| 1 | // Copyright (c) 2018 Google LLC. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include "source/opt/loop_dependence.h" |
| 16 | |
| 17 | #include <functional> |
| 18 | #include <memory> |
| 19 | #include <numeric> |
| 20 | #include <string> |
| 21 | #include <utility> |
| 22 | #include <vector> |
| 23 | |
| 24 | #include "source/opt/instruction.h" |
| 25 | #include "source/opt/scalar_analysis.h" |
| 26 | #include "source/opt/scalar_analysis_nodes.h" |
| 27 | |
| 28 | namespace spvtools { |
| 29 | namespace opt { |
| 30 | |
| 31 | using SubscriptPair = std::pair<SENode*, SENode*>; |
| 32 | |
| 33 | namespace { |
| 34 | |
| 35 | // Calculate the greatest common divisor of a & b using Stein's algorithm. |
| 36 | // https://en.wikipedia.org/wiki/Binary_GCD_algorithm |
| 37 | int64_t GreatestCommonDivisor(int64_t a, int64_t b) { |
| 38 | // Simple cases |
| 39 | if (a == b) { |
| 40 | return a; |
| 41 | } else if (a == 0) { |
| 42 | return b; |
| 43 | } else if (b == 0) { |
| 44 | return a; |
| 45 | } |
| 46 | |
| 47 | // Both even |
| 48 | if (a % 2 == 0 && b % 2 == 0) { |
| 49 | return 2 * GreatestCommonDivisor(a / 2, b / 2); |
| 50 | } |
| 51 | |
| 52 | // Even a, odd b |
| 53 | if (a % 2 == 0 && b % 2 == 1) { |
| 54 | return GreatestCommonDivisor(a / 2, b); |
| 55 | } |
| 56 | |
| 57 | // Odd a, even b |
| 58 | if (a % 2 == 1 && b % 2 == 0) { |
| 59 | return GreatestCommonDivisor(a, b / 2); |
| 60 | } |
| 61 | |
| 62 | // Both odd, reduce the larger argument |
| 63 | if (a > b) { |
| 64 | return GreatestCommonDivisor((a - b) / 2, b); |
| 65 | } else { |
| 66 | return GreatestCommonDivisor((b - a) / 2, a); |
| 67 | } |
| 68 | } |
| 69 | |
| 70 | // Check if node is affine, ie in the form: a0*i0 + a1*i1 + ... an*in + c |
| 71 | // and contains only the following types of nodes: SERecurrentNode, SEAddNode |
| 72 | // and SEConstantNode |
| 73 | bool IsInCorrectFormForGCDTest(SENode* node) { |
| 74 | bool children_ok = true; |
| 75 | |
| 76 | if (auto add_node = node->AsSEAddNode()) { |
| 77 | for (auto child : add_node->GetChildren()) { |
| 78 | children_ok &= IsInCorrectFormForGCDTest(child); |
| 79 | } |
| 80 | } |
| 81 | |
| 82 | bool this_ok = node->AsSERecurrentNode() || node->AsSEAddNode() || |
| 83 | node->AsSEConstantNode(); |
| 84 | |
| 85 | return children_ok && this_ok; |
| 86 | } |
| 87 | |
| 88 | // If |node| is an SERecurrentNode then returns |node| or if |node| is an |
| 89 | // SEAddNode returns a vector of SERecurrentNode that are its children. |
| 90 | std::vector<SERecurrentNode*> GetAllTopLevelRecurrences(SENode* node) { |
| 91 | auto nodes = std::vector<SERecurrentNode*>{}; |
| 92 | if (auto recurrent_node = node->AsSERecurrentNode()) { |
| 93 | nodes.push_back(recurrent_node); |
| 94 | } |
| 95 | |
| 96 | if (auto add_node = node->AsSEAddNode()) { |
| 97 | for (auto child : add_node->GetChildren()) { |
| 98 | auto child_nodes = GetAllTopLevelRecurrences(child); |
| 99 | nodes.insert(nodes.end(), child_nodes.begin(), child_nodes.end()); |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | return nodes; |
| 104 | } |
| 105 | |
| 106 | // If |node| is an SEConstantNode then returns |node| or if |node| is an |
| 107 | // SEAddNode returns a vector of SEConstantNode that are its children. |
| 108 | std::vector<SEConstantNode*> GetAllTopLevelConstants(SENode* node) { |
| 109 | auto nodes = std::vector<SEConstantNode*>{}; |
| 110 | if (auto recurrent_node = node->AsSEConstantNode()) { |
| 111 | nodes.push_back(recurrent_node); |
| 112 | } |
| 113 | |
| 114 | if (auto add_node = node->AsSEAddNode()) { |
| 115 | for (auto child : add_node->GetChildren()) { |
| 116 | auto child_nodes = GetAllTopLevelConstants(child); |
| 117 | nodes.insert(nodes.end(), child_nodes.begin(), child_nodes.end()); |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | return nodes; |
| 122 | } |
| 123 | |
| 124 | bool AreOffsetsAndCoefficientsConstant( |
| 125 | const std::vector<SERecurrentNode*>& nodes) { |
| 126 | for (auto node : nodes) { |
| 127 | if (!node->GetOffset()->AsSEConstantNode() || |
| 128 | !node->GetOffset()->AsSEConstantNode()) { |
| 129 | return false; |
| 130 | } |
| 131 | } |
| 132 | return true; |
| 133 | } |
| 134 | |
| 135 | // Fold all SEConstantNode that appear in |recurrences| and |constants| into a |
| 136 | // single integer value. |
| 137 | int64_t CalculateConstantTerm(const std::vector<SERecurrentNode*>& recurrences, |
| 138 | const std::vector<SEConstantNode*>& constants) { |
| 139 | int64_t constant_term = 0; |
| 140 | for (auto recurrence : recurrences) { |
| 141 | constant_term += |
| 142 | recurrence->GetOffset()->AsSEConstantNode()->FoldToSingleValue(); |
| 143 | } |
| 144 | |
| 145 | for (auto constant : constants) { |
| 146 | constant_term += constant->FoldToSingleValue(); |
| 147 | } |
| 148 | |
| 149 | return constant_term; |
| 150 | } |
| 151 | |
| 152 | int64_t CalculateGCDFromCoefficients( |
| 153 | const std::vector<SERecurrentNode*>& recurrences, int64_t running_gcd) { |
| 154 | for (SERecurrentNode* recurrence : recurrences) { |
| 155 | auto coefficient = recurrence->GetCoefficient()->AsSEConstantNode(); |
| 156 | |
| 157 | running_gcd = GreatestCommonDivisor( |
| 158 | running_gcd, std::abs(coefficient->FoldToSingleValue())); |
| 159 | } |
| 160 | |
| 161 | return running_gcd; |
| 162 | } |
| 163 | |
| 164 | // Compare 2 fractions while first normalizing them, e.g. 2/4 and 4/8 will both |
| 165 | // be simplified to 1/2 and then determined to be equal. |
| 166 | bool NormalizeAndCompareFractions(int64_t numerator_0, int64_t denominator_0, |
| 167 | int64_t numerator_1, int64_t denominator_1) { |
| 168 | auto gcd_0 = |
| 169 | GreatestCommonDivisor(std::abs(numerator_0), std::abs(denominator_0)); |
| 170 | auto gcd_1 = |
| 171 | GreatestCommonDivisor(std::abs(numerator_1), std::abs(denominator_1)); |
| 172 | |
| 173 | auto normalized_numerator_0 = numerator_0 / gcd_0; |
| 174 | auto normalized_denominator_0 = denominator_0 / gcd_0; |
| 175 | auto normalized_numerator_1 = numerator_1 / gcd_1; |
| 176 | auto normalized_denominator_1 = denominator_1 / gcd_1; |
| 177 | |
| 178 | return normalized_numerator_0 == normalized_numerator_1 && |
| 179 | normalized_denominator_0 == normalized_denominator_1; |
| 180 | } |
| 181 | |
| 182 | } // namespace |
| 183 | |
| 184 | bool LoopDependenceAnalysis::GetDependence(const Instruction* source, |
| 185 | const Instruction* destination, |
| 186 | DistanceVector* distance_vector) { |
| 187 | // Start off by finding and marking all the loops in |loops_| that are |
| 188 | // irrelevant to the dependence analysis. |
| 189 | MarkUnsusedDistanceEntriesAsIrrelevant(source, destination, distance_vector); |
| 190 | |
| 191 | Instruction* source_access_chain = GetOperandDefinition(source, 0); |
| 192 | Instruction* destination_access_chain = GetOperandDefinition(destination, 0); |
| 193 | |
| 194 | auto num_access_chains = |
| 195 | (source_access_chain->opcode() == SpvOpAccessChain) + |
| 196 | (destination_access_chain->opcode() == SpvOpAccessChain); |
| 197 | |
| 198 | // If neither is an access chain, then they are load/store to a variable. |
| 199 | if (num_access_chains == 0) { |
| 200 | if (source_access_chain != destination_access_chain) { |
| 201 | // Not the same location, report independence |
| 202 | return true; |
| 203 | } else { |
| 204 | // Accessing the same variable |
| 205 | for (auto& entry : distance_vector->GetEntries()) { |
| 206 | entry = DistanceEntry(); |
| 207 | } |
| 208 | return false; |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | // If only one is an access chain, it could be accessing a part of a struct |
| 213 | if (num_access_chains == 1) { |
| 214 | auto source_is_chain = source_access_chain->opcode() == SpvOpAccessChain; |
| 215 | auto access_chain = |
| 216 | source_is_chain ? source_access_chain : destination_access_chain; |
| 217 | auto variable = |
| 218 | source_is_chain ? destination_access_chain : source_access_chain; |
| 219 | |
| 220 | auto location_in_chain = GetOperandDefinition(access_chain, 0); |
| 221 | |
| 222 | if (variable != location_in_chain) { |
| 223 | // Not the same location, report independence |
| 224 | return true; |
| 225 | } else { |
| 226 | // Accessing the same variable |
| 227 | for (auto& entry : distance_vector->GetEntries()) { |
| 228 | entry = DistanceEntry(); |
| 229 | } |
| 230 | return false; |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | // If the access chains aren't collecting from the same structure there is no |
| 235 | // dependence. |
| 236 | Instruction* source_array = GetOperandDefinition(source_access_chain, 0); |
| 237 | Instruction* destination_array = |
| 238 | GetOperandDefinition(destination_access_chain, 0); |
| 239 | |
| 240 | // Nested access chains are not supported yet, bail out. |
| 241 | if (source_array->opcode() == SpvOpAccessChain || |
| 242 | destination_array->opcode() == SpvOpAccessChain) { |
| 243 | for (auto& entry : distance_vector->GetEntries()) { |
| 244 | entry = DistanceEntry(); |
| 245 | } |
| 246 | return false; |
| 247 | } |
| 248 | |
