| 1 | /* | 
|---|
| 2 | * jidctred.c | 
|---|
| 3 | * | 
|---|
| 4 | * This file was part of the Independent JPEG Group's software. | 
|---|
| 5 | * Copyright (C) 1994-1998, Thomas G. Lane. | 
|---|
| 6 | * libjpeg-turbo Modifications: | 
|---|
| 7 | * Copyright (C) 2015, D. R. Commander. | 
|---|
| 8 | * For conditions of distribution and use, see the accompanying README.ijg | 
|---|
| 9 | * file. | 
|---|
| 10 | * | 
|---|
| 11 | * This file contains inverse-DCT routines that produce reduced-size output: | 
|---|
| 12 | * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block. | 
|---|
| 13 | * | 
|---|
| 14 | * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M) | 
|---|
| 15 | * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step | 
|---|
| 16 | * with an 8-to-4 step that produces the four averages of two adjacent outputs | 
|---|
| 17 | * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output). | 
|---|
| 18 | * These steps were derived by computing the corresponding values at the end | 
|---|
| 19 | * of the normal LL&M code, then simplifying as much as possible. | 
|---|
| 20 | * | 
|---|
| 21 | * 1x1 is trivial: just take the DC coefficient divided by 8. | 
|---|
| 22 | * | 
|---|
| 23 | * See jidctint.c for additional comments. | 
|---|
| 24 | */ | 
|---|
| 25 |  | 
|---|
| 26 | #define JPEG_INTERNALS | 
|---|
| 27 | #include "jinclude.h" | 
|---|
| 28 | #include "jpeglib.h" | 
|---|
| 29 | #include "jdct.h"               /* Private declarations for DCT subsystem */ | 
|---|
| 30 |  | 
|---|
| 31 | #ifdef IDCT_SCALING_SUPPORTED | 
|---|
| 32 |  | 
|---|
| 33 |  | 
|---|
| 34 | /* | 
|---|
| 35 | * This module is specialized to the case DCTSIZE = 8. | 
|---|
| 36 | */ | 
|---|
| 37 |  | 
|---|
| 38 | #if DCTSIZE != 8 | 
|---|
| 39 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | 
|---|
| 40 | #endif | 
|---|
| 41 |  | 
|---|
| 42 |  | 
|---|
| 43 | /* Scaling is the same as in jidctint.c. */ | 
|---|
| 44 |  | 
|---|
| 45 | #if BITS_IN_JSAMPLE == 8 | 
|---|
| 46 | #define CONST_BITS  13 | 
|---|
| 47 | #define PASS1_BITS  2 | 
|---|
| 48 | #else | 
|---|
| 49 | #define CONST_BITS  13 | 
|---|
| 50 | #define PASS1_BITS  1           /* lose a little precision to avoid overflow */ | 
|---|
| 51 | #endif | 
|---|
| 52 |  | 
|---|
| 53 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus | 
|---|
| 54 | * causing a lot of useless floating-point operations at run time. | 
|---|
| 55 | * To get around this we use the following pre-calculated constants. | 
|---|
| 56 | * If you change CONST_BITS you may want to add appropriate values. | 
|---|
| 57 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) | 
|---|
| 58 | */ | 
|---|
| 59 |  | 
|---|
| 60 | #if CONST_BITS == 13 | 
|---|
| 61 | #define FIX_0_211164243  ((JLONG)1730)          /* FIX(0.211164243) */ | 
|---|
| 62 | #define FIX_0_509795579  ((JLONG)4176)          /* FIX(0.509795579) */ | 
|---|
| 63 | #define FIX_0_601344887  ((JLONG)4926)          /* FIX(0.601344887) */ | 
|---|
| 64 | #define FIX_0_720959822  ((JLONG)5906)          /* FIX(0.720959822) */ | 
|---|
| 65 | #define FIX_0_765366865  ((JLONG)6270)          /* FIX(0.765366865) */ | 
|---|
| 66 | #define FIX_0_850430095  ((JLONG)6967)          /* FIX(0.850430095) */ | 
|---|
