1 | // Copyright (c) 2015-2020 The Khronos Group Inc. |
2 | // Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights |
3 | // reserved. |
4 | // |
5 | // Licensed under the Apache License, Version 2.0 (the "License"); |
6 | // you may not use this file except in compliance with the License. |
7 | // You may obtain a copy of the License at |
8 | // |
9 | // http://www.apache.org/licenses/LICENSE-2.0 |
10 | // |
11 | // Unless required by applicable law or agreed to in writing, software |
12 | // distributed under the License is distributed on an "AS IS" BASIS, |
13 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
14 | // See the License for the specific language governing permissions and |
15 | // limitations under the License. |
16 | |
17 | #include "source/binary.h" |
18 | |
19 | #include <algorithm> |
20 | #include <cassert> |
21 | #include <cstring> |
22 | #include <iterator> |
23 | #include <limits> |
24 | #include <string> |
25 | #include <unordered_map> |
26 | #include <vector> |
27 | |
28 | #include "source/assembly_grammar.h" |
29 | #include "source/diagnostic.h" |
30 | #include "source/ext_inst.h" |
31 | #include "source/latest_version_spirv_header.h" |
32 | #include "source/opcode.h" |
33 | #include "source/operand.h" |
34 | #include "source/spirv_constant.h" |
35 | #include "source/spirv_endian.h" |
36 | |
37 | spv_result_t (const spv_const_binary binary, |
38 | const spv_endianness_t endian, |
39 | spv_header_t* ) { |
40 | if (!binary->code) return SPV_ERROR_INVALID_BINARY; |
41 | if (binary->wordCount < SPV_INDEX_INSTRUCTION) |
42 | return SPV_ERROR_INVALID_BINARY; |
43 | if (!pHeader) return SPV_ERROR_INVALID_POINTER; |
44 | |
45 | // TODO: Validation checking? |
46 | pHeader->magic = spvFixWord(binary->code[SPV_INDEX_MAGIC_NUMBER], endian); |
47 | pHeader->version = spvFixWord(binary->code[SPV_INDEX_VERSION_NUMBER], endian); |
48 | pHeader->generator = |
49 | spvFixWord(binary->code[SPV_INDEX_GENERATOR_NUMBER], endian); |
50 | pHeader->bound = spvFixWord(binary->code[SPV_INDEX_BOUND], endian); |
51 | pHeader->schema = spvFixWord(binary->code[SPV_INDEX_SCHEMA], endian); |
52 | pHeader->instructions = &binary->code[SPV_INDEX_INSTRUCTION]; |
53 | |
54 | return SPV_SUCCESS; |
55 | } |
56 | |
57 | namespace { |
58 | |
59 | // A SPIR-V binary parser. A parser instance communicates detailed parse |
60 | // results via callbacks. |
61 | class Parser { |
62 | public: |
63 | // The user_data value is provided to the callbacks as context. |
64 | Parser(const spv_const_context context, void* user_data, |
65 | spv_parsed_header_fn_t , |
66 | spv_parsed_instruction_fn_t parsed_instruction_fn) |
67 | : grammar_(context), |
68 | consumer_(context->consumer), |
69 | user_data_(user_data), |
70 | parsed_header_fn_(parsed_header_fn), |
71 | parsed_instruction_fn_(parsed_instruction_fn) {} |
72 | |
73 | // Parses the specified binary SPIR-V module, issuing callbacks on a parsed |
74 | // header and for each parsed instruction. Returns SPV_SUCCESS on success. |
75 | // Otherwise returns an error code and issues a diagnostic. |
76 | spv_result_t parse(const uint32_t* words, size_t num_words, |
77 | spv_diagnostic* diagnostic); |
78 | |
79 | private: |
80 | // All remaining methods work on the current module parse state. |
81 | |
82 | // Like the parse method, but works on the current module parse state. |
83 | spv_result_t parseModule(); |
84 | |
85 | // Parses an instruction at the current position of the binary. Assumes |
86 | // the header has been parsed, the endian has been set, and the word index is |
87 | // still in range. Advances the parsing position past the instruction, and |
88 | // updates other parsing state for the current module. |
89 | // On success, returns SPV_SUCCESS and issues the parsed-instruction callback. |
90 | // On failure, returns an error code and issues a diagnostic. |
91 | spv_result_t parseInstruction(); |
92 | |
93 | // Parses an instruction operand with the given type, for an instruction |
94 | // starting at inst_offset words into the SPIR-V binary. |
95 | // If the SPIR-V binary is the same endianness as the host, then the |
96 | // endian_converted_inst_words parameter is ignored. Otherwise, this method |
97 | // appends the words for this operand, converted to host native endianness, |
98 | // to the end of endian_converted_inst_words. This method also updates the |
99 | // expected_operands parameter, and the scalar members of the inst parameter. |
100 | // On success, returns SPV_SUCCESS, advances past the operand, and pushes a |
101 | // new entry on to the operands vector. Otherwise returns an error code and |