| 249 | if (source_array != destination_array) { |
| 250 | PrintDebug("Proved independence through different arrays." ); |
| 251 | return true; |
| 252 | } |
| 253 | |
| 254 | // To handle multiple subscripts we must get every operand in the access |
| 255 | // chains past the first. |
| 256 | std::vector<Instruction*> source_subscripts = GetSubscripts(source); |
| 257 | std::vector<Instruction*> destination_subscripts = GetSubscripts(destination); |
| 258 | |
| 259 | auto sets_of_subscripts = |
| 260 | PartitionSubscripts(source_subscripts, destination_subscripts); |
| 261 | |
| 262 | auto first_coupled = std::partition( |
| 263 | std::begin(sets_of_subscripts), std::end(sets_of_subscripts), |
| 264 | [](const std::set<std::pair<Instruction*, Instruction*>>& set) { |
| 265 | return set.size() == 1; |
| 266 | }); |
| 267 | |
| 268 | // Go through each subscript testing for independence. |
| 269 | // If any subscript results in independence, we prove independence between the |
| 270 | // load and store. |
| 271 | // If we can't prove independence we store what information we can gather in |
| 272 | // a DistanceVector. |
| 273 | for (auto it = std::begin(sets_of_subscripts); it < first_coupled; ++it) { |
| 274 | auto source_subscript = std::get<0>(*(*it).begin()); |
| 275 | auto destination_subscript = std::get<1>(*(*it).begin()); |
| 276 | |
| 277 | SENode* source_node = scalar_evolution_.SimplifyExpression( |
| 278 | scalar_evolution_.AnalyzeInstruction(source_subscript)); |
| 279 | SENode* destination_node = scalar_evolution_.SimplifyExpression( |
| 280 | scalar_evolution_.AnalyzeInstruction(destination_subscript)); |
| 281 | |
| 282 | // Check the loops are in a form we support. |
| 283 | auto subscript_pair = std::make_pair(source_node, destination_node); |
| 284 | |
| 285 | const Loop* loop = GetLoopForSubscriptPair(subscript_pair); |
| 286 | if (loop) { |
| 287 | if (!IsSupportedLoop(loop)) { |
| 288 | PrintDebug( |
| 289 | "GetDependence found an unsupported loop form. Assuming <=> for " |
| 290 | "loop." ); |
| 291 | DistanceEntry* distance_entry = |
| 292 | GetDistanceEntryForSubscriptPair(subscript_pair, distance_vector); |
| 293 | if (distance_entry) { |
| 294 | distance_entry->direction = DistanceEntry::Directions::ALL; |
| 295 | } |
| 296 | continue; |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | // If either node is simplified to a CanNotCompute we can't perform any |
| 301 | // analysis so must assume <=> dependence and return. |
| 302 | if (source_node->GetType() == SENode::CanNotCompute || |
| 303 | destination_node->GetType() == SENode::CanNotCompute) { |
| 304 | // Record the <=> dependence if we can get a DistanceEntry |
| 305 | PrintDebug( |
| 306 | "GetDependence found source_node || destination_node as " |
| 307 | "CanNotCompute. Abandoning evaluation for this subscript." ); |
| 308 | DistanceEntry* distance_entry = |
| 309 | GetDistanceEntryForSubscriptPair(subscript_pair, distance_vector); |
| 310 | if (distance_entry) { |
| 311 | distance_entry->direction = DistanceEntry::Directions::ALL; |
| 312 | } |
| 313 | continue; |
| 314 | } |
| 315 | |
| 316 | // We have no induction variables so can apply a ZIV test. |
| 317 | if (IsZIV(subscript_pair)) { |
| 318 | PrintDebug("Found a ZIV subscript pair" ); |
| 319 | if (ZIVTest(subscript_pair)) { |
| 320 | PrintDebug("Proved independence with ZIVTest." ); |
| 321 | return true; |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | // We have only one induction variable so should attempt an SIV test. |
| 326 | if (IsSIV(subscript_pair)) { |
| 327 | PrintDebug("Found a SIV subscript pair." ); |
| 328 | if (SIVTest(subscript_pair, distance_vector)) { |
| 329 | PrintDebug("Proved independence with SIVTest." ); |
| 330 | return true; |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | // We have multiple induction variables so should attempt an MIV test. |
| 335 | if (IsMIV(subscript_pair)) { |
| 336 | PrintDebug("Found a MIV subscript pair." ); |
| 337 | if (GCDMIVTest(subscript_pair)) { |
| 338 | PrintDebug("Proved independence with the GCD test." ); |
| 339 | auto current_loops = CollectLoops(source_node, destination_node); |
| 340 | |
| 341 | for (auto current_loop : current_loops) { |
| 342 | auto distance_entry = |
| 343 | GetDistanceEntryForLoop(current_loop, distance_vector); |
| 344 | distance_entry->direction = DistanceEntry::Directions::NONE; |
| 345 | } |
| 346 | return true; |
| 347 | } |
| 348 | } |
| 349 | } |
| 350 | |
| 351 | for (auto it = first_coupled; it < std::end(sets_of_subscripts); ++it) { |
| 352 | auto coupled_instructions = *it; |
| 353 | std::vector<SubscriptPair> coupled_subscripts{}; |
| 354 | |
| 355 | for (const auto& elem : coupled_instructions) { |
| 356 | auto source_subscript = std::get<0>(elem); |
| 357 | auto destination_subscript = std::get<1>(elem); |
| 358 | |
| 359 | SENode* source_node = scalar_evolution_.SimplifyExpression( |
| 360 | scalar_evolution_.AnalyzeInstruction(source_subscript)); |
| 361 | SENode* destination_node = scalar_evolution_.SimplifyExpression( |
| 362 | scalar_evolution_.AnalyzeInstruction(destination_subscript)); |
| 363 | |
| 364 | coupled_subscripts.push_back({source_node, destination_node}); |
| 365 | } |
| 366 | |
| 367 | auto supported = true; |
| 368 | |
| 369 | for (const auto& subscript : coupled_subscripts) { |
| 370 | auto loops = CollectLoops(std::get<0>(subscript), std::get<1>(subscript)); |
| 371 | |
| 372 | auto is_subscript_supported = |
| 373 | std::all_of(std::begin(loops), std::end(loops), |
| 374 | [this](const Loop* l) { return IsSupportedLoop(l); }); |
| 375 | |
| 376 | supported = supported && is_subscript_supported; |
| 377 | } |
| 378 | |
| 379 | if (DeltaTest(coupled_subscripts, distance_vector)) { |
| 380 | return true; |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | // We were unable to prove independence so must gather all of the direction |
| 385 | // information we found. |
| 386 | PrintDebug( |
| 387 | "Couldn't prove independence.\n" |
| 388 | "All possible direction information has been collected in the input " |
| 389 | "DistanceVector." ); |
| 390 | |
| 391 | return false; |
| 392 | } |
| 393 | |
| 394 | bool LoopDependenceAnalysis::ZIVTest( |
| 395 | const std::pair<SENode*, SENode*>& subscript_pair) { |
| 396 | auto source = std::get<0>(subscript_pair); |
| 397 | auto destination = std::get<1>(subscript_pair); |
| 398 | |
| 399 | PrintDebug("Performing ZIVTest" ); |
| 400 | // If source == destination, dependence with direction = and distance 0. |
| 401 | if (source == destination) { |
| 402 | PrintDebug("ZIVTest found EQ dependence." ); |
| 403 | return false; |
| 404 | } else { |
| 405 | PrintDebug("ZIVTest found independence." ); |
| 406 | // Otherwise we prove independence. |
| 407 | return true; |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | bool LoopDependenceAnalysis::SIVTest( |
| 412 | const std::pair<SENode*, SENode*>& subscript_pair, |
| 413 | DistanceVector* distance_vector) { |
| 414 | DistanceEntry* distance_entry = |
| 415 | GetDistanceEntryForSubscriptPair(subscript_pair, distance_vector); |
| 416 | if (!distance_entry) { |
| 417 | PrintDebug( |
| 418 | "SIVTest could not find a DistanceEntry for subscript_pair. Exiting" ); |
| 419 | } |
| 420 | |
| 421 | SENode* source_node = std::get<0>(subscript_pair); |
| 422 | SENode* destination_node = std::get<1>(subscript_pair); |
| 423 | |
| 424 | int64_t source_induction_count = CountInductionVariables(source_node); |
| 425 | int64_t destination_induction_count = |
| 426 | CountInductionVariables(destination_node); |
| 427 | |
| 428 | // If the source node has no induction variables we can apply a |
| 429 | // WeakZeroSrcTest. |
| 430 | if (source_induction_count == 0) { |
| 431 | PrintDebug("Found source has no induction variable." ); |
| 432 | if (WeakZeroSourceSIVTest( |
| 433 | source_node, destination_node->AsSERecurrentNode(), |
| 434 | destination_node->AsSERecurrentNode()->GetCoefficient(), |
| 435 | distance_entry)) { |
| 436 | PrintDebug("Proved independence with WeakZeroSourceSIVTest." ); |
| 437 | distance_entry->dependence_information = |
| 438 | DistanceEntry::DependenceInformation::DIRECTION; |
| 439 | distance_entry->direction = DistanceEntry::Directions::NONE; |
| 440 | return true; |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | // If the destination has no induction variables we can apply a |
| 445 | // WeakZeroDestTest. |
| 446 | if (destination_induction_count == 0) { |
| 447 | PrintDebug("Found destination has no induction variable." ); |
| 448 | if (WeakZeroDestinationSIVTest( |
| 449 | source_node->AsSERecurrentNode(), destination_node, |
| 450 | source_node->AsSERecurrentNode()->GetCoefficient(), |
| 451 | distance_entry)) { |
| 452 | PrintDebug("Proved independence with WeakZeroDestinationSIVTest." ); |
| 453 | distance_entry->dependence_information = |
| 454 | DistanceEntry::DependenceInformation::DIRECTION; |
| 455 | distance_entry->direction = DistanceEntry::Directions::NONE; |
