1 | // Copyright (c) 2017 Google Inc. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | |
15 | #include <iostream> |
16 | #include <memory> |
17 | #include <set> |
18 | |
19 | #include "source/cfa.h" |
20 | #include "source/opt/dominator_tree.h" |
21 | #include "source/opt/ir_context.h" |
22 | |
23 | // Calculates the dominator or postdominator tree for a given function. |
24 | // 1 - Compute the successors and predecessors for each BasicBlock. We add a |
25 | // dummy node for the start node or for postdominators the exit. This node will |
26 | // point to all entry or all exit nodes. |
27 | // 2 - Using the CFA::DepthFirstTraversal get a depth first postordered list of |
28 | // all BasicBlocks. Using the successors (or for postdominator, predecessors) |
29 | // calculated in step 1 to traverse the tree. |
30 | // 3 - Pass the list calculated in step 2 to the CFA::CalculateDominators using |
31 | // the predecessors list (or for postdominator, successors). This will give us a |
32 | // vector of BB pairs. Each BB and its immediate dominator. |
33 | // 4 - Using the list from 3 use those edges to build a tree of |
34 | // DominatorTreeNodes. Each node containing a link to the parent dominator and |
35 | // children which are dominated. |
36 | // 5 - Using the tree from 4, perform a depth first traversal to calculate the |
37 | // preorder and postorder index of each node. We use these indexes to compare |
38 | // nodes against each other for domination checks. |
39 | |
40 | namespace spvtools { |
41 | namespace opt { |
42 | namespace { |
43 | |
44 | // Wrapper around CFA::DepthFirstTraversal to provide an interface to perform |
45 | // depth first search on generic BasicBlock types. Will call post and pre order |
46 | // user defined functions during traversal |
47 | // |
48 | // BBType - BasicBlock type. Will either be BasicBlock or DominatorTreeNode |
49 | // SuccessorLambda - Lamdba matching the signature of 'const |
50 | // std::vector<BBType>*(const BBType *A)'. Will return a vector of the nodes |
51 | // succeding BasicBlock A. |
52 | // PostLambda - Lamdba matching the signature of 'void (const BBType*)' will be |
53 | // called on each node traversed AFTER their children. |
54 | // PreLambda - Lamdba matching the signature of 'void (const BBType*)' will be |
55 | // called on each node traversed BEFORE their children. |
56 | template <typename BBType, typename SuccessorLambda, typename PreLambda, |
57 | typename PostLambda> |
58 | static void DepthFirstSearch(const BBType* bb, SuccessorLambda successors, |
59 | PreLambda pre, PostLambda post) { |
60 | // Ignore backedge operation. |
61 | auto nop_backedge = [](const BBType*, const BBType*) {}; |
62 | CFA<BBType>::DepthFirstTraversal(bb, successors, pre, post, nop_backedge); |
63 | } |
64 | |
65 | // Wrapper around CFA::DepthFirstTraversal to provide an interface to perform |
66 | // depth first search on generic BasicBlock types. This overload is for only |
67 | // performing user defined post order. |
68 | // |
69 | // BBType - BasicBlock type. Will either be BasicBlock or DominatorTreeNode |
70 | // SuccessorLambda - Lamdba matching the signature of 'const |
71 | // std::vector<BBType>*(const BBType *A)'. Will return a vector of the nodes |
72 | // succeding BasicBlock A. |
73 | // PostLambda - Lamdba matching the signature of 'void (const BBType*)' will be |
74 | // called on each node traversed after their children. |
75 | template <typename BBType, typename SuccessorLambda, typename PostLambda> |
76 | static void DepthFirstSearchPostOrder(const BBType* bb, |
77 | SuccessorLambda successors, |
78 | PostLambda post) { |
79 | // Ignore preorder operation. |
80 | auto nop_preorder = [](const BBType*) {}; |
81 | DepthFirstSearch(bb, successors, nop_preorder, post); |
82 | } |
83 | |
84 | // Small type trait to get the function class type. |
85 | template <typename BBType> |
86 | struct GetFunctionClass { |
87 | using FunctionType = Function; |
88 | }; |
89 | |