| 67 | #define FIX_0_899976223  ((JLONG)7373)          /* FIX(0.899976223) */ | 
|---|
| 68 | #define FIX_1_061594337  ((JLONG)8697)          /* FIX(1.061594337) */ | 
|---|
| 69 | #define FIX_1_272758580  ((JLONG)10426)         /* FIX(1.272758580) */ | 
|---|
| 70 | #define FIX_1_451774981  ((JLONG)11893)         /* FIX(1.451774981) */ | 
|---|
| 71 | #define FIX_1_847759065  ((JLONG)15137)         /* FIX(1.847759065) */ | 
|---|
| 72 | #define FIX_2_172734803  ((JLONG)17799)         /* FIX(2.172734803) */ | 
|---|
| 73 | #define FIX_2_562915447  ((JLONG)20995)         /* FIX(2.562915447) */ | 
|---|
| 74 | #define FIX_3_624509785  ((JLONG)29692)         /* FIX(3.624509785) */ | 
|---|
| 75 | #else | 
|---|
| 76 | #define FIX_0_211164243  FIX(0.211164243) | 
|---|
| 77 | #define FIX_0_509795579  FIX(0.509795579) | 
|---|
| 78 | #define FIX_0_601344887  FIX(0.601344887) | 
|---|
| 79 | #define FIX_0_720959822  FIX(0.720959822) | 
|---|
| 80 | #define FIX_0_765366865  FIX(0.765366865) | 
|---|
| 81 | #define FIX_0_850430095  FIX(0.850430095) | 
|---|
| 82 | #define FIX_0_899976223  FIX(0.899976223) | 
|---|
| 83 | #define FIX_1_061594337  FIX(1.061594337) | 
|---|
| 84 | #define FIX_1_272758580  FIX(1.272758580) | 
|---|
| 85 | #define FIX_1_451774981  FIX(1.451774981) | 
|---|
| 86 | #define FIX_1_847759065  FIX(1.847759065) | 
|---|
| 87 | #define FIX_2_172734803  FIX(2.172734803) | 
|---|
| 88 | #define FIX_2_562915447  FIX(2.562915447) | 
|---|
| 89 | #define FIX_3_624509785  FIX(3.624509785) | 
|---|
| 90 | #endif | 
|---|
| 91 |  | 
|---|
| 92 |  | 
|---|
| 93 | /* Multiply a JLONG variable by a JLONG constant to yield a JLONG result. | 
|---|
| 94 | * For 8-bit samples with the recommended scaling, all the variable | 
|---|
| 95 | * and constant values involved are no more than 16 bits wide, so a | 
|---|
| 96 | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. | 
|---|
| 97 | * For 12-bit samples, a full 32-bit multiplication will be needed. | 
|---|
| 98 | */ | 
|---|
| 99 |  | 
|---|
| 100 | #if BITS_IN_JSAMPLE == 8 | 
|---|
| 101 | #define MULTIPLY(var, const)  MULTIPLY16C16(var, const) | 
|---|
| 102 | #else | 
|---|
| 103 | #define MULTIPLY(var, const)  ((var) * (const)) | 
|---|
| 104 | #endif | 
|---|
| 105 |  | 
|---|
| 106 |  | 
|---|
| 107 | /* Dequantize a coefficient by multiplying it by the multiplier-table | 
|---|
| 108 | * entry; produce an int result.  In this module, both inputs and result | 
|---|
| 109 | * are 16 bits or less, so either int or short multiply will work. | 
|---|
| 110 | */ | 
|---|
| 111 |  | 
|---|
| 112 | #define DEQUANTIZE(coef, quantval)  (((ISLOW_MULT_TYPE)(coef)) * (quantval)) | 
|---|
| 113 |  | 
|---|
| 114 |  | 
|---|
| 115 | /* | 
|---|
| 116 | * Perform dequantization and inverse DCT on one block of coefficients, | 
|---|
| 117 | * producing a reduced-size 4x4 output block. | 
|---|
| 118 | */ | 
|---|
| 119 |  | 
|---|
| 120 | GLOBAL(void) | 
|---|
| 121 | jpeg_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr, | 
|---|
| 122 | JCOEFPTR coef_block, JSAMPARRAY output_buf, | 
|---|
| 123 | JDIMENSION output_col) | 
|---|
| 124 | { | 
|---|
| 125 | JLONG tmp0, tmp2, tmp10, tmp12; | 
|---|
| 126 | JLONG z1, z2, z3, z4; | 
|---|
| 127 | JCOEFPTR inptr; | 
|---|
| 128 | ISLOW_MULT_TYPE *quantptr; | 