| 456 | return true; |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | // We now need to collect the SERecurrentExpr nodes from source and |
| 461 | // destination. We do not handle cases where source or destination have |
| 462 | // multiple SERecurrentExpr nodes. |
| 463 | std::vector<SERecurrentNode*> source_recurrent_nodes = |
| 464 | source_node->CollectRecurrentNodes(); |
| 465 | std::vector<SERecurrentNode*> destination_recurrent_nodes = |
| 466 | destination_node->CollectRecurrentNodes(); |
| 467 | |
| 468 | if (source_recurrent_nodes.size() == 1 && |
| 469 | destination_recurrent_nodes.size() == 1) { |
| 470 | PrintDebug("Found source and destination have 1 induction variable." ); |
| 471 | SERecurrentNode* source_recurrent_expr = *source_recurrent_nodes.begin(); |
| 472 | SERecurrentNode* destination_recurrent_expr = |
| 473 | *destination_recurrent_nodes.begin(); |
| 474 | |
| 475 | // If the coefficients are identical we can apply a StrongSIVTest. |
| 476 | if (source_recurrent_expr->GetCoefficient() == |
| 477 | destination_recurrent_expr->GetCoefficient()) { |
| 478 | PrintDebug("Found source and destination share coefficient." ); |
| 479 | if (StrongSIVTest(source_node, destination_node, |
| 480 | source_recurrent_expr->GetCoefficient(), |
| 481 | distance_entry)) { |
| 482 | PrintDebug("Proved independence with StrongSIVTest" ); |
| 483 | distance_entry->dependence_information = |
| 484 | DistanceEntry::DependenceInformation::DIRECTION; |
| 485 | distance_entry->direction = DistanceEntry::Directions::NONE; |
| 486 | return true; |
| 487 | } |
| 488 | } |
| 489 | |
| 490 | // If the coefficients are of equal magnitude and opposite sign we can |
| 491 | // apply a WeakCrossingSIVTest. |
| 492 | if (source_recurrent_expr->GetCoefficient() == |
| 493 | scalar_evolution_.CreateNegation( |
| 494 | destination_recurrent_expr->GetCoefficient())) { |
| 495 | PrintDebug("Found source coefficient = -destination coefficient." ); |
| 496 | if (WeakCrossingSIVTest(source_node, destination_node, |
| 497 | source_recurrent_expr->GetCoefficient(), |
| 498 | distance_entry)) { |
| 499 | PrintDebug("Proved independence with WeakCrossingSIVTest" ); |
| 500 | distance_entry->dependence_information = |
| 501 | DistanceEntry::DependenceInformation::DIRECTION; |
| 502 | distance_entry->direction = DistanceEntry::Directions::NONE; |
| 503 | return true; |
| 504 | } |
| 505 | } |
| 506 | } |
| 507 | |
| 508 | return false; |
| 509 | } |
| 510 | |
| 511 | bool LoopDependenceAnalysis::StrongSIVTest(SENode* source, SENode* destination, |
| 512 | SENode* coefficient, |
| 513 | DistanceEntry* distance_entry) { |
| 514 | PrintDebug("Performing StrongSIVTest." ); |
| 515 | // If both source and destination are SERecurrentNodes we can perform tests |
| 516 | // based on distance. |
| 517 | // If either source or destination contain value unknown nodes or if one or |
| 518 | // both are not SERecurrentNodes we must attempt a symbolic test. |
| 519 | std::vector<SEValueUnknown*> source_value_unknown_nodes = |
| 520 | source->CollectValueUnknownNodes(); |
| 521 | std::vector<SEValueUnknown*> destination_value_unknown_nodes = |
| 522 | destination->CollectValueUnknownNodes(); |
| 523 | if (source_value_unknown_nodes.size() > 0 || |
| 524 | destination_value_unknown_nodes.size() > 0) { |
| 525 | PrintDebug( |
| 526 | "StrongSIVTest found symbolics. Will attempt SymbolicStrongSIVTest." ); |
| 527 | return SymbolicStrongSIVTest(source, destination, coefficient, |
| 528 | distance_entry); |
| 529 | } |
| 530 | |
| 531 | if (!source->AsSERecurrentNode() || !destination->AsSERecurrentNode()) { |
| 532 | PrintDebug( |
| 533 | "StrongSIVTest could not simplify source and destination to " |
| 534 | "SERecurrentNodes so will exit." ); |
| 535 | distance_entry->direction = DistanceEntry::Directions::ALL; |
| 536 | return false; |
| 537 | } |
| 538 | |
| 539 | // Build an SENode for distance. |
| 540 | std::pair<SENode*, SENode*> subscript_pair = |
| 541 | std::make_pair(source, destination); |
| 542 | const Loop* subscript_loop = GetLoopForSubscriptPair(subscript_pair); |
| 543 | SENode* source_constant_term = |
| 544 | GetConstantTerm(subscript_loop, source->AsSERecurrentNode()); |
| 545 | SENode* destination_constant_term = |
| 546 | GetConstantTerm(subscript_loop, destination->AsSERecurrentNode()); |
| 547 | if (!source_constant_term || !destination_constant_term) { |
| 548 | PrintDebug( |
| 549 | "StrongSIVTest could not collect the constant terms of either source " |
| 550 | "or destination so will exit." ); |
| 551 | return false; |
| 552 | } |
| 553 | SENode* constant_term_delta = |
| 554 | scalar_evolution_.SimplifyExpression(scalar_evolution_.CreateSubtraction( |
| 555 | destination_constant_term, source_constant_term)); |
| 556 | |
| 557 | // Scalar evolution doesn't perform division, so we must fold to constants and |
| 558 | // do it manually. |
| 559 | // We must check the offset delta and coefficient are constants. |
| 560 | int64_t distance = 0; |
| 561 | SEConstantNode* delta_constant = constant_term_delta->AsSEConstantNode(); |
| 562 | SEConstantNode* coefficient_constant = coefficient->AsSEConstantNode(); |
| 563 | if (delta_constant && coefficient_constant) { |
| 564 | int64_t delta_value = delta_constant->FoldToSingleValue(); |
| 565 | int64_t coefficient_value = coefficient_constant->FoldToSingleValue(); |
| 566 | PrintDebug( |
| 567 | "StrongSIVTest found delta value and coefficient value as constants " |
| 568 | "with values:\n" |
| 569 | "\tdelta value: " + |
| 570 | ToString(delta_value) + |
| 571 | "\n\tcoefficient value: " + ToString(coefficient_value) + "\n" ); |
| 572 | // Check if the distance is not integral to try to prove independence. |
| 573 | if (delta_value % coefficient_value != 0) { |
| 574 | PrintDebug( |
| 575 | "StrongSIVTest proved independence through distance not being an " |
| 576 | "integer." ); |
| 577 | distance_entry->dependence_information = |
| 578 | DistanceEntry::DependenceInformation::DIRECTION; |
| 579 | distance_entry->direction = DistanceEntry::Directions::NONE; |
| 580 | return true; |
| 581 | } else { |
| 582 | distance = delta_value / coefficient_value; |
| 583 | PrintDebug("StrongSIV test found distance as " + ToString(distance)); |
| 584 | } |
| 585 | } else { |
| 586 | // If we can't fold delta and coefficient to single values we can't produce |
| 587 | // distance. |
| 588 | // As a result we can't perform the rest of the pass and must assume |
| 589 | // dependence in all directions. |
| 590 | PrintDebug("StrongSIVTest could not produce a distance. Must exit." ); |
| 591 | distance_entry->distance = DistanceEntry::Directions::ALL; |
| 592 | return false; |
| 593 | } |
| 594 | |
| 595 | // Next we gather the upper and lower bounds as constants if possible. If |
| 596 | // distance > upper_bound - lower_bound we prove independence. |
| 597 | SENode* lower_bound = GetLowerBound(subscript_loop); |
| 598 | SENode* upper_bound = GetUpperBound(subscript_loop); |
| 599 | if (lower_bound && upper_bound) { |
| 600 | PrintDebug("StrongSIVTest found bounds." ); |
| 601 | SENode* bounds = scalar_evolution_.SimplifyExpression( |
| 602 | scalar_evolution_.CreateSubtraction(upper_bound, lower_bound)); |
| 603 | |
| 604 | if (bounds->GetType() == SENode::SENodeType::Constant) { |
| 605 | int64_t bounds_value = bounds->AsSEConstantNode()->FoldToSingleValue(); |
| 606 | PrintDebug( |
| 607 | "StrongSIVTest found upper_bound - lower_bound as a constant with " |
| 608 | "value " + |
| 609 | ToString(bounds_value)); |
| 610 | |
| 611 | // If the absolute value of the distance is > upper bound - lower bound |
| 612 | // then we prove independence. |
| 613 | if (llabs(distance) > llabs(bounds_value)) { |
| 614 | PrintDebug( |
| 615 | "StrongSIVTest proved independence through distance escaping the " |
| 616 | "loop bounds." ); |
| 617 | distance_entry->dependence_information = |
| 618 | DistanceEntry::DependenceInformation::DISTANCE; |
| 619 | distance_entry->direction = DistanceEntry::Directions::NONE; |
| 620 | distance_entry->distance = distance; |
| 621 | return true; |
| 622 | } |
| 623 | } |
| 624 | } else { |
| 625 | PrintDebug("StrongSIVTest was unable to gather lower and upper bounds." ); |
| 626 | } |
| 627 | |
| 628 | // Otherwise we can get a direction as follows |
| 629 | // { < if distance > 0 |
| 630 | // direction = { = if distance == 0 |
| 631 | // { > if distance < 0 |
| 632 | PrintDebug( |
| 633 | "StrongSIVTest could not prove independence. Gathering direction " |
| 634 | "information." ); |
| 635 | if (distance > 0) { |
| 636 | distance_entry->dependence_information = |
| 637 | DistanceEntry::DependenceInformation::DISTANCE; |
| 638 | distance_entry->direction = DistanceEntry::Directions::LT; |
| 639 | distance_entry->distance = distance; |
| 640 | return false; |
| 641 | } |
| 642 | if (distance == 0) { |
| 643 | distance_entry->dependence_information = |
| 644 | DistanceEntry::DependenceInformation::DISTANCE; |
| 645 | distance_entry->direction = DistanceEntry::Directions::EQ; |
| 646 | distance_entry->distance = 0; |
| 647 | return false; |
| 648 | } |
