| 1 | // Copyright (c) 2017 Google Inc. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include <iostream> |
| 16 | #include <memory> |
| 17 | #include <set> |
| 18 | |
| 19 | #include "source/cfa.h" |
| 20 | #include "source/opt/dominator_tree.h" |
| 21 | #include "source/opt/ir_context.h" |
| 22 | |
| 23 | // Calculates the dominator or postdominator tree for a given function. |
| 24 | // 1 - Compute the successors and predecessors for each BasicBlock. We add a |
| 25 | // dummy node for the start node or for postdominators the exit. This node will |
| 26 | // point to all entry or all exit nodes. |
| 27 | // 2 - Using the CFA::DepthFirstTraversal get a depth first postordered list of |
| 28 | // all BasicBlocks. Using the successors (or for postdominator, predecessors) |
| 29 | // calculated in step 1 to traverse the tree. |
| 30 | // 3 - Pass the list calculated in step 2 to the CFA::CalculateDominators using |
| 31 | // the predecessors list (or for postdominator, successors). This will give us a |
| 32 | // vector of BB pairs. Each BB and its immediate dominator. |
| 33 | // 4 - Using the list from 3 use those edges to build a tree of |
| 34 | // DominatorTreeNodes. Each node containing a link to the parent dominator and |
| 35 | // children which are dominated. |
| 36 | // 5 - Using the tree from 4, perform a depth first traversal to calculate the |
| 37 | // preorder and postorder index of each node. We use these indexes to compare |
| 38 | // nodes against each other for domination checks. |
| 39 | |
| 40 | namespace spvtools { |
| 41 | namespace opt { |
| 42 | namespace { |
| 43 | |
| 44 | // Wrapper around CFA::DepthFirstTraversal to provide an interface to perform |
| 45 | // depth first search on generic BasicBlock types. Will call post and pre order |
| 46 | // user defined functions during traversal |
| 47 | // |
| 48 | // BBType - BasicBlock type. Will either be BasicBlock or DominatorTreeNode |
| 49 | // SuccessorLambda - Lamdba matching the signature of 'const |
| 50 | // std::vector<BBType>*(const BBType *A)'. Will return a vector of the nodes |
| 51 | // succeding BasicBlock A. |
| 52 | // PostLambda - Lamdba matching the signature of 'void (const BBType*)' will be |
| 53 | // called on each node traversed AFTER their children. |
| 54 | // PreLambda - Lamdba matching the signature of 'void (const BBType*)' will be |
| 55 | // called on each node traversed BEFORE their children. |
| 56 | template <typename BBType, typename SuccessorLambda, typename PreLambda, |
| 57 | typename PostLambda> |
| 58 | static void DepthFirstSearch(const BBType* bb, SuccessorLambda successors, |
| 59 | PreLambda pre, PostLambda post) { |
| 60 | // Ignore backedge operation. |
| 61 | auto nop_backedge = [](const BBType*, const BBType*) {}; |
| 62 | CFA<BBType>::DepthFirstTraversal(bb, successors, pre, post, nop_backedge); |
| 63 | } |
| 64 | |
| 65 | // Wrapper around CFA::DepthFirstTraversal to provide an interface to perform |
| 66 | // depth first search on generic BasicBlock types. This overload is for only |
| 67 | // performing user defined post order. |
| 68 | // |
| 69 | // BBType - BasicBlock type. Will either be BasicBlock or DominatorTreeNode |
| 70 | // SuccessorLambda - Lamdba matching the signature of 'const |
| 71 | // std::vector<BBType>*(const BBType *A)'. Will return a vector of the nodes |