|---|
| 129 | int *wsptr; | 
|---|
| 130 | JSAMPROW outptr; | 
|---|
| 131 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); | 
|---|
| 132 | int ctr; | 
|---|
| 133 | int workspace[DCTSIZE * 4];   /* buffers data between passes */ | 
|---|
| 134 | SHIFT_TEMPS | 
|---|
| 135 |  | 
|---|
| 136 | /* Pass 1: process columns from input, store into work array. */ | 
|---|
| 137 |  | 
|---|
| 138 | inptr = coef_block; | 
|---|
| 139 | quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; | 
|---|
| 140 | wsptr = workspace; | 
|---|
| 141 | for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { | 
|---|
| 142 | /* Don't bother to process column 4, because second pass won't use it */ | 
|---|
| 143 | if (ctr == DCTSIZE - 4) | 
|---|
| 144 | continue; | 
|---|
| 145 | if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 && | 
|---|
| 146 | inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 5] == 0 && | 
|---|
| 147 | inptr[DCTSIZE * 6] == 0 && inptr[DCTSIZE * 7] == 0) { | 
|---|
| 148 | /* AC terms all zero; we need not examine term 4 for 4x4 output */ | 
|---|
| 149 | int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0], | 
|---|
| 150 | quantptr[DCTSIZE * 0]), PASS1_BITS); | 
|---|
| 151 |  | 
|---|
| 152 | wsptr[DCTSIZE * 0] = dcval; | 
|---|
| 153 | wsptr[DCTSIZE * 1] = dcval; | 
|---|
| 154 | wsptr[DCTSIZE * 2] = dcval; | 
|---|
| 155 | wsptr[DCTSIZE * 3] = dcval; | 
|---|
| 156 |  | 
|---|
| 157 | continue; | 
|---|
| 158 | } | 
|---|
| 159 |  | 
|---|
| 160 | /* Even part */ | 
|---|
| 161 |  | 
|---|
| 162 | tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); | 
|---|
| 163 | tmp0 = LEFT_SHIFT(tmp0, CONST_BITS + 1); | 
|---|
| 164 |  | 
|---|
| 165 | z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); | 
|---|
| 166 | z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); | 
|---|
| 167 |  | 
|---|
| 168 | tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, -FIX_0_765366865); | 
|---|
| 169 |  | 
|---|
| 170 | tmp10 = tmp0 + tmp2; | 
|---|
| 171 | tmp12 = tmp0 - tmp2; | 
|---|
| 172 |  | 
|---|
| 173 | /* Odd part */ | 
|---|
| 174 |  | 
|---|
| 175 | z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); | 
|---|
| 176 | z2 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); | 
|---|
| 177 | z3 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); | 
|---|
| 178 | z4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); | 
|---|
| 179 |  | 
|---|
| 180 | tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */ | 
|---|
| 181 | MULTIPLY(z2,  FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */ | 
|---|
| 182 | MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */ | 
|---|
| 183 | MULTIPLY(z4,  FIX_1_061594337);  /* sqrt(2) * ( c5+c7) */ | 
|---|
| 184 |  | 
|---|
| 185 | tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */ | 
|---|
| 186 | MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */ | 
|---|
| 187 | MULTIPLY(z3,  FIX_0_899976223) + /* sqrt(2) * (c3-c7) */ | 
|---|
| 188 | MULTIPLY(z4,  FIX_2_562915447);  /* sqrt(2) * (c1+c3) */ | 
|---|
| 189 |  | 
|---|
| 190 | /* Final output stage */ | 
|---|
| 191 |  | 
|---|
| 192 | wsptr[DCTSIZE * 0] = | 
|---|
| 193 | (int)DESCALE(tmp10 + tmp2, CONST_BITS - PASS1_BITS + 1); | 
|---|
| 194 | wsptr[DCTSIZE * 3] = | 
|---|