90 | // Helper class to compute predecessors and successors for each Basic Block in a |
91 | // function. Through GetPredFunctor and GetSuccessorFunctor it provides an |
92 | // interface to get the successor and predecessor lists for each basic |
93 | // block. This is required by the DepthFirstTraversal and ComputeDominator |
94 | // functions which take as parameter an std::function returning the successors |
95 | // and predecessors respectively. |
96 | // |
97 | // When computing the post-dominator tree, all edges are inverted. So successors |
98 | // returned by this class will be predecessors in the original CFG. |
99 | template <typename BBType> |
100 | class BasicBlockSuccessorHelper { |
101 | // This should eventually become const BasicBlock. |
102 | using BasicBlock = BBType; |
103 | using Function = typename GetFunctionClass<BBType>::FunctionType; |
104 | |
105 | using BasicBlockListTy = std::vector<BasicBlock*>; |
106 | using BasicBlockMapTy = std::map<const BasicBlock*, BasicBlockListTy>; |
107 | |
108 | public: |
109 | // For compliance with the dominance tree computation, entry nodes are |
110 | // connected to a single dummy node. |
111 | BasicBlockSuccessorHelper(Function& func, const BasicBlock* dummy_start_node, |
112 | bool post); |
113 | |
114 | // CFA::CalculateDominators requires std::vector<BasicBlock*>. |
115 | using GetBlocksFunction = |
116 | std::function<const std::vector<BasicBlock*>*(const BasicBlock*)>; |
117 | |
118 | // Returns the list of predecessor functions. |
119 | GetBlocksFunction GetPredFunctor() { |
120 | return [this](const BasicBlock* bb) { |
121 | BasicBlockListTy* v = &this->predecessors_[bb]; |
122 | return v; |
123 | }; |
124 | } |
125 | |
126 | // Returns a vector of the list of successor nodes from a given node. |
127 | GetBlocksFunction GetSuccessorFunctor() { |
128 | return [this](const BasicBlock* bb) { |
129 | BasicBlockListTy* v = &this->successors_[bb]; |
130 | return v; |
131 | }; |
132 | } |
133 | |
134 | private: |
135 | bool invert_graph_; |
136 | BasicBlockMapTy successors_; |
137 | BasicBlockMapTy predecessors_; |
138 | |
139 | // Build the successors and predecessors map for each basic blocks |f|. |
140 | // If |invert_graph_| is true, all edges are reversed (successors becomes |
141 | // predecessors and vice versa). |
142 | // For convenience, the start of the graph is |dummy_start_node|. |
143 | // The dominator tree construction requires a unique entry node, which cannot |
144 | // be guaranteed for the postdominator graph. The |dummy_start_node| BB is |
145 | // here to gather all entry nodes. |
146 | void CreateSuccessorMap(Function& f, const BasicBlock* dummy_start_node); |
147 | }; |
148 | |
149 | template <typename BBType> |
150 | BasicBlockSuccessorHelper<BBType>::BasicBlockSuccessorHelper( |
151 | Function& func, const BasicBlock* dummy_start_node, bool invert) |
152 | : invert_graph_(invert) { |
153 | CreateSuccessorMap(func, dummy_start_node); |
154 | } |
155 | |
156 | template <typename BBType> |
157 | void BasicBlockSuccessorHelper<BBType>::CreateSuccessorMap( |
158 | Function& f, const BasicBlock* dummy_start_node) { |
159 | std::map<uint32_t, BasicBlock*> id_to_BB_map; |
160 | auto GetSuccessorBasicBlock = [&f, &id_to_BB_map](uint32_t successor_id) { |
161 | BasicBlock*& Succ = id_to_BB_map[successor_id]; |
162 | if (!Succ) { |
163 | for (BasicBlock& BBIt : f) { |
164 | if (successor_id == BBIt.id()) { |
165 | Succ = &BBIt; |
166 | break; |
167 | } |
168 | } |
169 | } |
170 | return Succ; |
171 | }; |
172 | |
173 | if (invert_graph_) { |
174 | // For the post dominator tree, we see the inverted graph. |
175 | // successors_ in the inverted graph are the predecessors in the CFG. |
176 | // The tree construction requires 1 entry point, so we add a dummy node |
177 | // that is connected to all function exiting basic blocks. |
178 | // An exiting basic block is a block with an OpKill, OpUnreachable, |
179 | // OpReturn or OpReturnValue as terminator instruction. |
180 | for (BasicBlock& bb : f) { |
