624509785) */ |
75 | #else |
76 | #define FIX_0_211164243 FIX(0.211164243) |
77 | #define FIX_0_509795579 FIX(0.509795579) |
78 | #define FIX_0_601344887 FIX(0.601344887) |
79 | #define FIX_0_720959822 FIX(0.720959822) |
80 | #define FIX_0_765366865 FIX(0.765366865) |
81 | #define FIX_0_850430095 FIX(0.850430095) |
82 | #define FIX_0_899976223 FIX(0.899976223) |
83 | #define FIX_1_061594337 FIX(1.061594337) |
84 | #define FIX_1_272758580 FIX(1.272758580) |
85 | #define FIX_1_451774981 FIX(1.451774981) |
86 | #define FIX_1_847759065 FIX(1.847759065) |
87 | #define FIX_2_172734803 FIX(2.172734803) |
88 | #define FIX_2_562915447 FIX(2.562915447) |
89 | #define FIX_3_624509785 FIX(3.624509785) |
90 | #endif |
91 | |
92 | |
93 | /* Multiply a JLONG variable by a JLONG constant to yield a JLONG result. |
94 | * For 8-bit samples with the recommended scaling, all the variable |
95 | * and constant values involved are no more than 16 bits wide, so a |
96 | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. |
97 | * For 12-bit samples, a full 32-bit multiplication will be needed. |
98 | */ |
99 | |
100 | #if BITS_IN_JSAMPLE == 8 |
101 | #define MULTIPLY(var, const) MULTIPLY16C16(var, const) |
102 | #else |
103 | #define MULTIPLY(var, const) ((var) * (const)) |
104 | #endif |
105 | |
106 | |
107 | /* Dequantize a coefficient by multiplying it by the multiplier-table |
108 | * entry; produce an int result. In this module, both inputs and result |
109 | * are 16 bits or less, so either int or short multiply will work. |
110 | */ |
111 | |
112 | #define DEQUANTIZE(coef, quantval) (((ISLOW_MULT_TYPE)(coef)) * (quantval)) |
113 | |
114 | |
115 | /* |
116 | * Perform dequantization and inverse DCT on one block of coefficients, |
117 | * producing a reduced-size 4x4 output block. |
118 | */ |
119 | |
120 | GLOBAL(void) |
121 | jpeg_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
122 | JCOEFPTR coef_block, JSAMPARRAY output_buf, |
123 | JDIMENSION output_col) |
124 | { |
125 | JLONG tmp0, tmp2, tmp10, tmp12; |
126 | JLONG z1, z2, z3, z4; |
127 | JCOEFPTR inptr; |
128 | ISLOW_MULT_TYPE *quantptr; |
129 | int *wsptr; |
130 | JSAMPROW outptr; |
131 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
132 | int ctr; |
133 | int workspace[DCTSIZE * 4]; /* buffers data between passes */ |
134 | SHIFT_TEMPS |
135 | |
136 | /* Pass 1: process columns from input, store into work array. */ |
137 | |
138 | inptr = coef_block; |
139 | quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; |
140 | wsptr = workspace; |
141 | for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { |
142 | /* Don't bother to process column 4, because second pass won't use it */ |
143 | if (ctr == DCTSIZE - 4) |
144 | continue; |
145 | if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 && |
146 | inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 5] == 0 && |
147 | inptr[DCTSIZE * 6] == 0 && inptr[DCTSIZE * 7] == 0) { |
148 | /* AC terms all zero; we need not examine term 4 for 4x4 output */ |
149 | int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0], |
150 | quantptr[DCTSIZE * 0]), PASS1_BITS); |
151 | |
152 | wsptr[DCTSIZE * 0] = dcval; |
153 | wsptr[DCTSIZE * 1] = dcval; |
154 | wsptr[DCTSIZE * 2] = dcval; |
155 | wsptr[DCTSIZE * 3] = dcval; |
156 | |
157 | continue; |
158 | } |
159 | |
160 | /* Even part */ |
161 | |
162 | tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); |
163 | tmp0 = LEFT_SHIFT(tmp0, CONST_BITS + 1); |
164 | |
165 | z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); |
166 | z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); |
167 | |
168 | tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, -FIX_0_765366865); |
169 | |
170 | tmp10 = tmp0 + tmp2; |
171 | tmp12 = tmp0 - tmp2; |
172 | |
173 | /* Odd part */ |
174 | |
175 | z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); |
176 | z2 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); |
177 | z3 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); |
178 | z4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); |
179 | |
180 | tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */ |
181 | MULTIPLY(z2, FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */ |
182 | MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */ |
183 | MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * ( c5+c7) */ |
184 | |
185 | tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */ |
186 | MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */ |
187 | MULTIPLY(z3, FIX_0_899976223) + /* sqrt(2) * (c3-c7) */ |
188 | MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ |
189 | |
190 | /* Final output stage */ |
191 | |
192 | wsptr[DCTSIZE * 0] = |
193 | (int)DESCALE(tmp10 + tmp2, CONST_BITS - PASS1_BITS + 1); |
194 | wsptr[DCTSIZE * 3] = |
195 | (int)DESCALE(tmp10 - tmp2, CONST_BITS - PASS1_BITS + 1); |
196 | wsptr[DCTSIZE * 1] = |
197 | (int)DESCALE(tmp12 + tmp0, CONST_BITS - PASS1_BITS + 1); |
198 | wsptr[DCTSIZE * 2] = |
199 | (int)DESCALE(tmp12 - tmp0, CONST_BITS - PASS1_BITS + 1); |
200 | } |
201 | |
202 | /* Pass 2: process 4 rows from work array, store into output array. */ |
203 | |
204 | wsptr = workspace; |
205 | for (ctr = 0; ctr < 4; ctr++) { |
206 | outptr = output_buf[ctr] + output_col; |
207 | /* It's not clear whether a zero row test is worthwhile here ... */ |
208 | |
209 | #ifndef NO_ZERO_ROW_TEST |
210 | if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && |
211 | wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { |
212 | /* AC terms all zero */ |
213 | JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0], |
214 | PASS1_BITS + 3) & RANGE_MASK]; |
215 | |
216 | outptr[0] = dcval; |
217 | outptr[1] = dcval; |
218 | outptr[2] = dcval; |
219 | outptr[3] = dcval; |
220 | |
221 | wsptr += DCTSIZE; /* advance pointer to next row */ |
222 | continue; |
223 | } |
224 | #endif |
225 | |
226 | /* Even part */ |
227 | |
228 | tmp0 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 1); |
229 | |
230 | tmp2 = MULTIPLY((JLONG)wsptr[2], FIX_1_847759065) + |
231 | MULTIPLY((JLONG)wsptr[6], -FIX_0_765366865); |
232 | |
233 | tmp10 = tmp0 + tmp2; |
234 | tmp12 = tmp0 - tmp2; |
235 | |
236 | /* Odd part */ |
237 | |
238 | z1 = (JLONG)wsptr[7]; |
239 | z2 = (JLONG)wsptr[5]; |
240 | z3 = (JLONG)wsptr[3]; |
241 | z4 = (JLONG)wsptr[1]; |
242 | |
243 | tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */ |
244 | MULTIPLY(z2, FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */ |
245 | MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */ |
246 | MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * ( c5+c7) */ |
247 | |
248 | tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */ |
249 | MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */ |
250 | MULTIPLY(z3, FIX_0_899976223) + /* sqrt(2) * (c3-c7) */ |
251 | MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ |
252 | |
253 | /* Final output stage */ |
254 | |
255 | outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp2, |
256 | CONST_BITS + PASS1_BITS + 3 + 1) & |
257 | RANGE_MASK]; |
258 | outptr[3] = range_limit[(int)DESCALE(tmp10 - tmp2, |
259 | CONST_BITS + PASS1_BITS + 3 + 1) & |
260 | RANGE_MASK]; |
261 | outptr[1] = range_limit[(int)DESCALE(tmp12 + tmp0, |
262 | CONST_BITS + PASS1_BITS + 3 + 1) & |
263 | RANGE_MASK]; |
264 | outptr[2] = range_limit[(int)DESCALE(tmp12 - tmp0, |
265 | CONST_BITS + PASS1_BITS + 3 + 1) & |
266 | RANGE_MASK]; |
267 | |
268 | wsptr += DCTSIZE; /* advance pointer to next row */ |
269 | } |
270 | } |
271 | |
272 | |
273 | /* |
274 | * Perform dequantization and inverse DCT on one block of coefficients, |
275 | * producing a reduced-size 2x2 output block. |
276 | */ |
277 | |
278 | GLOBAL(void) |
279 | jpeg_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
280 | JCOEFPTR coef_block, JSAMPARRAY output_buf, |
281 | JDIMENSION output_col) |
282 | { |
283 | JLONG tmp0, tmp10, z1; |
284 | JCOEFPTR inptr; |
285 | ISLOW_MULT_TYPE *quantptr; |
286 | int *wsptr; |
287 | JSAMPROW outptr; |
288 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
289 | int ctr; |
290 | int workspace[DCTSIZE * 2]; /* buffers data between passes */ |
291 | SHIFT_TEMPS |
292 | |
293 | /* Pass 1: process columns from input, store into work array. */ |
294 | |
295 | inptr = coef_block; |
296 | quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; |
297 | wsptr = workspace; |