| 195 | (int)DESCALE(tmp10 - tmp2, CONST_BITS - PASS1_BITS + 1); | 
|---|
| 196 | wsptr[DCTSIZE * 1] = | 
|---|
| 197 | (int)DESCALE(tmp12 + tmp0, CONST_BITS - PASS1_BITS + 1); | 
|---|
| 198 | wsptr[DCTSIZE * 2] = | 
|---|
| 199 | (int)DESCALE(tmp12 - tmp0, CONST_BITS - PASS1_BITS + 1); | 
|---|
| 200 | } | 
|---|
| 201 |  | 
|---|
| 202 | /* Pass 2: process 4 rows from work array, store into output array. */ | 
|---|
| 203 |  | 
|---|
| 204 | wsptr = workspace; | 
|---|
| 205 | for (ctr = 0; ctr < 4; ctr++) { | 
|---|
| 206 | outptr = output_buf[ctr] + output_col; | 
|---|
| 207 | /* It's not clear whether a zero row test is worthwhile here ... */ | 
|---|
| 208 |  | 
|---|
| 209 | #ifndef NO_ZERO_ROW_TEST | 
|---|
| 210 | if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && | 
|---|
| 211 | wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { | 
|---|
| 212 | /* AC terms all zero */ | 
|---|
| 213 | JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0], | 
|---|
| 214 | PASS1_BITS + 3) & RANGE_MASK]; | 
|---|
| 215 |  | 
|---|
| 216 | outptr[0] = dcval; | 
|---|
| 217 | outptr[1] = dcval; | 
|---|
| 218 | outptr[2] = dcval; | 
|---|
| 219 | outptr[3] = dcval; | 
|---|
| 220 |  | 
|---|
| 221 | wsptr += DCTSIZE;         /* advance pointer to next row */ | 
|---|
| 222 | continue; | 
|---|
| 223 | } | 
|---|
| 224 | #endif | 
|---|
| 225 |  | 
|---|
| 226 | /* Even part */ | 
|---|
| 227 |  | 
|---|
| 228 | tmp0 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 1); | 
|---|
| 229 |  | 
|---|
| 230 | tmp2 = MULTIPLY((JLONG)wsptr[2],  FIX_1_847759065) + | 
|---|
| 231 | MULTIPLY((JLONG)wsptr[6], -FIX_0_765366865); | 
|---|
| 232 |  | 
|---|
| 233 | tmp10 = tmp0 + tmp2; | 
|---|
| 234 | tmp12 = tmp0 - tmp2; | 
|---|
| 235 |  | 
|---|
| 236 | /* Odd part */ | 
|---|
| 237 |  | 
|---|
| 238 | z1 = (JLONG)wsptr[7]; | 
|---|
| 239 | z2 = (JLONG)wsptr[5]; | 
|---|
| 240 | z3 = (JLONG)wsptr[3]; | 
|---|
| 241 | z4 = (JLONG)wsptr[1]; | 
|---|
| 242 |  | 
|---|
| 243 | tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */ | 
|---|
| 244 | MULTIPLY(z2,  FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */ | 
|---|
| 245 | MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */ | 
|---|
| 246 | MULTIPLY(z4,  FIX_1_061594337);  /* sqrt(2) * ( c5+c7) */ | 
|---|
| 247 |  | 
|---|
| 248 | tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */ | 
|---|
| 249 | MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */ | 
|---|
| 250 | MULTIPLY(z3, FIX_0_899976223) +  /* sqrt(2) * (c3-c7) */ | 
|---|
| 251 | MULTIPLY(z4, FIX_2_562915447);   /* sqrt(2) * (c1+c3) */ | 
|---|
| 252 |  | 
|---|
| 253 | /* Final output stage */ | 
|---|
| 254 |  | 
|---|
| 255 | outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp2, | 
|---|
| 256 | CONST_BITS + PASS1_BITS + 3 + 1) & | 
|---|
| 257 | RANGE_MASK]; | 
|---|
| 258 | outptr[3] = range_limit[(int)DESCALE(tmp10 - tmp2, | 
|---|
| 259 | CONST_BITS + PASS1_BITS + 3 + 1) & | 
|---|
| 260 | RANGE_MASK]; | 
|---|
| 261 | outptr[1] = range_limit[(int)DESCALE(tmp12 + tmp0, | 
|---|
| 262 | CONST_BITS + PASS1_BITS + 3 + 1) & | 
|---|
| 263 | RANGE_MASK]; | 
|---|
| 264 | outptr[2] = range_limit[(int)DESCALE(tmp12 - tmp0, | 
|---|
| 265 | CONST_BITS + PASS1_BITS + 3 + 1) & | 
|---|
| 266 | RANGE_MASK]; | 
