| 1 | // Copyright (c) 2017 Google Inc. | 
|---|
| 2 | // | 
|---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|---|
| 4 | // you may not use this file except in compliance with the License. | 
|---|
| 5 | // You may obtain a copy of the License at | 
|---|
| 6 | // | 
|---|
| 7 | //     http://www.apache.org/licenses/LICENSE-2.0 | 
|---|
| 8 | // | 
|---|
| 9 | // Unless required by applicable law or agreed to in writing, software | 
|---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, | 
|---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|---|
| 12 | // See the License for the specific language governing permissions and | 
|---|
| 13 | // limitations under the License. | 
|---|
| 14 |  | 
|---|
| 15 | #include <iostream> | 
|---|
| 16 | #include <memory> | 
|---|
| 17 | #include <set> | 
|---|
| 18 |  | 
|---|
| 19 | #include "source/cfa.h" | 
|---|
| 20 | #include "source/opt/dominator_tree.h" | 
|---|
| 21 | #include "source/opt/ir_context.h" | 
|---|
| 22 |  | 
|---|
| 23 | // Calculates the dominator or postdominator tree for a given function. | 
|---|
| 24 | // 1 - Compute the successors and predecessors for each BasicBlock. We add a | 
|---|
| 25 | // dummy node for the start node or for postdominators the exit. This node will | 
|---|
| 26 | // point to all entry or all exit nodes. | 
|---|
| 27 | // 2 - Using the CFA::DepthFirstTraversal get a depth first postordered list of | 
|---|
| 28 | // all BasicBlocks. Using the successors (or for postdominator, predecessors) | 
|---|
| 29 | // calculated in step 1 to traverse the tree. | 
|---|
| 30 | // 3 - Pass the list calculated in step 2 to the CFA::CalculateDominators using | 
|---|
| 31 | // the predecessors list (or for postdominator, successors). This will give us a | 
|---|
| 32 | // vector of BB pairs. Each BB and its immediate dominator. | 
|---|
| 33 | // 4 - Using the list from 3 use those edges to build a tree of | 
|---|
| 34 | // DominatorTreeNodes. Each node containing a link to the parent dominator and | 
|---|
| 35 | // children which are dominated. | 
|---|
| 36 | // 5 - Using the tree from 4, perform a depth first traversal to calculate the | 
|---|
| 37 | // preorder and postorder index of each node. We use these indexes to compare | 
|---|
| 38 | // nodes against each other for domination checks. | 
|---|
| 39 |  | 
|---|
| 40 | namespace spvtools { | 
|---|
| 41 | namespace opt { | 
|---|
| 42 | namespace { | 
|---|
| 43 |  | 
|---|
| 44 | // Wrapper around CFA::DepthFirstTraversal to provide an interface to perform | 
|---|
| 45 | // depth first search on generic BasicBlock types. Will call post and pre order | 
|---|
| 46 | // user defined functions during traversal | 
|---|
| 47 | // | 
|---|
| 48 | // BBType - BasicBlock type. Will either be BasicBlock or DominatorTreeNode | 
|---|
| 49 | // SuccessorLambda - Lamdba matching the signature of 'const | 
|---|
| 50 | // std::vector<BBType>*(const BBType *A)'. Will return a vector of the nodes | 
|---|
| 51 | // succeding BasicBlock A. | 
|---|
| 52 | // PostLambda - Lamdba matching the signature of 'void (const BBType*)' will be | 
|---|
| 53 | // called on each node traversed AFTER their children. | 
|---|
| 54 | // PreLambda - Lamdba matching the signature of 'void (const BBType*)' will be | 
|---|
| 55 | // called on each node traversed BEFORE their children. | 