| 649 | if (distance < 0) { |
| 650 | distance_entry->dependence_information = |
| 651 | DistanceEntry::DependenceInformation::DISTANCE; |
| 652 | distance_entry->direction = DistanceEntry::Directions::GT; |
| 653 | distance_entry->distance = distance; |
| 654 | return false; |
| 655 | } |
| 656 | |
| 657 | // We were unable to prove independence or discern any additional information |
| 658 | // Must assume <=> direction. |
| 659 | PrintDebug( |
| 660 | "StrongSIVTest was unable to determine any dependence information." ); |
| 661 | distance_entry->direction = DistanceEntry::Directions::ALL; |
| 662 | return false; |
| 663 | } |
| 664 | |
| 665 | bool LoopDependenceAnalysis::SymbolicStrongSIVTest( |
| 666 | SENode* source, SENode* destination, SENode* coefficient, |
| 667 | DistanceEntry* distance_entry) { |
| 668 | PrintDebug("Performing SymbolicStrongSIVTest." ); |
| 669 | SENode* source_destination_delta = scalar_evolution_.SimplifyExpression( |
| 670 | scalar_evolution_.CreateSubtraction(source, destination)); |
| 671 | // By cancelling out the induction variables by subtracting the source and |
| 672 | // destination we can produce an expression of symbolics and constants. This |
| 673 | // expression can be compared to the loop bounds to find if the offset is |
| 674 | // outwith the bounds. |
| 675 | std::pair<SENode*, SENode*> subscript_pair = |
| 676 | std::make_pair(source, destination); |
| 677 | const Loop* subscript_loop = GetLoopForSubscriptPair(subscript_pair); |
| 678 | if (IsProvablyOutsideOfLoopBounds(subscript_loop, source_destination_delta, |
| 679 | coefficient)) { |
| 680 | PrintDebug( |
| 681 | "SymbolicStrongSIVTest proved independence through loop bounds." ); |
| 682 | distance_entry->dependence_information = |
| 683 | DistanceEntry::DependenceInformation::DIRECTION; |
| 684 | distance_entry->direction = DistanceEntry::Directions::NONE; |
| 685 | return true; |
| 686 | } |
| 687 | // We were unable to prove independence or discern any additional information. |
| 688 | // Must assume <=> direction. |
| 689 | PrintDebug( |
| 690 | "SymbolicStrongSIVTest was unable to determine any dependence " |
| 691 | "information." ); |
| 692 | distance_entry->direction = DistanceEntry::Directions::ALL; |
| 693 | return false; |
| 694 | } |
| 695 | |
| 696 | bool LoopDependenceAnalysis::WeakZeroSourceSIVTest( |
| 697 | SENode* source, SERecurrentNode* destination, SENode* coefficient, |
| 698 | DistanceEntry* distance_entry) { |
| 699 | PrintDebug("Performing WeakZeroSourceSIVTest." ); |
| 700 | std::pair<SENode*, SENode*> subscript_pair = |
| 701 | std::make_pair(source, destination); |
| 702 | const Loop* subscript_loop = GetLoopForSubscriptPair(subscript_pair); |
| 703 | // Build an SENode for distance. |
| 704 | SENode* destination_constant_term = |
| 705 | GetConstantTerm(subscript_loop, destination); |
| 706 | SENode* delta = scalar_evolution_.SimplifyExpression( |
| 707 | scalar_evolution_.CreateSubtraction(source, destination_constant_term)); |
| 708 | |
| 709 | // Scalar evolution doesn't perform division, so we must fold to constants and |
| 710 | // do it manually. |
| 711 | int64_t distance = 0; |
| 712 | SEConstantNode* delta_constant = delta->AsSEConstantNode(); |
| 713 | SEConstantNode* coefficient_constant = coefficient->AsSEConstantNode(); |
| 714 | if (delta_constant && coefficient_constant) { |
| 715 | PrintDebug( |
| 716 | "WeakZeroSourceSIVTest folding delta and coefficient to constants." ); |
| 717 | int64_t delta_value = delta_constant->FoldToSingleValue(); |
| 718 | int64_t coefficient_value = coefficient_constant->FoldToSingleValue(); |
| 719 | // Check if the distance is not integral. |
| 720 | if (delta_value % coefficient_value != 0) { |
| 721 | PrintDebug( |
| 722 | "WeakZeroSourceSIVTest proved independence through distance not " |
| 723 | "being an integer." ); |
| 724 | distance_entry->dependence_information = |
| 725 | DistanceEntry::DependenceInformation::DIRECTION; |
| 726 | distance_entry->direction = DistanceEntry::Directions::NONE; |
| 727 | return true; |
| 728 | } else { |
| 729 | distance = delta_value / coefficient_value; |
| 730 | PrintDebug( |
| 731 | "WeakZeroSourceSIVTest calculated distance with the following " |
| 732 | "values\n" |
| 733 | "\tdelta value: " + |
| 734 | ToString(delta_value) + |
| 735 | "\n\tcoefficient value: " + ToString(coefficient_value) + |
| 736 | "\n\tdistance: " + ToString(distance) + "\n" ); |
| 737 | } |
| 738 | } else { |
| 739 | PrintDebug( |
| 740 | "WeakZeroSourceSIVTest was unable to fold delta and coefficient to " |
| 741 | "constants." ); |
| 742 | } |
| 743 | |
| 744 | // If we can prove the distance is outside the bounds we prove independence. |
| 745 | SEConstantNode* lower_bound = |
| 746 | GetLowerBound(subscript_loop)->AsSEConstantNode(); |
| 747 | SEConstantNode* upper_bound = |
| 748 | GetUpperBound(subscript_loop)->AsSEConstantNode(); |
| 749 | if (lower_bound && upper_bound) { |
| 750 | PrintDebug("WeakZeroSourceSIVTest found bounds as SEConstantNodes." ); |
| 751 | int64_t lower_bound_value = lower_bound->FoldToSingleValue(); |
| 752 | int64_t upper_bound_value = upper_bound->FoldToSingleValue(); |
| 753 | if (!IsWithinBounds(llabs(distance), lower_bound_value, |
| 754 | upper_bound_value)) { |
| 755 | PrintDebug( |
| 756 | "WeakZeroSourceSIVTest proved independence through distance escaping " |
| 757 | "the loop bounds." ); |
| 758 | PrintDebug( |
| 759 | "Bound values were as follow\n" |
| 760 | "\tlower bound value: " + |
| 761 | ToString(lower_bound_value) + |
| 762 | "\n\tupper bound value: " + ToString(upper_bound_value) + |
| 763 | "\n\tdistance value: " + ToString(distance) + "\n" ); |
| 764 | distance_entry->dependence_information = |
| 765 | DistanceEntry::DependenceInformation::DISTANCE; |
| 766 | distance_entry->direction = DistanceEntry::Directions::NONE; |
| 767 | distance_entry->distance = distance; |
| 768 | return true; |
| 769 | } |
| 770 | } else { |
| 771 | PrintDebug( |
| 772 | "WeakZeroSourceSIVTest was unable to find lower and upper bound as " |
| 773 | "SEConstantNodes." ); |
| 774 | } |
| 775 | |
| 776 | // Now we want to see if we can detect to peel the first or last iterations. |
| 777 | |
| 778 | // We get the FirstTripValue as GetFirstTripInductionNode() + |
| 779 | // GetConstantTerm(destination) |
| 780 | SENode* first_trip_SENode = |
| 781 | scalar_evolution_.SimplifyExpression(scalar_evolution_.CreateAddNode( |
| 782 | GetFirstTripInductionNode(subscript_loop), |
| 783 | GetConstantTerm(subscript_loop, destination))); |
| 784 | |
| 785 | // If source == FirstTripValue, peel_first. |
| 786 | if (first_trip_SENode) { |
| 787 | PrintDebug("WeakZeroSourceSIVTest built first_trip_SENode." ); |
| 788 | if (first_trip_SENode->AsSEConstantNode()) { |
| 789 | PrintDebug( |
| 790 | "WeakZeroSourceSIVTest has found first_trip_SENode as an " |
| 791 | "SEConstantNode with value: " + |
| 792 | ToString(first_trip_SENode->AsSEConstantNode()->FoldToSingleValue()) + |
| 793 | "\n" ); |
| 794 | } |
| 795 | if (source == first_trip_SENode) { |
| 796 | // We have found that peeling the first iteration will break dependency. |
| 797 | PrintDebug( |
| 798 | "WeakZeroSourceSIVTest has found peeling first iteration will break " |
| 799 | "dependency" ); |
| 800 | distance_entry->dependence_information = |
| 801 | DistanceEntry::DependenceInformation::PEEL; |
| 802 | distance_entry->peel_first = true; |
| 803 | return false; |
| 804 | } |
| 805 | } else { |
| 806 | PrintDebug("WeakZeroSourceSIVTest was unable to build first_trip_SENode" ); |
| 807 | } |
| 808 | |
| 809 | // We get the LastTripValue as GetFinalTripInductionNode(coefficient) + |
| 810 | // GetConstantTerm(destination) |
| 811 | SENode* final_trip_SENode = |
| 812 | scalar_evolution_.SimplifyExpression(scalar_evolution_.CreateAddNode( |
| 813 | GetFinalTripInductionNode(subscript_loop, coefficient), |
| 814 | GetConstantTerm(subscript_loop, destination))); |
| 815 | |
| 816 | // If source == LastTripValue, peel_last. |
| 817 | if (final_trip_SENode) { |
| 818 | PrintDebug("WeakZeroSourceSIVTest built final_trip_SENode." ); |
| 819 | if (first_trip_SENode->AsSEConstantNode()) { |
| 820 | PrintDebug( |
| 821 | "WeakZeroSourceSIVTest has found final_trip_SENode as an " |
| 822 | "SEConstantNode with value: " + |
| 823 | ToString(final_trip_SENode->AsSEConstantNode()->FoldToSingleValue()) + |
| 824 | "\n" ); |
| 825 | } |
| 826 | if (source == final_trip_SENode) { |
| 827 | // We have found that peeling the last iteration will break dependency. |
| 828 | PrintDebug( |
| 829 | "WeakZeroSourceSIVTest has found peeling final iteration will break " |
| 830 | "dependency" ); |
| 831 | distance_entry->dependence_information = |
| 832 | DistanceEntry::DependenceInformation::PEEL; |
| 833 | distance_entry->peel_last = true; |
| 834 | return false; |
| 835 | } |
| 836 | } else { |
| 837 | PrintDebug("WeakZeroSourceSIVTest was unable to build final_trip_SENode" ); |
| 838 | } |
| 839 | |
| 840 | // We were unable to prove independence or discern any additional information. |