181 | if (bb.hasSuccessor()) { |
182 | BasicBlockListTy& pred_list = predecessors_[&bb]; |
183 | const auto& const_bb = bb; |
184 | const_bb.ForEachSuccessorLabel( |
185 | [this, &pred_list, &bb, |
186 | &GetSuccessorBasicBlock](const uint32_t successor_id) { |
187 | BasicBlock* succ = GetSuccessorBasicBlock(successor_id); |
188 | // Inverted graph: our successors in the CFG |
189 | // are our predecessors in the inverted graph. |
190 | this->successors_[succ].push_back(&bb); |
191 | pred_list.push_back(succ); |
192 | }); |
193 | } else { |
194 | successors_[dummy_start_node].push_back(&bb); |
195 | predecessors_[&bb].push_back(const_cast<BasicBlock*>(dummy_start_node)); |
196 | } |
197 | } |
198 | } else { |
199 | successors_[dummy_start_node].push_back(f.entry().get()); |
200 | predecessors_[f.entry().get()].push_back( |
201 | const_cast<BasicBlock*>(dummy_start_node)); |
202 | for (BasicBlock& bb : f) { |
203 | BasicBlockListTy& succ_list = successors_[&bb]; |
204 | |
205 | const auto& const_bb = bb; |
206 | const_bb.ForEachSuccessorLabel([&](const uint32_t successor_id) { |
207 | BasicBlock* succ = GetSuccessorBasicBlock(successor_id); |
208 | succ_list.push_back(succ); |
209 | predecessors_[succ].push_back(&bb); |
210 | }); |
211 | } |
212 | } |
213 | } |
214 | |
215 | } // namespace |
216 | |
217 | bool DominatorTree::StrictlyDominates(uint32_t a, uint32_t b) const { |
218 | if (a == b) return false; |
219 | return Dominates(a, b); |
220 | } |
221 | |
222 | bool DominatorTree::StrictlyDominates(const BasicBlock* a, |
223 | const BasicBlock* b) const { |
224 | return DominatorTree::StrictlyDominates(a->id(), b->id()); |
225 | } |
226 | |
227 | bool DominatorTree::StrictlyDominates(const DominatorTreeNode* a, |
228 | const DominatorTreeNode* b) const { |
229 | if (a == b) return false; |
230 | return Dominates(a, b); |
231 | } |
232 | |
233 | bool DominatorTree::Dominates(uint32_t a, uint32_t b) const { |
234 | // Check that both of the inputs are actual nodes. |
235 | const DominatorTreeNode* a_node = GetTreeNode(a); |
236 | const DominatorTreeNode* b_node = GetTreeNode(b); |
237 | if (!a_node || !b_node) return false; |
238 | |
239 | return Dominates(a_node, b_node); |
240 | } |
241 | |
242 | bool DominatorTree::Dominates(const DominatorTreeNode* a, |
243 | const DominatorTreeNode* b) const { |
244 | if (!a || !b) return false; |
245 | // Node A dominates node B if they are the same. |
246 | if (a == b) return true; |
247 | |
248 | return a->dfs_num_pre_ < b->dfs_num_pre_ && |
249 | a->dfs_num_post_ > b->dfs_num_post_; |
250 | } |
251 | |
252 | bool DominatorTree::Dominates(const BasicBlock* A, const BasicBlock* B) const { |
253 | return Dominates(A->id(), B->id()); |
254 | } |
255 | |
256 | BasicBlock* DominatorTree::ImmediateDominator(const BasicBlock* A) const { |
257 | return ImmediateDominator(A->id()); |
258 | } |
259 | |
260 | BasicBlock* DominatorTree::ImmediateDominator(uint32_t a) const { |
261 | // Check that A is a valid node in the tree. |
262 | auto a_itr = nodes_.find(a); |
263 | if (a_itr == nodes_.end()) return nullptr; |
264 | |
265 | const DominatorTreeNode* node = &a_itr->second; |
266 | |
267 | if (node->parent_ == nullptr) { |
268 | return nullptr; |
269 | } |
270 | |
271 | return node->parent_->bb_; |
272 | } |
273 | |
274 | DominatorTreeNode* DominatorTree::GetOrInsertNode(BasicBlock* bb) { |
275 | DominatorTreeNode* dtn = nullptr; |
276 | |
277 | std::map<uint32_t, DominatorTreeNode>::iterator node_iter = |
278 | nodes_.find(bb->id()); |
279 | if (node_iter == nodes_.end()) { |
280 | dtn = &nodes_.emplace(std::make_pair(bb->id(), DominatorTreeNode{bb})) |
281 | .first->second; |
282 | } else { |
283 | dtn = &node_iter->second; |
284 | } |
285 | |
286 | return dtn; |
287 | } |
288 | |
289 | void DominatorTree::GetDominatorEdges( |
290 | const Function* f, const BasicBlock* dummy_start_node, |
291 | std::vector<std::pair<BasicBlock*, BasicBlock*>>* edges) { |
292 | // Each time the depth first traversal calls the postorder callback |