102 | // issues a diagnostic. |
103 | spv_result_t parseOperand(size_t inst_offset, spv_parsed_instruction_t* inst, |
104 | const spv_operand_type_t type, |
105 | std::vector<uint32_t>* endian_converted_inst_words, |
106 | std::vector<spv_parsed_operand_t>* operands, |
107 | spv_operand_pattern_t* expected_operands); |
108 | |
109 | // Records the numeric type for an operand according to the type information |
110 | // associated with the given non-zero type Id. This can fail if the type Id |
111 | // is not a type Id, or if the type Id does not reference a scalar numeric |
112 | // type. On success, return SPV_SUCCESS and populates the num_words, |
113 | // number_kind, and number_bit_width fields of parsed_operand. |
114 | spv_result_t setNumericTypeInfoForType(spv_parsed_operand_t* parsed_operand, |
115 | uint32_t type_id); |
116 | |
117 | // Records the number type for an instruction at the given offset, if that |
118 | // instruction generates a type. For types that aren't scalar numbers, |
119 | // record something with number kind SPV_NUMBER_NONE. |
120 | void recordNumberType(size_t inst_offset, |
121 | const spv_parsed_instruction_t* inst); |
122 | |
123 | // Returns a diagnostic stream object initialized with current position in |
124 | // the input stream, and for the given error code. Any data written to the |
125 | // returned object will be propagated to the current parse's diagnostic |
126 | // object. |
127 | spvtools::DiagnosticStream diagnostic(spv_result_t error) { |
128 | return spvtools::DiagnosticStream({0, 0, _.instruction_count}, consumer_, |
129 | "" , error); |
130 | } |
131 | |
132 | // Returns a diagnostic stream object with the default parse error code. |
133 | spvtools::DiagnosticStream diagnostic() { |
134 | // The default failure for parsing is invalid binary. |
135 | return diagnostic(SPV_ERROR_INVALID_BINARY); |
136 | } |
137 | |
138 | // Issues a diagnostic describing an exhaustion of input condition when |
139 | // trying to decode an instruction operand, and returns |
140 | // SPV_ERROR_INVALID_BINARY. |
141 | spv_result_t exhaustedInputDiagnostic(size_t inst_offset, SpvOp opcode, |
142 | spv_operand_type_t type) { |
143 | return diagnostic() << "End of input reached while decoding Op" |
144 | << spvOpcodeString(opcode) << " starting at word " |
145 | << inst_offset |
146 | << ((_.word_index < _.num_words) ? ": truncated " |
147 | : ": missing " ) |
148 | << spvOperandTypeStr(type) << " operand at word offset " |
149 | << _.word_index - inst_offset << "." ; |
150 | } |
151 | |
152 | // Returns the endian-corrected word at the current position. |
153 | uint32_t peek() const { return peekAt(_.word_index); } |
154 | |
155 | // Returns the endian-corrected word at the given position. |
156 | uint32_t peekAt(size_t index) const { |
157 | assert(index < _.num_words); |
158 | return spvFixWord(_.words[index], _.endian); |
159 | } |
160 | |
161 | // Data members |
162 | |
163 | const spvtools::AssemblyGrammar grammar_; // SPIR-V syntax utility. |
164 | const spvtools::MessageConsumer& consumer_; // Message consumer callback. |
165 | void* const user_data_; // Context for the callbacks |
166 | const spv_parsed_header_fn_t ; // Parsed header callback |
167 | const spv_parsed_instruction_fn_t |
168 | parsed_instruction_fn_; // Parsed instruction callback |
169 | |
170 | // Describes the format of a typed literal number. |
171 | struct NumberType { |
172 | spv_number_kind_t type; |
173 | uint32_t bit_width; |
174 | }; |
175 | |
176 | // The state used to parse a single SPIR-V binary module. |
177 | struct State { |
178 | State(const uint32_t* words_arg, size_t num_words_arg, |
179 | spv_diagnostic* diagnostic_arg) |
180 | : words(words_arg), |
181 | num_words(num_words_arg), |
182 | diagnostic(diagnostic_arg), |
183 | word_index(0), |
184 | instruction_count(0), |
185 | endian(), |
186 | requires_endian_conversion(false) { |
187 | // Temporary storage for parser state within a single instruction. |
188 | // Most instructions require fewer than 25 words or operands. |
189 | operands.reserve(25); |
190 | endian_converted_words.reserve(25); |
191 | expected_operands.reserve(25); |
192 | } |
193 | State() : State(0, 0, nullptr) {} |
194 | const uint32_t* words; // Words in the binary SPIR-V module. |
195 | size_t num_words; // Number of words in the module. |
196 | spv_diagnostic* diagnostic; // Where diagnostics go. |
197 | size_t word_index; // The current position in words. |
198 | size_t instruction_count; // The count of processed instructions |
199 | spv_endianness_t endian; // The endianness of the binary. |
200 | // Is the SPIR-V binary in a different endiannes from the host native |