|---|
| 56 | template <typename BBType, typename SuccessorLambda, typename PreLambda, | 
|---|
| 57 | typename PostLambda> | 
|---|
| 58 | static void DepthFirstSearch(const BBType* bb, SuccessorLambda successors, | 
|---|
| 59 | PreLambda pre, PostLambda post) { | 
|---|
| 60 | // Ignore backedge operation. | 
|---|
| 61 | auto nop_backedge = [](const BBType*, const BBType*) {}; | 
|---|
| 62 | CFA<BBType>::DepthFirstTraversal(bb, successors, pre, post, nop_backedge); | 
|---|
| 63 | } | 
|---|
| 64 |  | 
|---|
| 65 | // Wrapper around CFA::DepthFirstTraversal to provide an interface to perform | 
|---|
| 66 | // depth first search on generic BasicBlock types. This overload is for only | 
|---|
| 67 | // performing user defined post order. | 
|---|
| 68 | // | 
|---|
| 69 | // BBType - BasicBlock type. Will either be BasicBlock or DominatorTreeNode | 
|---|
| 70 | // SuccessorLambda - Lamdba matching the signature of 'const | 
|---|
| 71 | // std::vector<BBType>*(const BBType *A)'. Will return a vector of the nodes | 
|---|
| 72 | // succeding BasicBlock A. | 
|---|
| 73 | // PostLambda - Lamdba matching the signature of 'void (const BBType*)' will be | 
|---|
| 74 | // called on each node traversed after their children. | 
|---|
| 75 | template <typename BBType, typename SuccessorLambda, typename PostLambda> | 
|---|
| 76 | static void DepthFirstSearchPostOrder(const BBType* bb, | 
|---|
| 77 | SuccessorLambda successors, | 
|---|
| 78 | PostLambda post) { | 
|---|
| 79 | // Ignore preorder operation. | 
|---|
| 80 | auto nop_preorder = [](const BBType*) {}; | 
|---|
| 81 | DepthFirstSearch(bb, successors, nop_preorder, post); | 
|---|
| 82 | } | 
|---|
| 83 |  | 
|---|
| 84 | // Small type trait to get the function class type. | 
|---|
| 85 | template <typename BBType> | 
|---|
| 86 | struct GetFunctionClass { | 
|---|
| 87 | using FunctionType = Function; | 
|---|
| 88 | }; | 
|---|
| 89 |  | 
|---|
| 90 | // Helper class to compute predecessors and successors for each Basic Block in a | 
|---|
| 91 | // function. Through GetPredFunctor and GetSuccessorFunctor it provides an | 
|---|
| 92 | // interface to get the successor and predecessor lists for each basic | 
|---|
| 93 | // block. This is required by the DepthFirstTraversal and ComputeDominator | 
|---|
| 94 | // functions which take as parameter an std::function returning the successors | 
|---|
| 95 | // and predecessors respectively. | 
|---|
| 96 | // | 
|---|
| 97 | // When computing the post-dominator tree, all edges are inverted. So successors | 
|---|
| 98 | // returned by this class will be predecessors in the original CFG. | 
|---|
| 99 | template <typename BBType> | 
|---|
| 100 | class BasicBlockSuccessorHelper { | 
|---|
| 101 | // This should eventually become const BasicBlock. | 
|---|
| 102 | using BasicBlock = BBType; | 
|---|
| 103 | using Function = typename GetFunctionClass<BBType>::FunctionType; | 
|---|
| 104 |  | 
|---|
| 105 | using BasicBlockListTy = std::vector<BasicBlock*>; | 
|---|
| 106 | using BasicBlockMapTy = std::map<const BasicBlock*, BasicBlockListTy>; | 
|---|
| 107 |  | 
|---|
| 108 | public: | 
|---|
| 109 | // For compliance with the dominance tree computation, entry nodes are | 
|---|
| 110 | // connected to a single dummy node. | 
|---|
| 111 | BasicBlockSuccessorHelper(Function& func, const BasicBlock* dummy_start_node, | 