| 841 | // Must assume <=> direction. |
| 842 | PrintDebug( |
| 843 | "WeakZeroSourceSIVTest was unable to determine any dependence " |
| 844 | "information." ); |
| 845 | distance_entry->direction = DistanceEntry::Directions::ALL; |
| 846 | return false; |
| 847 | } |
| 848 | |
| 849 | bool LoopDependenceAnalysis::WeakZeroDestinationSIVTest( |
| 850 | SERecurrentNode* source, SENode* destination, SENode* coefficient, |
| 851 | DistanceEntry* distance_entry) { |
| 852 | PrintDebug("Performing WeakZeroDestinationSIVTest." ); |
| 853 | // Build an SENode for distance. |
| 854 | std::pair<SENode*, SENode*> subscript_pair = |
| 855 | std::make_pair(source, destination); |
| 856 | const Loop* subscript_loop = GetLoopForSubscriptPair(subscript_pair); |
| 857 | SENode* source_constant_term = GetConstantTerm(subscript_loop, source); |
| 858 | SENode* delta = scalar_evolution_.SimplifyExpression( |
| 859 | scalar_evolution_.CreateSubtraction(destination, source_constant_term)); |
| 860 | |
| 861 | // Scalar evolution doesn't perform division, so we must fold to constants and |
| 862 | // do it manually. |
| 863 | int64_t distance = 0; |
| 864 | SEConstantNode* delta_constant = delta->AsSEConstantNode(); |
| 865 | SEConstantNode* coefficient_constant = coefficient->AsSEConstantNode(); |
| 866 | if (delta_constant && coefficient_constant) { |
| 867 | PrintDebug( |
| 868 | "WeakZeroDestinationSIVTest folding delta and coefficient to " |
| 869 | "constants." ); |
| 870 | int64_t delta_value = delta_constant->FoldToSingleValue(); |
| 871 | int64_t coefficient_value = coefficient_constant->FoldToSingleValue(); |
| 872 | // Check if the distance is not integral. |
| 873 | if (delta_value % coefficient_value != 0) { |
| 874 | PrintDebug( |
| 875 | "WeakZeroDestinationSIVTest proved independence through distance not " |
| 876 | "being an integer." ); |
| 877 | distance_entry->dependence_information = |
| 878 | DistanceEntry::DependenceInformation::DIRECTION; |
| 879 | distance_entry->direction = DistanceEntry::Directions::NONE; |
| 880 | return true; |
| 881 | } else { |
| 882 | distance = delta_value / coefficient_value; |
| 883 | PrintDebug( |
| 884 | "WeakZeroDestinationSIVTest calculated distance with the following " |
| 885 | "values\n" |
| 886 | "\tdelta value: " + |
| 887 | ToString(delta_value) + |
| 888 | "\n\tcoefficient value: " + ToString(coefficient_value) + |
| 889 | "\n\tdistance: " + ToString(distance) + "\n" ); |
| 890 | } |
| 891 | } else { |
| 892 | PrintDebug( |
| 893 | "WeakZeroDestinationSIVTest was unable to fold delta and coefficient " |
| 894 | "to constants." ); |
| 895 | } |
| 896 | |
| 897 | // If we can prove the distance is outside the bounds we prove independence. |
| 898 | SEConstantNode* lower_bound = |
| 899 | GetLowerBound(subscript_loop)->AsSEConstantNode(); |
| 900 | SEConstantNode* upper_bound = |
| 901 | GetUpperBound(subscript_loop)->AsSEConstantNode(); |
| 902 | if (lower_bound && upper_bound) { |
| 903 | PrintDebug("WeakZeroDestinationSIVTest found bounds as SEConstantNodes." ); |
| 904 | int64_t lower_bound_value = lower_bound->FoldToSingleValue(); |
| 905 | int64_t upper_bound_value = upper_bound->FoldToSingleValue(); |
| 906 | if (!IsWithinBounds(llabs(distance), lower_bound_value, |
| 907 | upper_bound_value)) { |
| 908 | PrintDebug( |
| 909 | "WeakZeroDestinationSIVTest proved independence through distance " |
| 910 | "escaping the loop bounds." ); |
| 911 | PrintDebug( |
| 912 | "Bound values were as follows\n" |
| 913 | "\tlower bound value: " + |
| 914 | ToString(lower_bound_value) + |
| 915 | "\n\tupper bound value: " + ToString(upper_bound_value) + |
| 916 | "\n\tdistance value: " + ToString(distance)); |
| 917 | distance_entry->dependence_information = |
| 918 | DistanceEntry::DependenceInformation::DISTANCE; |
| 919 | distance_entry->direction = DistanceEntry::Directions::NONE; |
| 920 | distance_entry->distance = distance; |
| 921 | return true; |
| 922 | } |
| 923 | } else { |
| 924 | PrintDebug( |
| 925 | "WeakZeroDestinationSIVTest was unable to find lower and upper bound " |
| 926 | "as SEConstantNodes." ); |
| 927 | } |
| 928 | |
| 929 | // Now we want to see if we can detect to peel the first or last iterations. |
| 930 | |
| 931 | // We get the FirstTripValue as GetFirstTripInductionNode() + |
| 932 | // GetConstantTerm(source) |
| 933 | SENode* first_trip_SENode = scalar_evolution_.SimplifyExpression( |
| 934 | scalar_evolution_.CreateAddNode(GetFirstTripInductionNode(subscript_loop), |
| 935 | GetConstantTerm(subscript_loop, source))); |
| 936 | |
| 937 | // If destination == FirstTripValue, peel_first. |
| 938 | if (first_trip_SENode) { |
| 939 | PrintDebug("WeakZeroDestinationSIVTest built first_trip_SENode." ); |
| 940 | if (first_trip_SENode->AsSEConstantNode()) { |
| 941 | PrintDebug( |
| 942 | "WeakZeroDestinationSIVTest has found first_trip_SENode as an " |
| 943 | "SEConstantNode with value: " + |
| 944 | ToString(first_trip_SENode->AsSEConstantNode()->FoldToSingleValue()) + |
| 945 | "\n" ); |
| 946 | } |
| 947 | if (destination == first_trip_SENode) { |
| 948 | // We have found that peeling the first iteration will break dependency. |
| 949 | PrintDebug( |
| 950 | "WeakZeroDestinationSIVTest has found peeling first iteration will " |
| 951 | "break dependency" ); |
| 952 | distance_entry->dependence_information = |
| 953 | DistanceEntry::DependenceInformation::PEEL; |
| 954 | distance_entry->peel_first = true; |
| 955 | return false; |
| 956 | } |
| 957 | } else { |
| 958 | PrintDebug( |
| 959 | "WeakZeroDestinationSIVTest was unable to build first_trip_SENode" ); |
| 960 | } |
| 961 | |
| 962 | // We get the LastTripValue as GetFinalTripInductionNode(coefficient) + |
| 963 | // GetConstantTerm(source) |
| 964 | SENode* final_trip_SENode = |
| 965 | scalar_evolution_.SimplifyExpression(scalar_evolution_.CreateAddNode( |
| 966 | GetFinalTripInductionNode(subscript_loop, coefficient), |
| 967 | GetConstantTerm(subscript_loop, source))); |
| 968 | |
| 969 | // If destination == LastTripValue, peel_last. |
| 970 | if (final_trip_SENode) { |
| 971 | PrintDebug("WeakZeroDestinationSIVTest built final_trip_SENode." ); |
| 972 | if (final_trip_SENode->AsSEConstantNode()) { |
| 973 | PrintDebug( |
| 974 | "WeakZeroDestinationSIVTest has found final_trip_SENode as an " |
| 975 | "SEConstantNode with value: " + |
| 976 | ToString(final_trip_SENode->AsSEConstantNode()->FoldToSingleValue()) + |
| 977 | "\n" ); |
| 978 | } |
| 979 | if (destination == final_trip_SENode) { |
| 980 | // We have found that peeling the last iteration will break dependency. |
| 981 | PrintDebug( |
| 982 | "WeakZeroDestinationSIVTest has found peeling final iteration will " |
| 983 | "break dependency" ); |
| 984 | distance_entry->dependence_information = |
| 985 | DistanceEntry::DependenceInformation::PEEL; |
| 986 | distance_entry->peel_last = true; |
| 987 | return false; |
| 988 | } |
| 989 | } else { |
| 990 | PrintDebug( |
| 991 | "WeakZeroDestinationSIVTest was unable to build final_trip_SENode" ); |
| 992 | } |
| 993 | |
| 994 | // We were unable to prove independence or discern any additional information. |
| 995 | // Must assume <=> direction. |
| 996 | PrintDebug( |
| 997 | "WeakZeroDestinationSIVTest was unable to determine any dependence " |
| 998 | "information." ); |
| 999 | distance_entry->direction = DistanceEntry::Directions::ALL; |
| 1000 | return false; |
| 1001 | } |
| 1002 | |
| 1003 | bool LoopDependenceAnalysis::WeakCrossingSIVTest( |
| 1004 | SENode* source, SENode* destination, SENode* coefficient, |
| 1005 | DistanceEntry* distance_entry) { |
| 1006 | PrintDebug("Performing WeakCrossingSIVTest." ); |
| 1007 | // We currently can't handle symbolic WeakCrossingSIVTests. If either source |
| 1008 | // or destination are not SERecurrentNodes we must exit. |
| 1009 | if (!source->AsSERecurrentNode() || !destination->AsSERecurrentNode()) { |
| 1010 | PrintDebug( |
| 1011 | "WeakCrossingSIVTest found source or destination != SERecurrentNode. " |
| 1012 | "Exiting" ); |
| 1013 | distance_entry->direction = DistanceEntry::Directions::ALL; |
| 1014 | return false; |
| 1015 | } |
| 1016 | |
| 1017 | // Build an SENode for distance. |
| 1018 | SENode* offset_delta = |
| 1019 | scalar_evolution_.SimplifyExpression(scalar_evolution_.CreateSubtraction( |
| 1020 | destination->AsSERecurrentNode()->GetOffset(), |
| 1021 | source->AsSERecurrentNode()->GetOffset())); |
| 1022 | |
| 1023 | // Scalar evolution doesn't perform division, so we must fold to constants and |
| 1024 | // do it manually. |
| 1025 | int64_t distance = 0; |
| 1026 | SEConstantNode* delta_constant = offset_delta->AsSEConstantNode(); |
| 1027 | SEConstantNode* coefficient_constant = coefficient->AsSEConstantNode(); |
| 1028 | if (delta_constant && coefficient_constant) { |
| 1029 | PrintDebug( |
| 1030 | "WeakCrossingSIVTest folding offset_delta and coefficient to " |
| 1031 | "constants." ); |
| 1032 | int64_t delta_value = delta_constant->FoldToSingleValue(); |
| 1033 | int64_t coefficient_value = coefficient_constant->FoldToSingleValue(); |