201 | // endianness? |
202 | bool requires_endian_conversion; |
203 | |
204 | // Maps a result ID to its type ID. By convention: |
205 | // - a result ID that is a type definition maps to itself. |
206 | // - a result ID without a type maps to 0. (E.g. for OpLabel) |
207 | std::unordered_map<uint32_t, uint32_t> id_to_type_id; |
208 | // Maps a type ID to its number type description. |
209 | std::unordered_map<uint32_t, NumberType> type_id_to_number_type_info; |
210 | // Maps an ExtInstImport id to the extended instruction type. |
211 | std::unordered_map<uint32_t, spv_ext_inst_type_t> |
212 | import_id_to_ext_inst_type; |
213 | |
214 | // Used by parseOperand |
215 | std::vector<spv_parsed_operand_t> operands; |
216 | std::vector<uint32_t> endian_converted_words; |
217 | spv_operand_pattern_t expected_operands; |
218 | } _; |
219 | }; |
220 | |
221 | spv_result_t Parser::parse(const uint32_t* words, size_t num_words, |
222 | spv_diagnostic* diagnostic_arg) { |
223 | _ = State(words, num_words, diagnostic_arg); |
224 | |
225 | const spv_result_t result = parseModule(); |
226 | |
227 | // Clear the module state. The tables might be big. |
228 | _ = State(); |
229 | |
230 | return result; |
231 | } |
232 | |
233 | spv_result_t Parser::parseModule() { |
234 | if (!_.words) return diagnostic() << "Missing module." ; |
235 | |
236 | if (_.num_words < SPV_INDEX_INSTRUCTION) |
237 | return diagnostic() << "Module has incomplete header: only " << _.num_words |
238 | << " words instead of " << SPV_INDEX_INSTRUCTION; |
239 | |
240 | // Check the magic number and detect the module's endianness. |
241 | spv_const_binary_t binary{_.words, _.num_words}; |
242 | if (spvBinaryEndianness(&binary, &_.endian)) { |
243 | return diagnostic() << "Invalid SPIR-V magic number '" << std::hex |
244 | << _.words[0] << "'." ; |
245 | } |
246 | _.requires_endian_conversion = !spvIsHostEndian(_.endian); |
247 | |
248 | // Process the header. |
249 | spv_header_t ; |
250 | if (spvBinaryHeaderGet(&binary, _.endian, &header)) { |
251 | // It turns out there is no way to trigger this error since the only |
252 | // failure cases are already handled above, with better messages. |
253 | return diagnostic(SPV_ERROR_INTERNAL) |
254 | << "Internal error: unhandled header parse failure" ; |
255 | } |
256 | if (parsed_header_fn_) { |
257 | if (auto error = parsed_header_fn_(user_data_, _.endian, header.magic, |
258 | header.version, header.generator, |
259 | header.bound, header.schema)) { |
260 | return error; |
261 | } |
262 | } |
263 | |
264 | // Process the instructions. |
265 | _.word_index = SPV_INDEX_INSTRUCTION; |
266 | while (_.word_index < _.num_words) |
267 | if (auto error = parseInstruction()) return error; |
268 | |
269 | // Running off the end should already have been reported earlier. |
270 | assert(_.word_index == _.num_words); |
271 | |
272 | return SPV_SUCCESS; |
273 | } |
274 | |
275 | spv_result_t Parser::parseInstruction() { |
276 | _.instruction_count++; |
277 | |
278 | // The zero values for all members except for opcode are the |
279 | // correct initial values. |
280 | spv_parsed_instruction_t inst = {}; |
281 | |
282 | const uint32_t first_word = peek(); |
283 | |
284 | // If the module's endianness is different from the host native endianness, |
285 | // then converted_words contains the the endian-translated words in the |
286 | // instruction. |
287 | _.endian_converted_words.clear(); |
288 | _.endian_converted_words.push_back(first_word); |
289 | |
290 | // After a successful parse of the instruction, the inst.operands member |
291 | // will point to this vector's storage. |
292 | _.operands.clear(); |
293 | |
294 | assert(_.word_index < _.num_words); |
295 | // Decompose and check the first word. |
296 | uint16_t inst_word_count = 0; |
297 | spvOpcodeSplit(first_word, &inst_word_count, &inst.opcode); |
298 | if (inst_word_count < 1) { |
299 | return diagnostic() << "Invalid instruction word count: " |
300 | << inst_word_count; |
301 | } |
302 | spv_opcode_desc opcode_desc; |
303 | if (grammar_.lookupOpcode(static_cast<SpvOp>(inst.opcode), &opcode_desc)) |
304 | return diagnostic() << "Invalid opcode: " << inst.opcode; |
305 | |
306 | // Advance past the opcode word. But remember the of the start |
307 | // of the instruction. |
308 | const size_t inst_offset = _.word_index; |
309 | _.word_index++; |
310 | |
311 | // Maintains the ordered list of expected operand types. |
312 | // For many instructions we only need the {numTypes, operandTypes} |
313 | // entries in opcode_desc. However, sometimes we need to modify |