| 72 | // succeding BasicBlock A. |
| 73 | // PostLambda - Lamdba matching the signature of 'void (const BBType*)' will be |
| 74 | // called on each node traversed after their children. |
| 75 | template <typename BBType, typename SuccessorLambda, typename PostLambda> |
| 76 | static void DepthFirstSearchPostOrder(const BBType* bb, |
| 77 | SuccessorLambda successors, |
| 78 | PostLambda post) { |
| 79 | // Ignore preorder operation. |
| 80 | auto nop_preorder = [](const BBType*) {}; |
| 81 | DepthFirstSearch(bb, successors, nop_preorder, post); |
| 82 | } |
| 83 | |
| 84 | // Small type trait to get the function class type. |
| 85 | template <typename BBType> |
| 86 | struct GetFunctionClass { |
| 87 | using FunctionType = Function; |
| 88 | }; |
| 89 | |
| 90 | // Helper class to compute predecessors and successors for each Basic Block in a |
| 91 | // function. Through GetPredFunctor and GetSuccessorFunctor it provides an |
| 92 | // interface to get the successor and predecessor lists for each basic |
| 93 | // block. This is required by the DepthFirstTraversal and ComputeDominator |
| 94 | // functions which take as parameter an std::function returning the successors |
| 95 | // and predecessors respectively. |
| 96 | // |
| 97 | // When computing the post-dominator tree, all edges are inverted. So successors |
| 98 | // returned by this class will be predecessors in the original CFG. |
| 99 | template <typename BBType> |
| 100 | class BasicBlockSuccessorHelper { |
| 101 | // This should eventually become const BasicBlock. |
| 102 | using BasicBlock = BBType; |
| 103 | using Function = typename GetFunctionClass<BBType>::FunctionType; |
| 104 | |
| 105 | using BasicBlockListTy = std::vector<BasicBlock*>; |
| 106 | using BasicBlockMapTy = std::map<const BasicBlock*, BasicBlockListTy>; |
| 107 | |
| 108 | public: |
| 109 | // For compliance with the dominance tree computation, entry nodes are |
| 110 | // connected to a single dummy node. |
| 111 | BasicBlockSuccessorHelper(Function& func, const BasicBlock* dummy_start_node, |
| 112 | bool post); |
| 113 | |
| 114 | // CFA::CalculateDominators requires std::vector<BasicBlock*>. |
| 115 | using GetBlocksFunction = |
| 116 | std::function<const std::vector<BasicBlock*>*(const BasicBlock*)>; |
| 117 | |
| 118 | // Returns the list of predecessor functions. |
| 119 | GetBlocksFunction GetPredFunctor() { |
| 120 | return [this](const BasicBlock* bb) { |
| 121 | BasicBlockListTy* v = &this->predecessors_[bb]; |
| 122 | return v; |
| 123 | }; |
| 124 | } |
| 125 | |
| 126 | // Returns a vector of the list of successor nodes from a given node. |
| 127 | GetBlocksFunction GetSuccessorFunctor() { |
| 128 | return [this](const BasicBlock* bb) { |
| 129 | BasicBlockListTy* v = &this->successors_[bb]; |
| 130 | return v; |
| 131 | }; |
| 132 | } |
| 133 | |
| 134 | private: |
| 135 | bool invert_graph_; |
| 136 | BasicBlockMapTy successors_; |
| 137 | BasicBlockMapTy predecessors_; |
| 138 | |
| 139 | // Build the successors and predecessors map for each basic blocks |f|. |
| 140 | // If |invert_graph_| is true, all edges are reversed (successors becomes |
| 141 | // predecessors and vice versa). |
| 142 | // For convenience, the start of the graph is |dummy_start_node|. |
| 143 | // The dominator tree construction requires a unique entry node, which cannot |