| 1034 | // Check if the distance is not integral or if it has a non-integral part |
| 1035 | // equal to 1/2. |
| 1036 | if (delta_value % (2 * coefficient_value) != 0 && |
| 1037 | static_cast<float>(delta_value % (2 * coefficient_value)) / |
| 1038 | static_cast<float>(2 * coefficient_value) != |
| 1039 | 0.5) { |
| 1040 | PrintDebug( |
| 1041 | "WeakCrossingSIVTest proved independence through distance escaping " |
| 1042 | "the loop bounds." ); |
| 1043 | distance_entry->dependence_information = |
| 1044 | DistanceEntry::DependenceInformation::DIRECTION; |
| 1045 | distance_entry->direction = DistanceEntry::Directions::NONE; |
| 1046 | return true; |
| 1047 | } else { |
| 1048 | distance = delta_value / (2 * coefficient_value); |
| 1049 | } |
| 1050 | |
| 1051 | if (distance == 0) { |
| 1052 | PrintDebug("WeakCrossingSIVTest found EQ dependence." ); |
| 1053 | distance_entry->dependence_information = |
| 1054 | DistanceEntry::DependenceInformation::DISTANCE; |
| 1055 | distance_entry->direction = DistanceEntry::Directions::EQ; |
| 1056 | distance_entry->distance = 0; |
| 1057 | return false; |
| 1058 | } |
| 1059 | } else { |
| 1060 | PrintDebug( |
| 1061 | "WeakCrossingSIVTest was unable to fold offset_delta and coefficient " |
| 1062 | "to constants." ); |
| 1063 | } |
| 1064 | |
| 1065 | // We were unable to prove independence or discern any additional information. |
| 1066 | // Must assume <=> direction. |
| 1067 | PrintDebug( |
| 1068 | "WeakCrossingSIVTest was unable to determine any dependence " |
| 1069 | "information." ); |
| 1070 | distance_entry->direction = DistanceEntry::Directions::ALL; |
| 1071 | return false; |
| 1072 | } |
| 1073 | |
| 1074 | // Perform the GCD test if both, the source and the destination nodes, are in |
| 1075 | // the form a0*i0 + a1*i1 + ... an*in + c. |
| 1076 | bool LoopDependenceAnalysis::GCDMIVTest( |
| 1077 | const std::pair<SENode*, SENode*>& subscript_pair) { |
| 1078 | auto source = std::get<0>(subscript_pair); |
| 1079 | auto destination = std::get<1>(subscript_pair); |
| 1080 | |
| 1081 | // Bail out if source/destination is in an unexpected form. |
| 1082 | if (!IsInCorrectFormForGCDTest(source) || |
| 1083 | !IsInCorrectFormForGCDTest(destination)) { |
| 1084 | return false; |
| 1085 | } |
| 1086 | |
| 1087 | auto source_recurrences = GetAllTopLevelRecurrences(source); |
| 1088 | auto dest_recurrences = GetAllTopLevelRecurrences(destination); |
| 1089 | |
| 1090 | // Bail out if all offsets and coefficients aren't constant. |
| 1091 | if (!AreOffsetsAndCoefficientsConstant(source_recurrences) || |
| 1092 | !AreOffsetsAndCoefficientsConstant(dest_recurrences)) { |
| 1093 | return false; |
| 1094 | } |
| 1095 | |
| 1096 | // Calculate the GCD of all coefficients. |
| 1097 | auto source_constants = GetAllTopLevelConstants(source); |
| 1098 | int64_t source_constant = |
| 1099 | CalculateConstantTerm(source_recurrences, source_constants); |
| 1100 | |
| 1101 | auto dest_constants = GetAllTopLevelConstants(destination); |
| 1102 | int64_t destination_constant = |
| 1103 | CalculateConstantTerm(dest_recurrences, dest_constants); |
| 1104 | |
| 1105 | int64_t delta = std::abs(source_constant - destination_constant); |
| 1106 | |
| 1107 | int64_t running_gcd = 0; |
| 1108 | |
| 1109 | running_gcd = CalculateGCDFromCoefficients(source_recurrences, running_gcd); |
| 1110 | running_gcd = CalculateGCDFromCoefficients(dest_recurrences, running_gcd); |
| 1111 | |
| 1112 | return delta % running_gcd != 0; |
| 1113 | } |
| 1114 | |
| 1115 | using PartitionedSubscripts = |
| 1116 | std::vector<std::set<std::pair<Instruction*, Instruction*>>>; |
| 1117 | PartitionedSubscripts LoopDependenceAnalysis::PartitionSubscripts( |
| 1118 | const std::vector<Instruction*>& source_subscripts, |
| 1119 | const std::vector<Instruction*>& destination_subscripts) { |
| 1120 | PartitionedSubscripts partitions{}; |
| 1121 | |
| 1122 | auto num_subscripts = source_subscripts.size(); |
| 1123 | |
| 1124 | // Create initial partitions with one subscript pair per partition. |
| 1125 | for (size_t i = 0; i < num_subscripts; ++i) { |
| 1126 | partitions.push_back({{source_subscripts[i], destination_subscripts[i]}}); |
| 1127 | } |
| 1128 | |
| 1129 | // Iterate over the loops to create all partitions |
| 1130 | for (auto loop : loops_) { |
| 1131 | int64_t k = -1; |
| 1132 | |
| 1133 | for (size_t j = 0; j < partitions.size(); ++j) { |
| 1134 | auto& current_partition = partitions[j]; |
| 1135 | |
| 1136 | // Does |loop| appear in |current_partition| |
| 1137 | auto it = std::find_if( |
| 1138 | current_partition.begin(), current_partition.end(), |
| 1139 | [loop, |
| 1140 | this](const std::pair<Instruction*, Instruction*>& elem) -> bool { |
| 1141 | auto source_recurrences = |
| 1142 | scalar_evolution_.AnalyzeInstruction(std::get<0>(elem)) |
| 1143 | ->CollectRecurrentNodes(); |
| 1144 | auto destination_recurrences = |
| 1145 | scalar_evolution_.AnalyzeInstruction(std::get<1>(elem)) |
| 1146 | ->CollectRecurrentNodes(); |
| 1147 | |
| 1148 | source_recurrences.insert(source_recurrences.end(), |
| 1149 | destination_recurrences.begin(), |
| 1150 | destination_recurrences.end()); |
| 1151 | |
| 1152 | auto loops_in_pair = CollectLoops(source_recurrences); |
| 1153 | auto end_it = loops_in_pair.end(); |
| 1154 | |
| 1155 | return std::find(loops_in_pair.begin(), end_it, loop) != end_it; |
| 1156 | }); |
| 1157 | |
| 1158 | auto has_loop = it != current_partition.end(); |
| 1159 | |
| 1160 | if (has_loop) { |
| 1161 | if (k == -1) { |
| 1162 | k = j; |
| 1163 | } else { |
| 1164 | // Add |partitions[j]| to |partitions[k]| and discard |partitions[j]| |
| 1165 | partitions[static_cast<size_t>(k)].insert(current_partition.begin(), |
| 1166 | current_partition.end()); |
| 1167 | current_partition.clear(); |
| 1168 | } |
| 1169 | } |
| 1170 | } |
| 1171 | } |
| 1172 | |
| 1173 | // Remove empty (discarded) partitions |
| 1174 | partitions.erase( |
| 1175 | std::remove_if( |
| 1176 | partitions.begin(), partitions.end(), |
| 1177 | [](const std::set<std::pair<Instruction*, Instruction*>>& partition) { |
| 1178 | return partition.empty(); |
| 1179 | }), |
| 1180 | partitions.end()); |
| 1181 | |
| 1182 | return partitions; |
| 1183 | } |
| 1184 | |
| 1185 | Constraint* LoopDependenceAnalysis::IntersectConstraints( |
| 1186 | Constraint* constraint_0, Constraint* constraint_1, |
| 1187 | const SENode* lower_bound, const SENode* upper_bound) { |
| 1188 | if (constraint_0->AsDependenceNone()) { |
| 1189 | return constraint_1; |
| 1190 | } else if (constraint_1->AsDependenceNone()) { |
| 1191 | return constraint_0; |
| 1192 | } |
| 1193 | |
| 1194 | // Both constraints are distances. Either the same distance or independent. |
| 1195 | if (constraint_0->AsDependenceDistance() && |
| 1196 | constraint_1->AsDependenceDistance()) { |
| 1197 | auto dist_0 = constraint_0->AsDependenceDistance(); |
| 1198 | auto dist_1 = constraint_1->AsDependenceDistance(); |
| 1199 | |
| 1200 | if (*dist_0->GetDistance() == *dist_1->GetDistance()) { |
| 1201 | return constraint_0; |
| 1202 | } else { |
| 1203 | return make_constraint<DependenceEmpty>(); |
| 1204 | } |
| 1205 | } |
| 1206 | |
| 1207 | // Both constraints are points. Either the same point or independent. |
| 1208 | if (constraint_0->AsDependencePoint() && constraint_1->AsDependencePoint()) { |
| 1209 | auto point_0 = constraint_0->AsDependencePoint(); |
| 1210 | auto point_1 = constraint_1->AsDependencePoint(); |
| 1211 | |
| 1212 | if (*point_0->GetSource() == *point_1->GetSource() && |
| 1213 | *point_0->GetDestination() == *point_1->GetDestination()) { |
| 1214 | return constraint_0; |
| 1215 | } else { |
| 1216 | return make_constraint<DependenceEmpty>(); |
| 1217 | } |
| 1218 | } |
| 1219 | |
| 1220 | // Both constraints are lines/distances. |
| 1221 | if ((constraint_0->AsDependenceDistance() || |
| 1222 | constraint_0->AsDependenceLine()) && |
| 1223 | (constraint_1->AsDependenceDistance() || |
| 1224 | constraint_1->AsDependenceLine())) { |
| 1225 | auto is_distance_0 = constraint_0->AsDependenceDistance() != nullptr; |
| 1226 | auto is_distance_1 = constraint_1->AsDependenceDistance() != nullptr; |
| 1227 | |
| 1228 | auto a0 = is_distance_0 ? scalar_evolution_.CreateConstant(1) |
| 1229 | : constraint_0->AsDependenceLine()->GetA(); |
| 1230 | auto b0 = is_distance_0 ? scalar_evolution_.CreateConstant(-1) |
| 1231 | : constraint_0->AsDependenceLine()->GetB(); |
| 1232 | auto c0 = |
| 1233 | is_distance_0 |
| 1234 | ? scalar_evolution_.SimplifyExpression( |
| 1235 | scalar_evolution_.CreateNegation( |
| 1236 | constraint_0->AsDependenceDistance()->GetDistance())) |
| 1237 | : constraint_0->AsDependenceLine()->GetC(); |
| 1238 | |
| 1239 | auto a1 = is_distance_1 ? scalar_evolution_.CreateConstant(1) |
| 1240 | : constraint_1->AsDependenceLine()->GetA(); |
| 1241 | auto b1 = is_distance_1 ? scalar_evolution_.CreateConstant(-1) |
| 1242 | : constraint_1->AsDependenceLine()->GetB(); |
| 1243 | auto c1 = |
| 1244 | is_distance_1 |
| 1245 | ? scalar_evolution_.SimplifyExpression( |