|---|
| 267 |  | 
|---|
| 268 | wsptr += DCTSIZE;           /* advance pointer to next row */ | 
|---|
| 269 | } | 
|---|
| 270 | } | 
|---|
| 271 |  | 
|---|
| 272 |  | 
|---|
| 273 | /* | 
|---|
| 274 | * Perform dequantization and inverse DCT on one block of coefficients, | 
|---|
| 275 | * producing a reduced-size 2x2 output block. | 
|---|
| 276 | */ | 
|---|
| 277 |  | 
|---|
| 278 | GLOBAL(void) | 
|---|
| 279 | jpeg_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr, | 
|---|
| 280 | JCOEFPTR coef_block, JSAMPARRAY output_buf, | 
|---|
| 281 | JDIMENSION output_col) | 
|---|
| 282 | { | 
|---|
| 283 | JLONG tmp0, tmp10, z1; | 
|---|
| 284 | JCOEFPTR inptr; | 
|---|
| 285 | ISLOW_MULT_TYPE *quantptr; | 
|---|
| 286 | int *wsptr; | 
|---|
| 287 | JSAMPROW outptr; | 
|---|
| 288 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); | 
|---|
| 289 | int ctr; | 
|---|
| 290 | int workspace[DCTSIZE * 2];   /* buffers data between passes */ | 
|---|
| 291 | SHIFT_TEMPS | 
|---|
| 292 |  | 
|---|
| 293 | /* Pass 1: process columns from input, store into work array. */ | 
|---|
| 294 |  | 
|---|
| 295 | inptr = coef_block; | 
|---|
| 296 | quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; | 
|---|
| 297 | wsptr = workspace; | 
|---|
| 298 | for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { | 
|---|
| 299 | /* Don't bother to process columns 2,4,6 */ | 
|---|
| 300 | if (ctr == DCTSIZE - 2 || ctr == DCTSIZE - 4 || ctr == DCTSIZE - 6) | 
|---|
| 301 | continue; | 
|---|
| 302 | if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 3] == 0 && | 
|---|
| 303 | inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 7] == 0) { | 
|---|
| 304 | /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */ | 
|---|
| 305 | int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0], | 
|---|
| 306 | quantptr[DCTSIZE * 0]), PASS1_BITS); | 
|---|
| 307 |  | 
|---|
| 308 | wsptr[DCTSIZE * 0] = dcval; | 
|---|
| 309 | wsptr[DCTSIZE * 1] = dcval; | 
|---|
| 310 |  | 
|---|
| 311 | continue; | 
|---|
| 312 | } | 
|---|
| 313 |  | 
|---|
| 314 | /* Even part */ | 
|---|
| 315 |  | 
|---|
| 316 | z1 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); | 
|---|
| 317 | tmp10 = LEFT_SHIFT(z1, CONST_BITS + 2); | 
|---|
| 318 |  | 
|---|
| 319 | /* Odd part */ | 
|---|
| 320 |  | 
|---|
| 321 | z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); | 
|---|
| 322 | tmp0 = MULTIPLY(z1, -FIX_0_720959822);  /* sqrt(2) * ( c7-c5+c3-c1) */ | 
|---|
| 323 | z1 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); | 
|---|
| 324 | tmp0 += MULTIPLY(z1, FIX_0_850430095);  /* sqrt(2) * (-c1+c3+c5+c7) */ | 
|---|
| 325 | z1 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); | 
|---|
| 326 | tmp0 += MULTIPLY(z1, -FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */ | 
|---|
| 327 | z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); | 
|---|
| 328 | tmp0 += MULTIPLY(z1, FIX_3_624509785);  /* sqrt(2) * ( c1+c3+c5+c7) */ | 
|---|
| 329 |  | 
|---|
| 330 | /* Final output stage */ | 
|---|
| 331 |  | 
|---|
| 332 | wsptr[DCTSIZE * 0] = | 
|---|
| 333 | (int)DESCALE(tmp10 + tmp0, CONST_BITS - PASS1_BITS + 2); | 
|---|
| 334 | wsptr[DCTSIZE * 1] = | 
|---|
| 335 | (int)DESCALE(tmp10 - tmp0, CONST_BITS - PASS1_BITS + 2); | 
|---|