| 144 | // be guaranteed for the postdominator graph. The |dummy_start_node| BB is |
| 145 | // here to gather all entry nodes. |
| 146 | void CreateSuccessorMap(Function& f, const BasicBlock* dummy_start_node); |
| 147 | }; |
| 148 | |
| 149 | template <typename BBType> |
| 150 | BasicBlockSuccessorHelper<BBType>::BasicBlockSuccessorHelper( |
| 151 | Function& func, const BasicBlock* dummy_start_node, bool invert) |
| 152 | : invert_graph_(invert) { |
| 153 | CreateSuccessorMap(func, dummy_start_node); |
| 154 | } |
| 155 | |
| 156 | template <typename BBType> |
| 157 | void BasicBlockSuccessorHelper<BBType>::CreateSuccessorMap( |
| 158 | Function& f, const BasicBlock* dummy_start_node) { |
| 159 | std::map<uint32_t, BasicBlock*> id_to_BB_map; |
| 160 | auto GetSuccessorBasicBlock = [&f, &id_to_BB_map](uint32_t successor_id) { |
| 161 | BasicBlock*& Succ = id_to_BB_map[successor_id]; |
| 162 | if (!Succ) { |
| 163 | for (BasicBlock& BBIt : f) { |
| 164 | if (successor_id == BBIt.id()) { |
| 165 | Succ = &BBIt; |
| 166 | break; |
| 167 | } |
| 168 | } |
| 169 | } |
| 170 | return Succ; |
| 171 | }; |
| 172 | |
| 173 | if (invert_graph_) { |
| 174 | // For the post dominator tree, we see the inverted graph. |
| 175 | // successors_ in the inverted graph are the predecessors in the CFG. |
| 176 | // The tree construction requires 1 entry point, so we add a dummy node |
| 177 | // that is connected to all function exiting basic blocks. |
| 178 | // An exiting basic block is a block with an OpKill, OpUnreachable, |
| 179 | // OpReturn or OpReturnValue as terminator instruction. |
| 180 | for (BasicBlock& bb : f) { |
| 181 | if (bb.hasSuccessor()) { |
| 182 | BasicBlockListTy& pred_list = predecessors_[&bb]; |
| 183 | const auto& const_bb = bb; |
| 184 | const_bb.ForEachSuccessorLabel( |
| 185 | [this, &pred_list, &bb, |
| 186 | &GetSuccessorBasicBlock](const uint32_t successor_id) { |
| 187 | BasicBlock* succ = GetSuccessorBasicBlock(successor_id); |
| 188 | // Inverted graph: our successors in the CFG |
| 189 | // are our predecessors in the inverted graph. |
| 190 | this->successors_[succ].push_back(&bb); |
| 191 | pred_list.push_back(succ); |
| 192 | }); |
| 193 | } else { |
| 194 | successors_[dummy_start_node].push_back(&bb); |
| 195 | predecessors_[&bb].push_back(const_cast<BasicBlock*>(dummy_start_node)); |
| 196 | } |
| 197 | } |
| 198 | } else { |
| 199 | successors_[dummy_start_node].push_back(f.entry().get()); |
| 200 | predecessors_[f.entry().get()].push_back( |
| 201 | const_cast<BasicBlock*>(dummy_start_node)); |
| 202 | for (BasicBlock& bb : f) { |
| 203 | BasicBlockListTy& succ_list = successors_[&bb]; |
| 204 | |
| 205 | const auto& const_bb = bb; |
| 206 | const_bb.ForEachSuccessorLabel([&](const uint32_t successor_id) { |
| 207 | BasicBlock* succ = GetSuccessorBasicBlock(successor_id); |
| 208 | succ_list.push_back(succ); |
| 209 | predecessors_[succ].push_back(&bb); |
| 210 | }); |
| 211 | } |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | } // namespace |
| 216 | |
| 217 | bool DominatorTree::StrictlyDominates(uint32_t a, uint32_t b) const { |
| 218 | if (a == b) return false; |
| 219 | return Dominates(a, b); |
| 220 | } |
| 221 | |
| 222 | bool DominatorTree::StrictlyDominates(const BasicBlock* a, |
| 223 | const BasicBlock* b) const { |
| 224 | return DominatorTree::StrictlyDominates(a->id(), b->id()); |