|---|
| 112 | bool post); | 
|---|
| 113 |  | 
|---|
| 114 | // CFA::CalculateDominators requires std::vector<BasicBlock*>. | 
|---|
| 115 | using GetBlocksFunction = | 
|---|
| 116 | std::function<const std::vector<BasicBlock*>*(const BasicBlock*)>; | 
|---|
| 117 |  | 
|---|
| 118 | // Returns the list of predecessor functions. | 
|---|
| 119 | GetBlocksFunction GetPredFunctor() { | 
|---|
| 120 | return [this](const BasicBlock* bb) { | 
|---|
| 121 | BasicBlockListTy* v = &this->predecessors_[bb]; | 
|---|
| 122 | return v; | 
|---|
| 123 | }; | 
|---|
| 124 | } | 
|---|
| 125 |  | 
|---|
| 126 | // Returns a vector of the list of successor nodes from a given node. | 
|---|
| 127 | GetBlocksFunction GetSuccessorFunctor() { | 
|---|
| 128 | return [this](const BasicBlock* bb) { | 
|---|
| 129 | BasicBlockListTy* v = &this->successors_[bb]; | 
|---|
| 130 | return v; | 
|---|
| 131 | }; | 
|---|
| 132 | } | 
|---|
| 133 |  | 
|---|
| 134 | private: | 
|---|
| 135 | bool invert_graph_; | 
|---|
| 136 | BasicBlockMapTy successors_; | 
|---|
| 137 | BasicBlockMapTy predecessors_; | 
|---|
| 138 |  | 
|---|
| 139 | // Build the successors and predecessors map for each basic blocks |f|. | 
|---|
| 140 | // If |invert_graph_| is true, all edges are reversed (successors becomes | 
|---|
| 141 | // predecessors and vice versa). | 
|---|
| 142 | // For convenience, the start of the graph is |dummy_start_node|. | 
|---|
| 143 | // The dominator tree construction requires a unique entry node, which cannot | 
|---|
| 144 | // be guaranteed for the postdominator graph. The |dummy_start_node| BB is | 
|---|
| 145 | // here to gather all entry nodes. | 
|---|
| 146 | void CreateSuccessorMap(Function& f, const BasicBlock* dummy_start_node); | 
|---|
| 147 | }; | 
|---|
| 148 |  | 
|---|
| 149 | template <typename BBType> | 
|---|
| 150 | BasicBlockSuccessorHelper<BBType>::BasicBlockSuccessorHelper( | 
|---|
| 151 | Function& func, const BasicBlock* dummy_start_node, bool invert) | 
|---|
| 152 | : invert_graph_(invert) { | 
|---|
| 153 | CreateSuccessorMap(func, dummy_start_node); | 
|---|
| 154 | } | 
|---|
| 155 |  | 
|---|
| 156 | template <typename BBType> | 
|---|
| 157 | void BasicBlockSuccessorHelper<BBType>::CreateSuccessorMap( | 
|---|
| 158 | Function& f, const BasicBlock* dummy_start_node) { | 
|---|
| 159 | std::map<uint32_t, BasicBlock*> id_to_BB_map; | 
|---|
| 160 | auto GetSuccessorBasicBlock = [&f, &id_to_BB_map](uint32_t successor_id) { | 
|---|
| 161 | BasicBlock*& Succ = id_to_BB_map[successor_id]; | 
|---|
| 162 | if (!Succ) { | 
|---|
| 163 | for (BasicBlock& BBIt : f) { | 
|---|
| 164 | if (successor_id == BBIt.id()) { | 
|---|
| 165 | Succ = &BBIt; | 
|---|
| 166 | break; | 
|---|
| 167 | } | 
|---|
| 168 | } | 
|---|
| 169 | } | 
|---|
| 170 | return Succ; | 
|---|
| 171 | }; | 
|---|
| 172 |  | 
|---|
| 173 | if (invert_graph_) { | 
|---|
| 174 | // For the post dominator tree, we see the inverted graph. | 
|---|
| 175 | // successors_ in the inverted graph are the predecessors in the CFG. | 
|---|
| 176 | // The tree construction requires 1 entry point, so we add a dummy node | 
|---|
| 177 | // that is connected to all function exiting basic blocks. | 
|---|
| 178 | // An exiting basic block is a block with an OpKill, OpUnreachable, | 
|---|