314 | // the list as we parse the operands. This occurs when an operand |
315 | // has its own logical operands (such as the LocalSize operand for |
316 | // ExecutionMode), or for extended instructions that may have their |
317 | // own operands depending on the selected extended instruction. |
318 | _.expected_operands.clear(); |
319 | for (auto i = 0; i < opcode_desc->numTypes; i++) |
320 | _.expected_operands.push_back( |
321 | opcode_desc->operandTypes[opcode_desc->numTypes - i - 1]); |
322 | |
323 | while (_.word_index < inst_offset + inst_word_count) { |
324 | const uint16_t inst_word_index = uint16_t(_.word_index - inst_offset); |
325 | if (_.expected_operands.empty()) { |
326 | return diagnostic() << "Invalid instruction Op" << opcode_desc->name |
327 | << " starting at word " << inst_offset |
328 | << ": expected no more operands after " |
329 | << inst_word_index |
330 | << " words, but stated word count is " |
331 | << inst_word_count << "." ; |
332 | } |
333 | |
334 | spv_operand_type_t type = |
335 | spvTakeFirstMatchableOperand(&_.expected_operands); |
336 | |
337 | if (auto error = |
338 | parseOperand(inst_offset, &inst, type, &_.endian_converted_words, |
339 | &_.operands, &_.expected_operands)) { |
340 | return error; |
341 | } |
342 | } |
343 | |
344 | if (!_.expected_operands.empty() && |
345 | !spvOperandIsOptional(_.expected_operands.back())) { |
346 | return diagnostic() << "End of input reached while decoding Op" |
347 | << opcode_desc->name << " starting at word " |
348 | << inst_offset << ": expected more operands after " |
349 | << inst_word_count << " words." ; |
350 | } |
351 | |
352 | if ((inst_offset + inst_word_count) != _.word_index) { |
353 | return diagnostic() << "Invalid word count: Op" << opcode_desc->name |
354 | << " starting at word " << inst_offset |
355 | << " says it has " << inst_word_count |
356 | << " words, but found " << _.word_index - inst_offset |
357 | << " words instead." ; |
358 | } |
359 | |
360 | // Check the computed length of the endian-converted words vector against |
361 | // the declared number of words in the instruction. If endian conversion |
362 | // is required, then they should match. If no endian conversion was |
363 | // performed, then the vector only contains the initial opcode/word-count |
364 | // word. |
365 | assert(!_.requires_endian_conversion || |
366 | (inst_word_count == _.endian_converted_words.size())); |
367 | assert(_.requires_endian_conversion || |
368 | (_.endian_converted_words.size() == 1)); |
369 | |
370 | recordNumberType(inst_offset, &inst); |
371 | |
372 | if (_.requires_endian_conversion) { |
373 | // We must wait until here to set this pointer, because the vector might |
374 | // have been be resized while we accumulated its elements. |
375 | inst.words = _.endian_converted_words.data(); |
376 | } else { |
377 | // If no conversion is required, then just point to the underlying binary. |
378 | // This saves time and space. |
379 | inst.words = _.words + inst_offset; |
380 | } |
381 | inst.num_words = inst_word_count; |
382 | |
383 | // We must wait until here to set this pointer, because the vector might |
384 | // have been be resized while we accumulated its elements. |
385 | inst.operands = _.operands.data(); |
386 | inst.num_operands = uint16_t(_.operands.size()); |
387 | |
388 | // Issue the callback. The callee should know that all the storage in inst |
389 | // is transient, and will disappear immediately afterward. |
390 | if (parsed_instruction_fn_) { |
391 | if (auto error = parsed_instruction_fn_(user_data_, &inst)) return error; |
392 | } |
393 | |
394 | return SPV_SUCCESS; |
395 | } |
396 | |
397 | spv_result_t Parser::parseOperand(size_t inst_offset, |
398 | spv_parsed_instruction_t* inst, |
399 | const spv_operand_type_t type, |
400 | std::vector<uint32_t>* words, |
401 | std::vector<spv_parsed_operand_t>* operands, |
402 | spv_operand_pattern_t* expected_operands) { |
403 | const SpvOp opcode = static_cast<SpvOp>(inst->opcode); |
404 | // We'll fill in this result as we go along. |
405 | spv_parsed_operand_t parsed_operand; |
406 | parsed_operand.offset = uint16_t(_.word_index - inst_offset); |
407 | // Most operands occupy one word. This might be be adjusted later. |
408 | parsed_operand.num_words = 1; |
409 | // The type argument is the one used by the grammar to parse the instruction. |
410 | // But it can exposes internal parser details such as whether an operand is |
411 | // optional or actually represents a variable-length sequence of operands. |
412 | // The resulting type should be adjusted to avoid those internal details. |
413 | // In most cases, the resulting operand type is the same as the grammar type. |