| 1246 | scalar_evolution_.CreateNegation( |
| 1247 | constraint_1->AsDependenceDistance()->GetDistance())) |
| 1248 | : constraint_1->AsDependenceLine()->GetC(); |
| 1249 | |
| 1250 | if (a0->AsSEConstantNode() && b0->AsSEConstantNode() && |
| 1251 | c0->AsSEConstantNode() && a1->AsSEConstantNode() && |
| 1252 | b1->AsSEConstantNode() && c1->AsSEConstantNode()) { |
| 1253 | auto constant_a0 = a0->AsSEConstantNode()->FoldToSingleValue(); |
| 1254 | auto constant_b0 = b0->AsSEConstantNode()->FoldToSingleValue(); |
| 1255 | auto constant_c0 = c0->AsSEConstantNode()->FoldToSingleValue(); |
| 1256 | |
| 1257 | auto constant_a1 = a1->AsSEConstantNode()->FoldToSingleValue(); |
| 1258 | auto constant_b1 = b1->AsSEConstantNode()->FoldToSingleValue(); |
| 1259 | auto constant_c1 = c1->AsSEConstantNode()->FoldToSingleValue(); |
| 1260 | |
| 1261 | // a & b can't both be zero, otherwise it wouldn't be line. |
| 1262 | if (NormalizeAndCompareFractions(constant_a0, constant_b0, constant_a1, |
| 1263 | constant_b1)) { |
| 1264 | // Slopes are equal, either parallel lines or the same line. |
| 1265 | |
| 1266 | if (constant_b0 == 0 && constant_b1 == 0) { |
| 1267 | if (NormalizeAndCompareFractions(constant_c0, constant_a0, |
| 1268 | constant_c1, constant_a1)) { |
| 1269 | return constraint_0; |
| 1270 | } |
| 1271 | |
| 1272 | return make_constraint<DependenceEmpty>(); |
| 1273 | } else if (NormalizeAndCompareFractions(constant_c0, constant_b0, |
| 1274 | constant_c1, constant_b1)) { |
| 1275 | // Same line. |
| 1276 | return constraint_0; |
| 1277 | } else { |
| 1278 | // Parallel lines can't intersect, report independence. |
| 1279 | return make_constraint<DependenceEmpty>(); |
| 1280 | } |
| 1281 | |
| 1282 | } else { |
| 1283 | // Lines are not parallel, therefore, they must intersect. |
| 1284 | |
| 1285 | // Calculate intersection. |
| 1286 | if (upper_bound->AsSEConstantNode() && |
| 1287 | lower_bound->AsSEConstantNode()) { |
| 1288 | auto constant_lower_bound = |
| 1289 | lower_bound->AsSEConstantNode()->FoldToSingleValue(); |
| 1290 | auto constant_upper_bound = |
| 1291 | upper_bound->AsSEConstantNode()->FoldToSingleValue(); |
| 1292 | |
| 1293 | auto up = constant_b1 * constant_c0 - constant_b0 * constant_c1; |
| 1294 | // Both b or both a can't be 0, so down is never 0 |
| 1295 | // otherwise would have entered the parallel line section. |
| 1296 | auto down = constant_b1 * constant_a0 - constant_b0 * constant_a1; |
| 1297 | |
| 1298 | auto x_coord = up / down; |
| 1299 | |
| 1300 | int64_t y_coord = 0; |
| 1301 | int64_t arg1 = 0; |
| 1302 | int64_t const_b_to_use = 0; |
| 1303 | |
| 1304 | if (constant_b1 != 0) { |
| 1305 | arg1 = constant_c1 - constant_a1 * x_coord; |
| 1306 | y_coord = arg1 / constant_b1; |
| 1307 | const_b_to_use = constant_b1; |
| 1308 | } else if (constant_b0 != 0) { |
| 1309 | arg1 = constant_c0 - constant_a0 * x_coord; |
| 1310 | y_coord = arg1 / constant_b0; |
| 1311 | const_b_to_use = constant_b0; |
| 1312 | } |
| 1313 | |
| 1314 | if (up % down == 0 && |
| 1315 | arg1 % const_b_to_use == 0 && // Coordinates are integers. |
| 1316 | constant_lower_bound <= |
| 1317 | x_coord && // x_coord is within loop bounds. |
| 1318 | x_coord <= constant_upper_bound && |
| 1319 | constant_lower_bound <= |
| 1320 | y_coord && // y_coord is within loop bounds. |
| 1321 | y_coord <= constant_upper_bound) { |
| 1322 | // Lines intersect at integer coordinates. |
| 1323 | return make_constraint<DependencePoint>( |
| 1324 | scalar_evolution_.CreateConstant(x_coord), |
| 1325 | scalar_evolution_.CreateConstant(y_coord), |
| 1326 | constraint_0->GetLoop()); |
| 1327 | |
| 1328 | } else { |
| 1329 | return make_constraint<DependenceEmpty>(); |
| 1330 | } |
| 1331 | |
| 1332 | } else { |
| 1333 | // Not constants, bail out. |
| 1334 | return make_constraint<DependenceNone>(); |
| 1335 | } |
| 1336 | } |
| 1337 | |
| 1338 | } else { |
| 1339 | // Not constants, bail out. |
| 1340 | return make_constraint<DependenceNone>(); |
| 1341 | } |
| 1342 | } |
| 1343 | |
| 1344 | // One constraint is a line/distance and the other is a point. |
| 1345 | if ((constraint_0->AsDependencePoint() && |
| 1346 | (constraint_1->AsDependenceLine() || |
| 1347 | constraint_1->AsDependenceDistance())) || |
| 1348 | (constraint_1->AsDependencePoint() && |
| 1349 | (constraint_0->AsDependenceLine() || |
| 1350 | constraint_0->AsDependenceDistance()))) { |
| 1351 | auto point_0 = constraint_0->AsDependencePoint() != nullptr; |
| 1352 | |
| 1353 | auto point = point_0 ? constraint_0->AsDependencePoint() |
| 1354 | : constraint_1->AsDependencePoint(); |
| 1355 | |
| 1356 | auto line_or_distance = point_0 ? constraint_1 : constraint_0; |
| 1357 | |
| 1358 | auto is_distance = line_or_distance->AsDependenceDistance() != nullptr; |
| 1359 | |
| 1360 | auto a = is_distance ? scalar_evolution_.CreateConstant(1) |
| 1361 | : line_or_distance->AsDependenceLine()->GetA(); |
| 1362 | auto b = is_distance ? scalar_evolution_.CreateConstant(-1) |
| 1363 | : line_or_distance->AsDependenceLine()->GetB(); |
| 1364 | auto c = |
| 1365 | is_distance |
| 1366 | ? scalar_evolution_.SimplifyExpression( |
| 1367 | scalar_evolution_.CreateNegation( |
| 1368 | line_or_distance->AsDependenceDistance()->GetDistance())) |
| 1369 | : line_or_distance->AsDependenceLine()->GetC(); |
| 1370 | |
| 1371 | auto x = point->GetSource(); |
| 1372 | auto y = point->GetDestination(); |
| 1373 | |
| 1374 | if (a->AsSEConstantNode() && b->AsSEConstantNode() && |
| 1375 | c->AsSEConstantNode() && x->AsSEConstantNode() && |
| 1376 | y->AsSEConstantNode()) { |
| 1377 | auto constant_a = a->AsSEConstantNode()->FoldToSingleValue(); |
| 1378 | auto constant_b = b->AsSEConstantNode()->FoldToSingleValue(); |
| 1379 | auto constant_c = c->AsSEConstantNode()->FoldToSingleValue(); |
| 1380 | |
| 1381 | auto constant_x = x->AsSEConstantNode()->FoldToSingleValue(); |
| 1382 | auto constant_y = y->AsSEConstantNode()->FoldToSingleValue(); |
| 1383 | |
| 1384 | auto left_hand_side = constant_a * constant_x + constant_b * constant_y; |
| 1385 | |
| 1386 | if (left_hand_side == constant_c) { |
| 1387 | // Point is on line, return point |
| 1388 | return point_0 ? constraint_0 : constraint_1; |
| 1389 | } else { |
| 1390 | // Point not on line, report independence (empty constraint). |
| 1391 | return make_constraint<DependenceEmpty>(); |
| 1392 | } |
| 1393 | |
| 1394 | } else { |
| 1395 | // Not constants, bail out. |
| 1396 | return make_constraint<DependenceNone>(); |
| 1397 | } |
| 1398 | } |
| 1399 | |
| 1400 | return nullptr; |
| 1401 | } |
| 1402 | |
| 1403 | // Propagate constraints function as described in section 5 of Practical |
| 1404 | // Dependence Testing, Goff, Kennedy, Tseng, 1991. |
| 1405 | SubscriptPair LoopDependenceAnalysis::PropagateConstraints( |
| 1406 | const SubscriptPair& subscript_pair, |
| 1407 | const std::vector<Constraint*>& constraints) { |
| 1408 | SENode* new_first = subscript_pair.first; |
| 1409 | SENode* new_second = subscript_pair.second; |
| 1410 | |
| 1411 | for (auto& constraint : constraints) { |
| 1412 | // In the paper this is a[k]. We're extracting the coefficient ('a') of a |
| 1413 | // recurrent expression with respect to the loop 'k'. |
| 1414 | SENode* coefficient_of_recurrent = |
| 1415 | scalar_evolution_.GetCoefficientFromRecurrentTerm( |
| 1416 | new_first, constraint->GetLoop()); |
| 1417 | |
| 1418 | // In the paper this is a'[k]. |
| 1419 | SENode* coefficient_of_recurrent_prime = |
| 1420 | scalar_evolution_.GetCoefficientFromRecurrentTerm( |
| 1421 | new_second, constraint->GetLoop()); |
| 1422 | |
| 1423 | if (constraint->GetType() == Constraint::Distance) { |
| 1424 | DependenceDistance* as_distance = constraint->AsDependenceDistance(); |
| 1425 | |
| 1426 | // In the paper this is a[k]*d |
| 1427 | SENode* rhs = scalar_evolution_.CreateMultiplyNode( |
| 1428 | coefficient_of_recurrent, as_distance->GetDistance()); |
| 1429 | |
| 1430 | // In the paper this is a[k] <- 0 |
| 1431 | SENode* zeroed_coefficient = |
| 1432 | scalar_evolution_.BuildGraphWithoutRecurrentTerm( |
| 1433 | new_first, constraint->GetLoop()); |
| 1434 | |
| 1435 | // In the paper this is e <- e - a[k]*d. |
| 1436 | new_first = scalar_evolution_.CreateSubtraction(zeroed_coefficient, rhs); |
| 1437 | new_first = scalar_evolution_.SimplifyExpression(new_first); |
| 1438 | |
| 1439 | // In the paper this is a'[k] - a[k]. |
| 1440 | SENode* new_child = scalar_evolution_.SimplifyExpression( |
| 1441 | scalar_evolution_.CreateSubtraction(coefficient_of_recurrent_prime, |
| 1442 | coefficient_of_recurrent)); |
| 1443 | |
| 1444 | // In the paper this is a'[k]'i[k]. |
| 1445 | SERecurrentNode* prime_recurrent = |
| 1446 | scalar_evolution_.GetRecurrentTerm(new_second, constraint->GetLoop()); |
| 1447 | |
| 1448 | if (!prime_recurrent) continue; |
| 1449 | |
| 1450 | // As we hash the nodes we need to create a new node when we update a |
| 1451 | // child. |
| 1452 | SENode* new_recurrent = scalar_evolution_.CreateRecurrentExpression( |
| 1453 | constraint->GetLoop(), prime_recurrent->GetOffset(), new_child); |