| 179 | // OpReturn or OpReturnValue as terminator instruction. | 
|---|
| 180 | for (BasicBlock& bb : f) { | 
|---|
| 181 | if (bb.hasSuccessor()) { | 
|---|
| 182 | BasicBlockListTy& pred_list = predecessors_[&bb]; | 
|---|
| 183 | const auto& const_bb = bb; | 
|---|
| 184 | const_bb.ForEachSuccessorLabel( | 
|---|
| 185 | [this, &pred_list, &bb, | 
|---|
| 186 | &GetSuccessorBasicBlock](const uint32_t successor_id) { | 
|---|
| 187 | BasicBlock* succ = GetSuccessorBasicBlock(successor_id); | 
|---|
| 188 | // Inverted graph: our successors in the CFG | 
|---|
| 189 | // are our predecessors in the inverted graph. | 
|---|
| 190 | this->successors_[succ].push_back(&bb); | 
|---|
| 191 | pred_list.push_back(succ); | 
|---|
| 192 | }); | 
|---|
| 193 | } else { | 
|---|
| 194 | successors_[dummy_start_node].push_back(&bb); | 
|---|
| 195 | predecessors_[&bb].push_back(const_cast<BasicBlock*>(dummy_start_node)); | 
|---|
| 196 | } | 
|---|
| 197 | } | 
|---|
| 198 | } else { | 
|---|
| 199 | successors_[dummy_start_node].push_back(f.entry().get()); | 
|---|
| 200 | predecessors_[f.entry().get()].push_back( | 
|---|
| 201 | const_cast<BasicBlock*>(dummy_start_node)); | 
|---|
| 202 | for (BasicBlock& bb : f) { | 
|---|
| 203 | BasicBlockListTy& succ_list = successors_[&bb]; | 
|---|
| 204 |  | 
|---|
| 205 | const auto& const_bb = bb; | 
|---|
| 206 | const_bb.ForEachSuccessorLabel([&](const uint32_t successor_id) { | 
|---|
| 207 | BasicBlock* succ = GetSuccessorBasicBlock(successor_id); | 
|---|
| 208 | succ_list.push_back(succ); | 
|---|
| 209 | predecessors_[succ].push_back(&bb); | 
|---|
| 210 | }); | 
|---|
| 211 | } | 
|---|
| 212 | } | 
|---|
| 213 | } | 
|---|
| 214 |  | 
|---|
| 215 | }  // namespace | 
|---|
| 216 |  | 
|---|
| 217 | bool DominatorTree::StrictlyDominates(uint32_t a, uint32_t b) const { | 
|---|
| 218 | if (a == b) return false; | 
|---|
| 219 | return Dominates(a, b); | 
|---|
| 220 | } | 
|---|
| 221 |  | 
|---|
| 222 | bool DominatorTree::StrictlyDominates(const BasicBlock* a, | 
|---|
| 223 | const BasicBlock* b) const { | 
|---|
| 224 | return DominatorTree::StrictlyDominates(a->id(), b->id()); | 
|---|
| 225 | } | 
|---|
| 226 |  | 
|---|
| 227 | bool DominatorTree::StrictlyDominates(const DominatorTreeNode* a, | 
|---|
| 228 | const DominatorTreeNode* b) const { | 
|---|
| 229 | if (a == b) return false; | 
|---|
| 230 | return Dominates(a, b); | 
|---|
| 231 | } | 
|---|
| 232 |  | 
|---|
| 233 | bool DominatorTree::Dominates(uint32_t a, uint32_t b) const { | 
|---|
| 234 | // Check that both of the inputs are actual nodes. | 
|---|
| 235 | const DominatorTreeNode* a_node = GetTreeNode(a); | 
|---|
| 236 | const DominatorTreeNode* b_node = GetTreeNode(b); | 
|---|
| 237 | if (!a_node || !b_node) return false; | 
|---|
| 238 |  | 
|---|
| 239 | return Dominates(a_node, b_node); | 
|---|
| 240 | } | 
|---|
| 241 |  | 
|---|
| 242 | bool DominatorTree::Dominates(const DominatorTreeNode* a, | 
|---|
| 243 | const DominatorTreeNode* b) const { | 
|---|
| 244 | if (!a || !b) return false; | 
|---|
| 245 | // Node A dominates node B if they are the same. | 
|---|
| 246 | if (a == b) return true; | 
|---|
| 247 |  | 
|---|
| 248 | return a->dfs_num_pre_ < b->dfs_num_pre_ && | 
|---|
| 249 | a->dfs_num_post_ > b->dfs_num_post_; | 
|---|
| 250 | } | 
|---|
| 251 |  | 
|---|