414 | parsed_operand.type = type; |
415 | |
416 | // Assume non-numeric values. This will be updated for literal numbers. |
417 | parsed_operand.number_kind = SPV_NUMBER_NONE; |
418 | parsed_operand.number_bit_width = 0; |
419 | |
420 | if (_.word_index >= _.num_words) |
421 | return exhaustedInputDiagnostic(inst_offset, opcode, type); |
422 | |
423 | const uint32_t word = peek(); |
424 | |
425 | // Do the words in this operand have to be converted to native endianness? |
426 | // True for all but literal strings. |
427 | bool convert_operand_endianness = true; |
428 | |
429 | switch (type) { |
430 | case SPV_OPERAND_TYPE_TYPE_ID: |
431 | if (!word) |
432 | return diagnostic(SPV_ERROR_INVALID_ID) << "Error: Type Id is 0" ; |
433 | inst->type_id = word; |
434 | break; |
435 | |
436 | case SPV_OPERAND_TYPE_RESULT_ID: |
437 | if (!word) |
438 | return diagnostic(SPV_ERROR_INVALID_ID) << "Error: Result Id is 0" ; |
439 | inst->result_id = word; |
440 | // Save the result ID to type ID mapping. |
441 | // In the grammar, type ID always appears before result ID. |
442 | if (_.id_to_type_id.find(inst->result_id) != _.id_to_type_id.end()) |
443 | return diagnostic(SPV_ERROR_INVALID_ID) |
444 | << "Id " << inst->result_id << " is defined more than once" ; |
445 | // Record it. |
446 | // A regular value maps to its type. Some instructions (e.g. OpLabel) |
447 | // have no type Id, and will map to 0. The result Id for a |
448 | // type-generating instruction (e.g. OpTypeInt) maps to itself. |
449 | _.id_to_type_id[inst->result_id] = |
450 | spvOpcodeGeneratesType(opcode) ? inst->result_id : inst->type_id; |
451 | break; |
452 | |
453 | case SPV_OPERAND_TYPE_ID: |
454 | case SPV_OPERAND_TYPE_OPTIONAL_ID: |
455 | if (!word) return diagnostic(SPV_ERROR_INVALID_ID) << "Id is 0" ; |
456 | parsed_operand.type = SPV_OPERAND_TYPE_ID; |
457 | |
458 | if (opcode == SpvOpExtInst && parsed_operand.offset == 3) { |
459 | // The current word is the extended instruction set Id. |
460 | // Set the extended instruction set type for the current instruction. |
461 | auto ext_inst_type_iter = _.import_id_to_ext_inst_type.find(word); |
462 | if (ext_inst_type_iter == _.import_id_to_ext_inst_type.end()) { |
463 | return diagnostic(SPV_ERROR_INVALID_ID) |
464 | << "OpExtInst set Id " << word |
465 | << " does not reference an OpExtInstImport result Id" ; |
466 | } |
467 | inst->ext_inst_type = ext_inst_type_iter->second; |
468 | } |
469 | break; |
470 | |
471 | case SPV_OPERAND_TYPE_SCOPE_ID: |
472 | case SPV_OPERAND_TYPE_MEMORY_SEMANTICS_ID: |
473 | // Check for trivially invalid values. The operand descriptions already |
474 | // have the word "ID" in them. |
475 | if (!word) return diagnostic() << spvOperandTypeStr(type) << " is 0" ; |
476 | break; |
477 | |
478 | case SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER: { |
479 | assert(SpvOpExtInst == opcode); |
480 | assert(inst->ext_inst_type != SPV_EXT_INST_TYPE_NONE); |
481 | spv_ext_inst_desc ext_inst; |
482 | if (grammar_.lookupExtInst(inst->ext_inst_type, word, &ext_inst) == |
483 | SPV_SUCCESS) { |
484 | // if we know about this ext inst, push the expected operands |
485 | spvPushOperandTypes(ext_inst->operandTypes, expected_operands); |
486 | } else { |
487 | // if we don't know this extended instruction and the set isn't |
488 | // non-semantic, we cannot process further |
489 | if (!spvExtInstIsNonSemantic(inst->ext_inst_type)) { |
490 | return diagnostic() |
491 | << "Invalid extended instruction number: " << word; |
492 | } else { |
493 | // for non-semantic instruction sets, we know the form of all such |
494 | // extended instructions contains a series of IDs as parameters |
495 | expected_operands->push_back(SPV_OPERAND_TYPE_VARIABLE_ID); |
496 | } |
497 | } |
498 | } break; |
499 | |
500 | case SPV_OPERAND_TYPE_SPEC_CONSTANT_OP_NUMBER: { |
501 | assert(SpvOpSpecConstantOp == opcode); |
502 | if (grammar_.lookupSpecConstantOpcode(SpvOp(word))) { |
503 | return diagnostic() |
504 | << "Invalid " << spvOperandTypeStr(type) << ": " << word; |
505 | } |
506 | spv_opcode_desc opcode_entry = nullptr; |
507 | if (grammar_.lookupOpcode(SpvOp(word), &opcode_entry)) { |
508 | return diagnostic(SPV_ERROR_INTERNAL) |
509 | << "OpSpecConstant opcode table out of sync" ; |
510 | } |
511 | // OpSpecConstant opcodes must have a type and result. We've already |
512 | // processed them, so skip them when preparing to parse the other |
513 | // operants for the opcode. |
514 | assert(opcode_entry->hasType); |
515 | assert(opcode_entry->hasResult); |
516 | assert(opcode_entry->numTypes >= 2); |