298 | for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { |
299 | /* Don't bother to process columns 2,4,6 */ |
300 | if (ctr == DCTSIZE - 2 || ctr == DCTSIZE - 4 || ctr == DCTSIZE - 6) |
301 | continue; |
302 | if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 3] == 0 && |
303 | inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 7] == 0) { |
304 | /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */ |
305 | int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0], |
306 | quantptr[DCTSIZE * 0]), PASS1_BITS); |
307 | |
308 | wsptr[DCTSIZE * 0] = dcval; |
309 | wsptr[DCTSIZE * 1] = dcval; |
310 | |
311 | continue; |
312 | } |
313 | |
314 | /* Even part */ |
315 | |
316 | z1 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); |
317 | tmp10 = LEFT_SHIFT(z1, CONST_BITS + 2); |
318 | |
319 | /* Odd part */ |
320 | |
321 | z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); |
322 | tmp0 = MULTIPLY(z1, -FIX_0_720959822); /* sqrt(2) * ( c7-c5+c3-c1) */ |
323 | z1 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); |
324 | tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */ |
325 | z1 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); |
326 | tmp0 += MULTIPLY(z1, -FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */ |
327 | z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); |
328 | tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * ( c1+c3+c5+c7) */ |
329 | |
330 | /* Final output stage */ |
331 | |
332 | wsptr[DCTSIZE * 0] = |
333 | (int)DESCALE(tmp10 + tmp0, CONST_BITS - PASS1_BITS + 2); |
334 | wsptr[DCTSIZE * 1] = |
335 | (int)DESCALE(tmp10 - tmp0, CONST_BITS - PASS1_BITS + 2); |
336 | } |
337 | |
338 | /* Pass 2: process 2 rows from work array, store into output array. */ |
339 | |
340 | wsptr = workspace; |
341 | for (ctr = 0; ctr < 2; ctr++) { |
342 | outptr = output_buf[ctr] + output_col; |
343 | /* It's not clear whether a zero row test is worthwhile here ... */ |
344 | |
345 | #ifndef NO_ZERO_ROW_TEST |
346 | if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) { |
347 | /* AC terms all zero */ |
348 | JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0], |
349 | PASS1_BITS + 3) & RANGE_MASK]; |
350 | |
351 | outptr[0] = dcval; |
352 | outptr[1] = dcval; |
353 | |
354 | wsptr += DCTSIZE; /* advance pointer to next row */ |
355 | continue; |
356 | } |
357 | #endif |
358 | |
359 | /* Even part */ |
360 | |
361 | tmp10 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 2); |
362 | |
363 | /* Odd part */ |
364 | |
365 | tmp0 = MULTIPLY((JLONG)wsptr[7], -FIX_0_720959822) + /* sqrt(2) * ( c7-c5+c3-c1) */ |
366 | MULTIPLY((JLONG)wsptr[5], FIX_0_850430095) + /* sqrt(2) * (-c1+c3+c5+c7) */ |
367 | MULTIPLY((JLONG)wsptr[3], -FIX_1_272758580) + /* sqrt(2) * (-c1+c3-c5-c7) */ |
368 | MULTIPLY((JLONG)wsptr[1], FIX_3_624509785); /* sqrt(2) * ( c1+c3+c5+c7) */ |
369 | |
370 | /* Final output stage */ |
371 | |
372 | outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp0, |
373 | CONST_BITS + PASS1_BITS + 3 + 2) & |
374 | RANGE_MASK]; |
375 | outptr[1] = range_limit[(int)DESCALE(tmp10 - tmp0, |
376 | CONST_BITS + PASS1_BITS + 3 + 2) & |
377 | RANGE_MASK]; |
378 | |
379 | wsptr += DCTSIZE; /* advance pointer to next row */ |
380 | } |
381 | } |
382 | |
383 | |
384 | /* |
385 | * Perform dequantization and inverse DCT on one block of coefficients, |
386 | * producing a reduced-size 1x1 output block. |
387 | */ |
388 | |
389 | GLOBAL(void) |
390 | jpeg_idct_1x1(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
391 | JCOEFPTR coef_block, JSAMPARRAY output_buf, |
392 | JDIMENSION output_col) |
393 | { |
394 | int dcval; |
395 | ISLOW_MULT_TYPE *quantptr; |
396 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
397 | SHIFT_TEMPS |
398 | |
399 | /* We hardly need an inverse DCT routine for this: just take the |
400 | * average pixel value, which is one-eighth of the DC coefficient. |
401 | */ |
402 | quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; |
403 | dcval = DEQUANTIZE(coef_block[0], quantptr[0]); |
404 | dcval = (int)DESCALE((JLONG)dcval, 3); |
405 | |
406 | output_buf[0][output_col] = range_limit[dcval & RANGE_MASK]; |
407 | } |
408 | |
409 | #endif /* IDCT_SCALING_SUPPORTED */ |
410 | |