| 252 | bool DominatorTree::Dominates(const BasicBlock* A, const BasicBlock* B) const { | 
|---|
| 253 | return Dominates(A->id(), B->id()); | 
|---|
| 254 | } | 
|---|
| 255 |  | 
|---|
| 256 | BasicBlock* DominatorTree::ImmediateDominator(const BasicBlock* A) const { | 
|---|
| 257 | return ImmediateDominator(A->id()); | 
|---|
| 258 | } | 
|---|
| 259 |  | 
|---|
| 260 | BasicBlock* DominatorTree::ImmediateDominator(uint32_t a) const { | 
|---|
| 261 | // Check that A is a valid node in the tree. | 
|---|
| 262 | auto a_itr = nodes_.find(a); | 
|---|
| 263 | if (a_itr == nodes_.end()) return nullptr; | 
|---|
| 264 |  | 
|---|
| 265 | const DominatorTreeNode* node = &a_itr->second; | 
|---|
| 266 |  | 
|---|
| 267 | if (node->parent_ == nullptr) { | 
|---|
| 268 | return nullptr; | 
|---|
| 269 | } | 
|---|
| 270 |  | 
|---|
| 271 | return node->parent_->bb_; | 
|---|
| 272 | } | 
|---|
| 273 |  | 
|---|
| 274 | DominatorTreeNode* DominatorTree::GetOrInsertNode(BasicBlock* bb) { | 
|---|
| 275 | DominatorTreeNode* dtn = nullptr; | 
|---|
| 276 |  | 
|---|
| 277 | std::map<uint32_t, DominatorTreeNode>::iterator node_iter = | 
|---|
| 278 | nodes_.find(bb->id()); | 
|---|
| 279 | if (node_iter == nodes_.end()) { | 
|---|
| 280 | dtn = &nodes_.emplace(std::make_pair(bb->id(), DominatorTreeNode{bb})) | 
|---|
| 281 | .first->second; | 
|---|
| 282 | } else { | 
|---|
| 283 | dtn = &node_iter->second; | 
|---|
| 284 | } | 
|---|
| 285 |  | 
|---|
| 286 | return dtn; | 
|---|
| 287 | } | 
|---|
| 288 |  | 
|---|
| 289 | void DominatorTree::GetDominatorEdges( | 
|---|
| 290 | const Function* f, const BasicBlock* dummy_start_node, | 
|---|
| 291 | std::vector<std::pair<BasicBlock*, BasicBlock*>>* edges) { | 
|---|
| 292 | // Each time the depth first traversal calls the postorder callback | 
|---|
| 293 | // std::function we push that node into the postorder vector to create our | 
|---|
| 294 | // postorder list. | 
|---|
| 295 | std::vector<const BasicBlock*> postorder; | 
|---|
| 296 | auto postorder_function = [&](const BasicBlock* b) { | 
|---|
| 297 | postorder.push_back(b); | 
|---|
| 298 | }; | 
|---|
| 299 |  | 
|---|
| 300 | // CFA::CalculateDominators requires std::vector<BasicBlock*> | 
|---|
| 301 | // BB are derived from F, so we need to const cast it at some point | 
|---|
| 302 | // no modification is made on F. | 
|---|
| 303 | BasicBlockSuccessorHelper<BasicBlock> helper{ | 
|---|
| 304 | *const_cast<Function*>(f), dummy_start_node, postdominator_}; | 
|---|
| 305 |  | 
|---|
| 306 | // The successor function tells DepthFirstTraversal how to move to successive | 
|---|
| 307 | // nodes by providing an interface to get a list of successor nodes from any | 
|---|
| 308 | // given node. | 
|---|
| 309 | auto successor_functor = helper.GetSuccessorFunctor(); | 
|---|
| 310 |  | 
|---|
| 311 | // The predecessor functor does the same as the successor functor | 
|---|
| 312 | // but for all nodes preceding a given node. | 
|---|
| 313 | auto predecessor_functor = helper.GetPredFunctor(); | 
|---|
| 314 |  | 
|---|
| 315 | // If we're building a post dominator tree we traverse the tree in reverse | 
|---|
| 316 | // using the predecessor function in place of the successor function and vice | 
|---|
| 317 | // versa. | 
|---|
| 318 | DepthFirstSearchPostOrder(dummy_start_node, successor_functor, | 
|---|
| 319 | postorder_function); | 
|---|