| 336 | } | 
|---|
| 337 |  | 
|---|
| 338 | /* Pass 2: process 2 rows from work array, store into output array. */ | 
|---|
| 339 |  | 
|---|
| 340 | wsptr = workspace; | 
|---|
| 341 | for (ctr = 0; ctr < 2; ctr++) { | 
|---|
| 342 | outptr = output_buf[ctr] + output_col; | 
|---|
| 343 | /* It's not clear whether a zero row test is worthwhile here ... */ | 
|---|
| 344 |  | 
|---|
| 345 | #ifndef NO_ZERO_ROW_TEST | 
|---|
| 346 | if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) { | 
|---|
| 347 | /* AC terms all zero */ | 
|---|
| 348 | JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0], | 
|---|
| 349 | PASS1_BITS + 3) & RANGE_MASK]; | 
|---|
| 350 |  | 
|---|
| 351 | outptr[0] = dcval; | 
|---|
| 352 | outptr[1] = dcval; | 
|---|
| 353 |  | 
|---|
| 354 | wsptr += DCTSIZE;         /* advance pointer to next row */ | 
|---|
| 355 | continue; | 
|---|
| 356 | } | 
|---|
| 357 | #endif | 
|---|
| 358 |  | 
|---|
| 359 | /* Even part */ | 
|---|
| 360 |  | 
|---|
| 361 | tmp10 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 2); | 
|---|
| 362 |  | 
|---|
| 363 | /* Odd part */ | 
|---|
| 364 |  | 
|---|
| 365 | tmp0 = MULTIPLY((JLONG)wsptr[7], -FIX_0_720959822) + /* sqrt(2) * ( c7-c5+c3-c1) */ | 
|---|
| 366 | MULTIPLY((JLONG)wsptr[5],  FIX_0_850430095) + /* sqrt(2) * (-c1+c3+c5+c7) */ | 
|---|
| 367 | MULTIPLY((JLONG)wsptr[3], -FIX_1_272758580) + /* sqrt(2) * (-c1+c3-c5-c7) */ | 
|---|
| 368 | MULTIPLY((JLONG)wsptr[1],  FIX_3_624509785);  /* sqrt(2) * ( c1+c3+c5+c7) */ | 
|---|
| 369 |  | 
|---|
| 370 | /* Final output stage */ | 
|---|
| 371 |  | 
|---|
| 372 | outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp0, | 
|---|
| 373 | CONST_BITS + PASS1_BITS + 3 + 2) & | 
|---|
| 374 | RANGE_MASK]; | 
|---|
| 375 | outptr[1] = range_limit[(int)DESCALE(tmp10 - tmp0, | 
|---|
| 376 | CONST_BITS + PASS1_BITS + 3 + 2) & | 
|---|
| 377 | RANGE_MASK]; | 
|---|
| 378 |  | 
|---|
| 379 | wsptr += DCTSIZE;           /* advance pointer to next row */ | 
|---|
| 380 | } | 
|---|
| 381 | } | 
|---|
| 382 |  | 
|---|
| 383 |  | 
|---|
| 384 | /* | 
|---|
| 385 | * Perform dequantization and inverse DCT on one block of coefficients, | 
|---|
| 386 | * producing a reduced-size 1x1 output block. | 
|---|
| 387 | */ | 
|---|
| 388 |  | 
|---|
| 389 | GLOBAL(void) | 
|---|
| 390 | jpeg_idct_1x1(j_decompress_ptr cinfo, jpeg_component_info *compptr, | 
|---|
| 391 | JCOEFPTR coef_block, JSAMPARRAY output_buf, | 
|---|
| 392 | JDIMENSION output_col) | 
|---|
| 393 | { | 
|---|
| 394 | int dcval; | 
|---|
| 395 | ISLOW_MULT_TYPE *quantptr; | 
|---|
| 396 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); | 
|---|
| 397 | SHIFT_TEMPS | 
|---|
| 398 |  | 
|---|
| 399 | /* We hardly need an inverse DCT routine for this: just take the | 
|---|
| 400 | * average pixel value, which is one-eighth of the DC coefficient. | 
|---|
| 401 | */ | 
|---|
| 402 | quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; | 
|---|
| 403 | dcval = DEQUANTIZE(coef_block[0], quantptr[0]); | 
|---|
| 404 | dcval = (int)DESCALE((JLONG)dcval, 3); | 
|---|
| 405 |  | 
|---|
| 406 | output_buf[0][output_col] = range_limit[dcval & RANGE_MASK]; | 
|---|
| 407 | } | 
|---|
| 408 |  | 
|---|
| 409 | #endif /* IDCT_SCALING_SUPPORTED */ | 
|---|
| 410 |  | 
|---|