| 225 | } |
| 226 | |
| 227 | bool DominatorTree::StrictlyDominates(const DominatorTreeNode* a, |
| 228 | const DominatorTreeNode* b) const { |
| 229 | if (a == b) return false; |
| 230 | return Dominates(a, b); |
| 231 | } |
| 232 | |
| 233 | bool DominatorTree::Dominates(uint32_t a, uint32_t b) const { |
| 234 | // Check that both of the inputs are actual nodes. |
| 235 | const DominatorTreeNode* a_node = GetTreeNode(a); |
| 236 | const DominatorTreeNode* b_node = GetTreeNode(b); |
| 237 | if (!a_node || !b_node) return false; |
| 238 | |
| 239 | return Dominates(a_node, b_node); |
| 240 | } |
| 241 | |
| 242 | bool DominatorTree::Dominates(const DominatorTreeNode* a, |
| 243 | const DominatorTreeNode* b) const { |
| 244 | if (!a || !b) return false; |
| 245 | // Node A dominates node B if they are the same. |
| 246 | if (a == b) return true; |
| 247 | |
| 248 | return a->dfs_num_pre_ < b->dfs_num_pre_ && |
| 249 | a->dfs_num_post_ > b->dfs_num_post_; |
| 250 | } |
| 251 | |
| 252 | bool DominatorTree::Dominates(const BasicBlock* A, const BasicBlock* B) const { |
| 253 | return Dominates(A->id(), B->id()); |
| 254 | } |
| 255 | |
| 256 | BasicBlock* DominatorTree::ImmediateDominator(const BasicBlock* A) const { |
| 257 | return ImmediateDominator(A->id()); |
| 258 | } |
| 259 | |
| 260 | BasicBlock* DominatorTree::ImmediateDominator(uint32_t a) const { |
| 261 | // Check that A is a valid node in the tree. |
| 262 | auto a_itr = nodes_.find(a); |
| 263 | if (a_itr == nodes_.end()) return nullptr; |
| 264 | |
| 265 | const DominatorTreeNode* node = &a_itr->second; |
| 266 | |
| 267 | if (node->parent_ == nullptr) { |
| 268 | return nullptr; |
| 269 | } |
| 270 | |
| 271 | return node->parent_->bb_; |
| 272 | } |
| 273 | |
| 274 | DominatorTreeNode* DominatorTree::GetOrInsertNode(BasicBlock* bb) { |
| 275 | DominatorTreeNode* dtn = nullptr; |
| 276 | |
| 277 | std::map<uint32_t, DominatorTreeNode>::iterator node_iter = |
| 278 | nodes_.find(bb->id()); |
| 279 | if (node_iter == nodes_.end()) { |
| 280 | dtn = &nodes_.emplace(std::make_pair(bb->id(), DominatorTreeNode{bb})) |
| 281 | .first->second; |
| 282 | } else { |
| 283 | dtn = &node_iter->second; |
| 284 | } |
| 285 | |
| 286 | return dtn; |
| 287 | } |
| 288 | |
| 289 | void DominatorTree::GetDominatorEdges( |
| 290 | const Function* f, const BasicBlock* dummy_start_node, |
| 291 | std::vector<std::pair<BasicBlock*, BasicBlock*>>* edges) { |
| 292 | // Each time the depth first traversal calls the postorder callback |
| 293 | // std::function we push that node into the postorder vector to create our |
| 294 | // postorder list. |
| 295 | std::vector<const BasicBlock*> postorder; |
| 296 | auto postorder_function = [&](const BasicBlock* b) { |
| 297 | postorder.push_back(b); |
| 298 | }; |
| 299 | |
| 300 | // CFA::CalculateDominators requires std::vector<BasicBlock*> |
| 301 | // BB are derived from F, so we need to const cast it at some point |
| 302 | // no modification is made on F. |
| 303 | BasicBlockSuccessorHelper<BasicBlock> helper{ |
| 304 | *const_cast<Function*>(f), dummy_start_node, postdominator_}; |
| 305 | |
| 306 | // The successor function tells DepthFirstTraversal how to move to successive |
| 307 | // nodes by providing an interface to get a list of successor nodes from any |
| 308 | // given node. |