517 | spvPushOperandTypes(opcode_entry->operandTypes + 2, expected_operands); |
518 | } break; |
519 | |
520 | case SPV_OPERAND_TYPE_LITERAL_INTEGER: |
521 | case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_INTEGER: |
522 | // These are regular single-word literal integer operands. |
523 | // Post-parsing validation should check the range of the parsed value. |
524 | parsed_operand.type = SPV_OPERAND_TYPE_LITERAL_INTEGER; |
525 | // It turns out they are always unsigned integers! |
526 | parsed_operand.number_kind = SPV_NUMBER_UNSIGNED_INT; |
527 | parsed_operand.number_bit_width = 32; |
528 | break; |
529 | |
530 | case SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER: |
531 | case SPV_OPERAND_TYPE_OPTIONAL_TYPED_LITERAL_INTEGER: |
532 | parsed_operand.type = SPV_OPERAND_TYPE_TYPED_LITERAL_NUMBER; |
533 | if (opcode == SpvOpSwitch) { |
534 | // The literal operands have the same type as the value |
535 | // referenced by the selector Id. |
536 | const uint32_t selector_id = peekAt(inst_offset + 1); |
537 | const auto type_id_iter = _.id_to_type_id.find(selector_id); |
538 | if (type_id_iter == _.id_to_type_id.end() || |
539 | type_id_iter->second == 0) { |
540 | return diagnostic() << "Invalid OpSwitch: selector id " << selector_id |
541 | << " has no type" ; |
542 | } |
543 | uint32_t type_id = type_id_iter->second; |
544 | |
545 | if (selector_id == type_id) { |
546 | // Recall that by convention, a result ID that is a type definition |
547 | // maps to itself. |
548 | return diagnostic() << "Invalid OpSwitch: selector id " << selector_id |
549 | << " is a type, not a value" ; |
550 | } |
551 | if (auto error = setNumericTypeInfoForType(&parsed_operand, type_id)) |
552 | return error; |
553 | if (parsed_operand.number_kind != SPV_NUMBER_UNSIGNED_INT && |
554 | parsed_operand.number_kind != SPV_NUMBER_SIGNED_INT) { |
555 | return diagnostic() << "Invalid OpSwitch: selector id " << selector_id |
556 | << " is not a scalar integer" ; |
557 | } |
558 | } else { |
559 | assert(opcode == SpvOpConstant || opcode == SpvOpSpecConstant); |
560 | // The literal number type is determined by the type Id for the |
561 | // constant. |
562 | assert(inst->type_id); |
563 | if (auto error = |
564 | setNumericTypeInfoForType(&parsed_operand, inst->type_id)) |
565 | return error; |
566 | } |
567 | break; |
568 | |
569 | case SPV_OPERAND_TYPE_LITERAL_STRING: |
570 | case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING: { |
571 | convert_operand_endianness = false; |
572 | const char* string = |
573 | reinterpret_cast<const char*>(_.words + _.word_index); |
574 | // Compute the length of the string, but make sure we don't run off the |
575 | // end of the input. |
576 | const size_t remaining_input_bytes = |
577 | sizeof(uint32_t) * (_.num_words - _.word_index); |
578 | const size_t string_num_content_bytes = |
579 | spv_strnlen_s(string, remaining_input_bytes); |
580 | // If there was no terminating null byte, then that's an end-of-input |
581 | // error. |
582 | if (string_num_content_bytes == remaining_input_bytes) |
583 | return exhaustedInputDiagnostic(inst_offset, opcode, type); |
584 | // Account for null in the word length, so add 1 for null, then add 3 to |
585 | // make sure we round up. The following is equivalent to: |
586 | // (string_num_content_bytes + 1 + 3) / 4 |
587 | const size_t string_num_words = string_num_content_bytes / 4 + 1; |
588 | // Make sure we can record the word count without overflow. |
589 | // |
590 | // This error can't currently be triggered because of validity |
591 | // checks elsewhere. |
592 | if (string_num_words > std::numeric_limits<uint16_t>::max()) { |
593 | return diagnostic() << "Literal string is longer than " |
594 | << std::numeric_limits<uint16_t>::max() |
595 | << " words: " << string_num_words << " words long" ; |
596 | } |
597 | parsed_operand.num_words = uint16_t(string_num_words); |
598 | parsed_operand.type = SPV_OPERAND_TYPE_LITERAL_STRING; |
599 | |
600 | if (SpvOpExtInstImport == opcode) { |
601 | // Record the extended instruction type for the ID for this import. |
602 | // There is only one string literal argument to OpExtInstImport, |
603 | // so it's sufficient to guard this just on the opcode. |
604 | const spv_ext_inst_type_t ext_inst_type = |
605 | spvExtInstImportTypeGet(string); |
606 | if (SPV_EXT_INST_TYPE_NONE == ext_inst_type) { |
607 | return diagnostic() |
608 | << "Invalid extended instruction import '" << string << "'" ; |
609 | } |
610 | // We must have parsed a valid result ID. It's a condition |
611 | // of the grammar, and we only accept non-zero result Ids. |
612 | assert(inst->result_id); |