293 | // std::function we push that node into the postorder vector to create our |
294 | // postorder list. |
295 | std::vector<const BasicBlock*> postorder; |
296 | auto postorder_function = [&](const BasicBlock* b) { |
297 | postorder.push_back(b); |
298 | }; |
299 | |
300 | // CFA::CalculateDominators requires std::vector<BasicBlock*> |
301 | // BB are derived from F, so we need to const cast it at some point |
302 | // no modification is made on F. |
303 | BasicBlockSuccessorHelper<BasicBlock> helper{ |
304 | *const_cast<Function*>(f), dummy_start_node, postdominator_}; |
305 | |
306 | // The successor function tells DepthFirstTraversal how to move to successive |
307 | // nodes by providing an interface to get a list of successor nodes from any |
308 | // given node. |
309 | auto successor_functor = helper.GetSuccessorFunctor(); |
310 | |
311 | // The predecessor functor does the same as the successor functor |
312 | // but for all nodes preceding a given node. |
313 | auto predecessor_functor = helper.GetPredFunctor(); |
314 | |
315 | // If we're building a post dominator tree we traverse the tree in reverse |
316 | // using the predecessor function in place of the successor function and vice |
317 | // versa. |
318 | DepthFirstSearchPostOrder(dummy_start_node, successor_functor, |
319 | postorder_function); |
320 | *edges = CFA<BasicBlock>::CalculateDominators(postorder, predecessor_functor); |
321 | } |
322 | |
323 | void DominatorTree::InitializeTree(const CFG& cfg, const Function* f) { |
324 | ClearTree(); |
325 | |
326 | // Skip over empty functions. |
327 | if (f->cbegin() == f->cend()) { |
328 | return; |
329 | } |
330 | |
331 | const BasicBlock* dummy_start_node = |
332 | postdominator_ ? cfg.pseudo_exit_block() : cfg.pseudo_entry_block(); |
333 | |
334 | // Get the immediate dominator for each node. |
335 | std::vector<std::pair<BasicBlock*, BasicBlock*>> edges; |
336 | GetDominatorEdges(f, dummy_start_node, &edges); |
337 | |
338 | // Transform the vector<pair> into the tree structure which we can use to |
339 | // efficiently query dominance. |
340 | for (auto edge : edges) { |
341 | DominatorTreeNode* first = GetOrInsertNode(edge.first); |
342 | |
343 | if (edge.first == edge.second) { |
344 | if (std::find(roots_.begin(), roots_.end(), first) == roots_.end()) |
345 | roots_.push_back(first); |
346 | continue; |
347 | } |
348 | |
349 | DominatorTreeNode* second = GetOrInsertNode(edge.second); |
350 | |
351 | first->parent_ = second; |
352 | second->children_.push_back(first); |
353 | } |
354 | ResetDFNumbering(); |
355 | } |
356 | |
357 | void DominatorTree::ResetDFNumbering() { |
358 | int index = 0; |
359 | auto preFunc = [&index](const DominatorTreeNode* node) { |
360 | const_cast<DominatorTreeNode*>(node)->dfs_num_pre_ = ++index; |
361 | }; |
362 | |
363 | auto postFunc = [&index](const DominatorTreeNode* node) { |
364 | const_cast<DominatorTreeNode*>(node)->dfs_num_post_ = ++index; |
365 | }; |
366 | |
367 | auto getSucc = [](const DominatorTreeNode* node) { return &node->children_; }; |
368 | |
369 | for (auto root : roots_) DepthFirstSearch(root, getSucc, preFunc, postFunc); |
370 | } |
371 | |
372 | void DominatorTree::DumpTreeAsDot(std::ostream& out_stream) const { |
373 | out_stream << "digraph {\n" ; |
374 | Visit([&out_stream](const DominatorTreeNode* node) { |
375 | // Print the node. |
376 | if (node->bb_) { |
377 | out_stream << node->bb_->id() << "[label=\"" << node->bb_->id() |
378 | << "\"];\n" ; |
379 | } |
380 | |
381 | // Print the arrow from the parent to this node. Entry nodes will not have |
382 | // parents so draw them as children from the dummy node. |
383 | if (node->parent_) { |
384 | out_stream << node->parent_->bb_->id() << " -> " << node->bb_->id() |
385 | << ";\n" ; |
386 | } |
387 | |
388 | // Return true to continue the traversal. |
389 | return true; |
390 | }); |
391 | out_stream << "}\n" ; |
392 | } |
393 | |
394 | } // namespace opt |
395 | } // namespace spvtools |
396 | |