| 309 | auto successor_functor = helper.GetSuccessorFunctor(); |
| 310 | |
| 311 | // The predecessor functor does the same as the successor functor |
| 312 | // but for all nodes preceding a given node. |
| 313 | auto predecessor_functor = helper.GetPredFunctor(); |
| 314 | |
| 315 | // If we're building a post dominator tree we traverse the tree in reverse |
| 316 | // using the predecessor function in place of the successor function and vice |
| 317 | // versa. |
| 318 | DepthFirstSearchPostOrder(dummy_start_node, successor_functor, |
| 319 | postorder_function); |
| 320 | *edges = CFA<BasicBlock>::CalculateDominators(postorder, predecessor_functor); |
| 321 | } |
| 322 | |
| 323 | void DominatorTree::InitializeTree(const CFG& cfg, const Function* f) { |
| 324 | ClearTree(); |
| 325 | |
| 326 | // Skip over empty functions. |
| 327 | if (f->cbegin() == f->cend()) { |
| 328 | return; |
| 329 | } |
| 330 | |
| 331 | const BasicBlock* dummy_start_node = |
| 332 | postdominator_ ? cfg.pseudo_exit_block() : cfg.pseudo_entry_block(); |
| 333 | |
| 334 | // Get the immediate dominator for each node. |
| 335 | std::vector<std::pair<BasicBlock*, BasicBlock*>> edges; |
| 336 | GetDominatorEdges(f, dummy_start_node, &edges); |
| 337 | |
| 338 | // Transform the vector<pair> into the tree structure which we can use to |
| 339 | // efficiently query dominance. |
| 340 | for (auto edge : edges) { |
| 341 | DominatorTreeNode* first = GetOrInsertNode(edge.first); |
| 342 | |
| 343 | if (edge.first == edge.second) { |
| 344 | if (std::find(roots_.begin(), roots_.end(), first) == roots_.end()) |
| 345 | roots_.push_back(first); |
| 346 | continue; |
| 347 | } |
| 348 | |
| 349 | DominatorTreeNode* second = GetOrInsertNode(edge.second); |
| 350 | |
| 351 | first->parent_ = second; |
| 352 | second->children_.push_back(first); |
| 353 | } |
| 354 | ResetDFNumbering(); |
| 355 | } |
| 356 | |
| 357 | void DominatorTree::ResetDFNumbering() { |
| 358 | int index = 0; |
| 359 | auto preFunc = [&index](const DominatorTreeNode* node) { |
| 360 | const_cast<DominatorTreeNode*>(node)->dfs_num_pre_ = ++index; |
| 361 | }; |
| 362 | |
| 363 | auto postFunc = [&index](const DominatorTreeNode* node) { |
| 364 | const_cast<DominatorTreeNode*>(node)->dfs_num_post_ = ++index; |
| 365 | }; |
| 366 | |
| 367 | auto getSucc = [](const DominatorTreeNode* node) { return &node->children_; }; |
| 368 | |
| 369 | for (auto root : roots_) DepthFirstSearch(root, getSucc, preFunc, postFunc); |
| 370 | } |
| 371 | |
| 372 | void DominatorTree::DumpTreeAsDot(std::ostream& out_stream) const { |
| 373 | out_stream << "digraph {\n" ; |
| 374 | Visit([&out_stream](const DominatorTreeNode* node) { |
| 375 | // Print the node. |
| 376 | if (node->bb_) { |
| 377 | out_stream << node->bb_->id() << "[label=\"" << node->bb_->id() |
| 378 | << "\"];\n" ; |
| 379 | } |
| 380 | |
| 381 | // Print the arrow from the parent to this node. Entry nodes will not have |
| 382 | // parents so draw them as children from the dummy node. |
| 383 | if (node->parent_) { |
| 384 | out_stream << node->parent_->bb_->id() << " -> " << node->bb_->id() |
| 385 | << ";\n" ; |
| 386 | } |
| 387 | |
| 388 | // Return true to continue the traversal. |
| 389 | return true; |
| 390 | }); |
| 391 | out_stream << "}\n" ; |
| 392 | } |
| 393 | |
| 394 | } // namespace opt |
| 395 | } // namespace spvtools |
| 396 | |