613 | _.import_id_to_ext_inst_type[inst->result_id] = ext_inst_type; |
614 | } |
615 | } break; |
616 | |
617 | case SPV_OPERAND_TYPE_CAPABILITY: |
618 | case SPV_OPERAND_TYPE_SOURCE_LANGUAGE: |
619 | case SPV_OPERAND_TYPE_EXECUTION_MODEL: |
620 | case SPV_OPERAND_TYPE_ADDRESSING_MODEL: |
621 | case SPV_OPERAND_TYPE_MEMORY_MODEL: |
622 | case SPV_OPERAND_TYPE_EXECUTION_MODE: |
623 | case SPV_OPERAND_TYPE_STORAGE_CLASS: |
624 | case SPV_OPERAND_TYPE_DIMENSIONALITY: |
625 | case SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE: |
626 | case SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE: |
627 | case SPV_OPERAND_TYPE_SAMPLER_IMAGE_FORMAT: |
628 | case SPV_OPERAND_TYPE_FP_ROUNDING_MODE: |
629 | case SPV_OPERAND_TYPE_LINKAGE_TYPE: |
630 | case SPV_OPERAND_TYPE_ACCESS_QUALIFIER: |
631 | case SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER: |
632 | case SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE: |
633 | case SPV_OPERAND_TYPE_DECORATION: |
634 | case SPV_OPERAND_TYPE_BUILT_IN: |
635 | case SPV_OPERAND_TYPE_GROUP_OPERATION: |
636 | case SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS: |
637 | case SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO: |
638 | case SPV_OPERAND_TYPE_RAY_FLAGS: |
639 | case SPV_OPERAND_TYPE_RAY_QUERY_INTERSECTION: |
640 | case SPV_OPERAND_TYPE_RAY_QUERY_COMMITTED_INTERSECTION_TYPE: |
641 | case SPV_OPERAND_TYPE_RAY_QUERY_CANDIDATE_INTERSECTION_TYPE: |
642 | case SPV_OPERAND_TYPE_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING: |
643 | case SPV_OPERAND_TYPE_DEBUG_COMPOSITE_TYPE: |
644 | case SPV_OPERAND_TYPE_DEBUG_TYPE_QUALIFIER: |
645 | case SPV_OPERAND_TYPE_DEBUG_OPERATION: |
646 | case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_BASE_TYPE_ATTRIBUTE_ENCODING: |
647 | case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_COMPOSITE_TYPE: |
648 | case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_TYPE_QUALIFIER: |
649 | case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_OPERATION: |
650 | case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_IMPORTED_ENTITY: { |
651 | // A single word that is a plain enum value. |
652 | |
653 | // Map an optional operand type to its corresponding concrete type. |
654 | if (type == SPV_OPERAND_TYPE_OPTIONAL_ACCESS_QUALIFIER) |
655 | parsed_operand.type = SPV_OPERAND_TYPE_ACCESS_QUALIFIER; |
656 | |
657 | spv_operand_desc entry; |
658 | if (grammar_.lookupOperand(type, word, &entry)) { |
659 | return diagnostic() |
660 | << "Invalid " << spvOperandTypeStr(parsed_operand.type) |
661 | << " operand: " << word; |
662 | } |
663 | // Prepare to accept operands to this operand, if needed. |
664 | spvPushOperandTypes(entry->operandTypes, expected_operands); |
665 | } break; |
666 | |
667 | case SPV_OPERAND_TYPE_FP_FAST_MATH_MODE: |
668 | case SPV_OPERAND_TYPE_FUNCTION_CONTROL: |
669 | case SPV_OPERAND_TYPE_LOOP_CONTROL: |
670 | case SPV_OPERAND_TYPE_IMAGE: |
671 | case SPV_OPERAND_TYPE_OPTIONAL_IMAGE: |
672 | case SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS: |
673 | case SPV_OPERAND_TYPE_SELECTION_CONTROL: |
674 | case SPV_OPERAND_TYPE_CLDEBUG100_DEBUG_INFO_FLAGS: |
675 | case SPV_OPERAND_TYPE_DEBUG_INFO_FLAGS: { |
676 | // This operand is a mask. |
677 | |
678 | // Map an optional operand type to its corresponding concrete type. |
679 | if (type == SPV_OPERAND_TYPE_OPTIONAL_IMAGE) |
680 | parsed_operand.type = SPV_OPERAND_TYPE_IMAGE; |
681 | else if (type == SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS) |
682 | parsed_operand.type = SPV_OPERAND_TYPE_MEMORY_ACCESS; |
683 | |
684 | // Check validity of set mask bits. Also prepare for operands for those |
685 | // masks if they have any. To get operand order correct, scan from |
686 | // MSB to LSB since we can only prepend operands to a pattern. |
687 | // The only case in the grammar where you have more than one mask bit |
688 | // having an operand is for image operands. See SPIR-V 3.14 Image |
689 | // Operands. |
690 | uint32_t remaining_word = word; |
691 | for (uint32_t mask = (1u << 31); remaining_word; mask >>= 1) { |
692 | if (remaining_word & mask) { |
693 | spv_operand_desc entry; |
694 | if (grammar_.lookupOperand(type, mask, &entry)) { |
695 | return diagnostic() |
696 | << "Invalid " << spvOperandTypeStr(parsed_operand.type) |
697 | << " operand: " << word << " has invalid mask component " |
698 | << mask; |
699 | } |
700 | remaining_word ^= mask; |
701 | spvPushOperandTypes(entry->operandTypes, expected_operands); |
702 | } |
703 | } |
704 | if (word == 0) { |
705 | // An all-zeroes mask *might* also be valid. |
706 | spv_operand_desc entry; |