| 320 | *edges = CFA<BasicBlock>::CalculateDominators(postorder, predecessor_functor); | 
|---|
| 321 | } | 
|---|
| 322 |  | 
|---|
| 323 | void DominatorTree::InitializeTree(const CFG& cfg, const Function* f) { | 
|---|
| 324 | ClearTree(); | 
|---|
| 325 |  | 
|---|
| 326 | // Skip over empty functions. | 
|---|
| 327 | if (f->cbegin() == f->cend()) { | 
|---|
| 328 | return; | 
|---|
| 329 | } | 
|---|
| 330 |  | 
|---|
| 331 | const BasicBlock* dummy_start_node = | 
|---|
| 332 | postdominator_ ? cfg.pseudo_exit_block() : cfg.pseudo_entry_block(); | 
|---|
| 333 |  | 
|---|
| 334 | // Get the immediate dominator for each node. | 
|---|
| 335 | std::vector<std::pair<BasicBlock*, BasicBlock*>> edges; | 
|---|
| 336 | GetDominatorEdges(f, dummy_start_node, &edges); | 
|---|
| 337 |  | 
|---|
| 338 | // Transform the vector<pair> into the tree structure which we can use to | 
|---|
| 339 | // efficiently query dominance. | 
|---|
| 340 | for (auto edge : edges) { | 
|---|
| 341 | DominatorTreeNode* first = GetOrInsertNode(edge.first); | 
|---|
| 342 |  | 
|---|
| 343 | if (edge.first == edge.second) { | 
|---|
| 344 | if (std::find(roots_.begin(), roots_.end(), first) == roots_.end()) | 
|---|
| 345 | roots_.push_back(first); | 
|---|
| 346 | continue; | 
|---|
| 347 | } | 
|---|
| 348 |  | 
|---|
| 349 | DominatorTreeNode* second = GetOrInsertNode(edge.second); | 
|---|
| 350 |  | 
|---|
| 351 | first->parent_ = second; | 
|---|
| 352 | second->children_.push_back(first); | 
|---|
| 353 | } | 
|---|
| 354 | ResetDFNumbering(); | 
|---|
| 355 | } | 
|---|
| 356 |  | 
|---|
| 357 | void DominatorTree::ResetDFNumbering() { | 
|---|
| 358 | int index = 0; | 
|---|
| 359 | auto preFunc = [&index](const DominatorTreeNode* node) { | 
|---|
| 360 | const_cast<DominatorTreeNode*>(node)->dfs_num_pre_ = ++index; | 
|---|
| 361 | }; | 
|---|
| 362 |  | 
|---|
| 363 | auto postFunc = [&index](const DominatorTreeNode* node) { | 
|---|
| 364 | const_cast<DominatorTreeNode*>(node)->dfs_num_post_ = ++index; | 
|---|
| 365 | }; | 
|---|
| 366 |  | 
|---|
| 367 | auto getSucc = [](const DominatorTreeNode* node) { return &node->children_; }; | 
|---|
| 368 |  | 
|---|
| 369 | for (auto root : roots_) DepthFirstSearch(root, getSucc, preFunc, postFunc); | 
|---|
| 370 | } | 
|---|
| 371 |  | 
|---|
| 372 | void DominatorTree::DumpTreeAsDot(std::ostream& out_stream) const { | 
|---|
| 373 | out_stream << "digraph {\n"; | 
|---|
| 374 | Visit([&out_stream](const DominatorTreeNode* node) { | 
|---|
| 375 | // Print the node. | 
|---|
| 376 | if (node->bb_) { | 
|---|
| 377 | out_stream << node->bb_->id() << "[label=\""<< node->bb_->id() | 
|---|
| 378 | << "\"];\n"; | 
|---|
| 379 | } | 
|---|
| 380 |  | 
|---|
| 381 | // Print the arrow from the parent to this node. Entry nodes will not have | 
|---|
| 382 | // parents so draw them as children from the dummy node. | 
|---|
| 383 | if (node->parent_) { | 
|---|
| 384 | out_stream << node->parent_->bb_->id() << " -> "<< node->bb_->id() | 
|---|
| 385 | << ";\n"; | 
|---|
| 386 | } | 
|---|
| 387 |  | 
|---|
| 388 | // Return true to continue the traversal. | 
|---|
| 389 | return true; | 
|---|
| 390 | }); | 
|---|
| 391 | out_stream << "}\n"; | 
|---|
| 392 | } | 
|---|
| 393 |  | 
|---|
| 394 | }  // namespace opt | 
|---|
| 395 | }  // namespace spvtools | 
|---|
| 396 |  | 
|---|