707 | if (SPV_SUCCESS == grammar_.lookupOperand(type, 0, &entry)) { |
708 | // Prepare for its operands, if any. |
709 | spvPushOperandTypes(entry->operandTypes, expected_operands); |
710 | } |
711 | } |
712 | } break; |
713 | default: |
714 | return diagnostic() << "Internal error: Unhandled operand type: " << type; |
715 | } |
716 | |
717 | assert(spvOperandIsConcrete(parsed_operand.type)); |
718 | |
719 | operands->push_back(parsed_operand); |
720 | |
721 | const size_t index_after_operand = _.word_index + parsed_operand.num_words; |
722 | |
723 | // Avoid buffer overrun for the cases where the operand has more than one |
724 | // word, and where it isn't a string. (Those other cases have already been |
725 | // handled earlier.) For example, this error can occur for a multi-word |
726 | // argument to OpConstant, or a multi-word case literal operand for OpSwitch. |
727 | if (_.num_words < index_after_operand) |
728 | return exhaustedInputDiagnostic(inst_offset, opcode, type); |
729 | |
730 | if (_.requires_endian_conversion) { |
731 | // Copy instruction words. Translate to native endianness as needed. |
732 | if (convert_operand_endianness) { |
733 | const spv_endianness_t endianness = _.endian; |
734 | std::transform(_.words + _.word_index, _.words + index_after_operand, |
735 | std::back_inserter(*words), |
736 | [endianness](const uint32_t raw_word) { |
737 | return spvFixWord(raw_word, endianness); |
738 | }); |
739 | } else { |
740 | words->insert(words->end(), _.words + _.word_index, |
741 | _.words + index_after_operand); |
742 | } |
743 | } |
744 | |
745 | // Advance past the operand. |
746 | _.word_index = index_after_operand; |
747 | |
748 | return SPV_SUCCESS; |
749 | } |
750 | |
751 | spv_result_t Parser::setNumericTypeInfoForType( |
752 | spv_parsed_operand_t* parsed_operand, uint32_t type_id) { |
753 | assert(type_id != 0); |
754 | auto type_info_iter = _.type_id_to_number_type_info.find(type_id); |
755 | if (type_info_iter == _.type_id_to_number_type_info.end()) { |
756 | return diagnostic() << "Type Id " << type_id << " is not a type" ; |
757 | } |
758 | const NumberType& info = type_info_iter->second; |
759 | if (info.type == SPV_NUMBER_NONE) { |
760 | // This is a valid type, but for something other than a scalar number. |
761 | return diagnostic() << "Type Id " << type_id |
762 | << " is not a scalar numeric type" ; |
763 | } |
764 | |
765 | parsed_operand->number_kind = info.type; |
766 | parsed_operand->number_bit_width = info.bit_width; |
767 | // Round up the word count. |
768 | parsed_operand->num_words = static_cast<uint16_t>((info.bit_width + 31) / 32); |
769 | return SPV_SUCCESS; |
770 | } |
771 | |
772 | void Parser::recordNumberType(size_t inst_offset, |
773 | const spv_parsed_instruction_t* inst) { |
774 | const SpvOp opcode = static_cast<SpvOp>(inst->opcode); |
775 | if (spvOpcodeGeneratesType(opcode)) { |
776 | NumberType info = {SPV_NUMBER_NONE, 0}; |
777 | if (SpvOpTypeInt == opcode) { |
778 | const bool is_signed = peekAt(inst_offset + 3) != 0; |
779 | info.type = is_signed ? SPV_NUMBER_SIGNED_INT : SPV_NUMBER_UNSIGNED_INT; |
780 | info.bit_width = peekAt(inst_offset + 2); |
781 | } else if (SpvOpTypeFloat == opcode) { |
782 | info.type = SPV_NUMBER_FLOATING; |
783 | info.bit_width = peekAt(inst_offset + 2); |
784 | } |
785 | // The *result* Id of a type generating instruction is the type Id. |
786 | _.type_id_to_number_type_info[inst->result_id] = info; |
787 | } |
788 | } |
789 | |
790 | } // anonymous namespace |
791 | |
792 | spv_result_t spvBinaryParse(const spv_const_context context, void* user_data, |
793 | const uint32_t* code, const size_t num_words, |
794 | spv_parsed_header_fn_t , |
795 | spv_parsed_instruction_fn_t parsed_instruction, |
796 | spv_diagnostic* diagnostic) { |
797 | spv_context_t hijack_context = *context; |
798 | if (diagnostic) { |
799 | *diagnostic = nullptr; |
800 | spvtools::UseDiagnosticAsMessageConsumer(&hijack_context, diagnostic); |
801 | } |
802 | Parser parser(&hijack_context, user_data, parsed_header, parsed_instruction); |
803 | return parser.parse(code, num_words, diagnostic); |
804 | } |
805 | |
806 | // TODO(dneto): This probably belongs in text.cpp since that's the only place |
807 | // that a spv_binary_t value is created. |
808 | void spvBinaryDestroy(spv_binary binary) { |
809 | if (binary) { |
810 | if (binary->code) delete[] binary->code; |
811 | delete binary; |
812 | } |
813 | } |
814 | |
815 | size_t spv_strnlen_s(const char* str, size_t strsz) { |
816 | if (!str) return 0; |
817 | for (size_t i = 0; i < strsz; i++) { |
818 | if (!str[i]) return i; |
819 | } |
820 | return strsz; |
821 | } |
822 | |