| 1454 | // In the paper this is a'[k] <- a'[k] - a[k]. |
| 1455 | new_second = scalar_evolution_.UpdateChildNode( |
| 1456 | new_second, prime_recurrent, new_recurrent); |
| 1457 | } |
| 1458 | } |
| 1459 | |
| 1460 | new_second = scalar_evolution_.SimplifyExpression(new_second); |
| 1461 | return std::make_pair(new_first, new_second); |
| 1462 | } |
| 1463 | |
| 1464 | bool LoopDependenceAnalysis::DeltaTest( |
| 1465 | const std::vector<SubscriptPair>& coupled_subscripts, |
| 1466 | DistanceVector* dv_entry) { |
| 1467 | std::vector<Constraint*> constraints(loops_.size()); |
| 1468 | |
| 1469 | std::vector<bool> loop_appeared(loops_.size()); |
| 1470 | |
| 1471 | std::generate(std::begin(constraints), std::end(constraints), |
| 1472 | [this]() { return make_constraint<DependenceNone>(); }); |
| 1473 | |
| 1474 | // Separate SIV and MIV subscripts |
| 1475 | std::vector<SubscriptPair> siv_subscripts{}; |
| 1476 | std::vector<SubscriptPair> miv_subscripts{}; |
| 1477 | |
| 1478 | for (const auto& subscript_pair : coupled_subscripts) { |
| 1479 | if (IsSIV(subscript_pair)) { |
| 1480 | siv_subscripts.push_back(subscript_pair); |
| 1481 | } else { |
| 1482 | miv_subscripts.push_back(subscript_pair); |
| 1483 | } |
| 1484 | } |
| 1485 | |
| 1486 | // Delta Test |
| 1487 | while (!siv_subscripts.empty()) { |
| 1488 | std::vector<bool> results(siv_subscripts.size()); |
| 1489 | |
| 1490 | std::vector<DistanceVector> current_distances( |
| 1491 | siv_subscripts.size(), DistanceVector(loops_.size())); |
| 1492 | |
| 1493 | // Apply SIV test to all SIV subscripts, report independence if any of them |
| 1494 | // is independent |
| 1495 | std::transform( |
| 1496 | std::begin(siv_subscripts), std::end(siv_subscripts), |
| 1497 | std::begin(current_distances), std::begin(results), |
| 1498 | [this](SubscriptPair& p, DistanceVector& d) { return SIVTest(p, &d); }); |
| 1499 | |
| 1500 | if (std::accumulate(std::begin(results), std::end(results), false, |
| 1501 | std::logical_or<bool>{})) { |
| 1502 | return true; |
| 1503 | } |
| 1504 | |
| 1505 | // Derive new constraint vector. |
| 1506 | std::vector<std::pair<Constraint*, size_t>> all_new_constrants{}; |
| 1507 | |
| 1508 | for (size_t i = 0; i < siv_subscripts.size(); ++i) { |
| 1509 | auto loop = GetLoopForSubscriptPair(siv_subscripts[i]); |
| 1510 | |
| 1511 | auto loop_id = |
| 1512 | std::distance(std::begin(loops_), |
| 1513 | std::find(std::begin(loops_), std::end(loops_), loop)); |
| 1514 | |
| 1515 | loop_appeared[loop_id] = true; |
| 1516 | auto distance_entry = current_distances[i].GetEntries()[loop_id]; |
| 1517 | |
| 1518 | if (distance_entry.dependence_information == |
| 1519 | DistanceEntry::DependenceInformation::DISTANCE) { |
| 1520 | // Construct a DependenceDistance. |
| 1521 | auto node = scalar_evolution_.CreateConstant(distance_entry.distance); |
| 1522 | |
| 1523 | all_new_constrants.push_back( |
| 1524 | {make_constraint<DependenceDistance>(node, loop), loop_id}); |
| 1525 | } else { |
| 1526 | // Construct a DependenceLine. |
| 1527 | const auto& subscript_pair = siv_subscripts[i]; |
| 1528 | SENode* source_node = std::get<0>(subscript_pair); |
| 1529 | SENode* destination_node = std::get<1>(subscript_pair); |
| 1530 | |
| 1531 | int64_t source_induction_count = CountInductionVariables(source_node); |
| 1532 | int64_t destination_induction_count = |
| 1533 | CountInductionVariables(destination_node); |
| 1534 | |
| 1535 | SENode* a = nullptr; |
| 1536 | SENode* b = nullptr; |
| 1537 | SENode* c = nullptr; |
| 1538 | |
| 1539 | if (destination_induction_count != 0) { |
| 1540 | a = destination_node->AsSERecurrentNode()->GetCoefficient(); |
| 1541 | c = scalar_evolution_.CreateNegation( |
| 1542 | destination_node->AsSERecurrentNode()->GetOffset()); |
| 1543 | } else { |
| 1544 | a = scalar_evolution_.CreateConstant(0); |
| 1545 | c = scalar_evolution_.CreateNegation(destination_node); |
| 1546 | } |
| 1547 | |
| 1548 | if (source_induction_count != 0) { |
| 1549 | b = scalar_evolution_.CreateNegation( |
| 1550 | source_node->AsSERecurrentNode()->GetCoefficient()); |
| 1551 | c = scalar_evolution_.CreateAddNode( |
| 1552 | c, source_node->AsSERecurrentNode()->GetOffset()); |
| 1553 | } else { |
| 1554 | b = scalar_evolution_.CreateConstant(0); |
| 1555 | c = scalar_evolution_.CreateAddNode(c, source_node); |
| 1556 | } |
| 1557 | |
| 1558 | a = scalar_evolution_.SimplifyExpression(a); |
| 1559 | b = scalar_evolution_.SimplifyExpression(b); |
| 1560 | c = scalar_evolution_.SimplifyExpression(c); |
| 1561 | |
| 1562 | all_new_constrants.push_back( |
| 1563 | {make_constraint<DependenceLine>(a, b, c, loop), loop_id}); |
| 1564 | } |
| 1565 | } |
| 1566 | |
| 1567 | // Calculate the intersection between the new and existing constraints. |
| 1568 | std::vector<Constraint*> intersection = constraints; |
| 1569 | for (const auto& constraint_to_intersect : all_new_constrants) { |
| 1570 | auto loop_id = std::get<1>(constraint_to_intersect); |
| 1571 | auto loop = loops_[loop_id]; |
| 1572 | intersection[loop_id] = IntersectConstraints( |
| 1573 | intersection[loop_id], std::get<0>(constraint_to_intersect), |
| 1574 | GetLowerBound(loop), GetUpperBound(loop)); |
| 1575 | } |
| 1576 | |
| 1577 | // Report independence if an empty constraint (DependenceEmpty) is found. |
| 1578 | auto first_empty = |
| 1579 | std::find_if(std::begin(intersection), std::end(intersection), |
| 1580 | [](Constraint* constraint) { |
| 1581 | return constraint->AsDependenceEmpty() != nullptr; |
| 1582 | }); |
| 1583 | if (first_empty != std::end(intersection)) { |
| 1584 | return true; |
| 1585 | } |
| 1586 | std::vector<SubscriptPair> new_siv_subscripts{}; |
| 1587 | std::vector<SubscriptPair> new_miv_subscripts{}; |
| 1588 | |
| 1589 | auto equal = |
| 1590 | std::equal(std::begin(constraints), std::end(constraints), |
| 1591 | std::begin(intersection), |
| 1592 | [](Constraint* a, Constraint* b) { return *a == *b; }); |
| 1593 | |
| 1594 | // If any constraints have changed, propagate them into the rest of the |
| 1595 | // subscripts possibly creating new ZIV/SIV subscripts. |
| 1596 | if (!equal) { |
| 1597 | std::vector<SubscriptPair> new_subscripts(miv_subscripts.size()); |
| 1598 | |
| 1599 | // Propagate constraints into MIV subscripts |
| 1600 | std::transform(std::begin(miv_subscripts), std::end(miv_subscripts), |
| 1601 | std::begin(new_subscripts), |
| 1602 | [this, &intersection](SubscriptPair& subscript_pair) { |
| 1603 | return PropagateConstraints(subscript_pair, |
| 1604 | intersection); |
| 1605 | }); |
| 1606 | |
| 1607 | // If a ZIV subscript is returned, apply test, otherwise, update untested |
| 1608 | // subscripts. |
| 1609 | for (auto& subscript : new_subscripts) { |
| 1610 | if (IsZIV(subscript) && ZIVTest(subscript)) { |
| 1611 | return true; |
| 1612 | } else if (IsSIV(subscript)) { |
| 1613 | new_siv_subscripts.push_back(subscript); |
| 1614 | } else { |
| 1615 | new_miv_subscripts.push_back(subscript); |
| 1616 | } |
| 1617 | } |
| 1618 | } |
| 1619 | |
| 1620 | // Set new constraints and subscripts to test. |
| 1621 | std::swap(siv_subscripts, new_siv_subscripts); |
| 1622 | std::swap(miv_subscripts, new_miv_subscripts); |
| 1623 | std::swap(constraints, intersection); |
| 1624 | } |
| 1625 | |
| 1626 | // Create the dependence vector from the constraints. |
| 1627 | for (size_t i = 0; i < loops_.size(); ++i) { |
| 1628 | // Don't touch entries for loops that weren't tested. |
| 1629 | if (loop_appeared[i]) { |
| 1630 | auto current_constraint = constraints[i]; |
| 1631 | auto& current_distance_entry = (*dv_entry).GetEntries()[i]; |
| 1632 | |
| 1633 | if (auto dependence_distance = |
| 1634 | current_constraint->AsDependenceDistance()) { |
| 1635 | if (auto constant_node = |
| 1636 | dependence_distance->GetDistance()->AsSEConstantNode()) { |
| 1637 | current_distance_entry.dependence_information = |
| 1638 | DistanceEntry::DependenceInformation::DISTANCE; |
| 1639 | |
| 1640 | current_distance_entry.distance = constant_node->FoldToSingleValue(); |
| 1641 | if (current_distance_entry.distance == 0) { |
| 1642 | current_distance_entry.direction = DistanceEntry::Directions::EQ; |
| 1643 | } else if (current_distance_entry.distance < 0) { |
| 1644 | current_distance_entry.direction = DistanceEntry::Directions::GT; |
| 1645 | } else { |
| 1646 | current_distance_entry.direction = DistanceEntry::Directions::LT; |
| 1647 | } |
| 1648 | } |
| 1649 | } else if (auto dependence_point = |
| 1650 | current_constraint->AsDependencePoint()) { |
| 1651 | auto source = dependence_point->GetSource(); |
| 1652 | auto destination = dependence_point->GetDestination(); |
| 1653 | |
| 1654 | if (source->AsSEConstantNode() && destination->AsSEConstantNode()) { |
| 1655 | current_distance_entry = DistanceEntry( |
| 1656 | source->AsSEConstantNode()->FoldToSingleValue(), |
| 1657 | destination->AsSEConstantNode()->FoldToSingleValue()); |
| 1658 | } |
| 1659 | } |
| 1660 | } |
| 1661 | } |
| 1662 | |
| 1663 | // Test any remaining MIV subscripts and report independence if found. |
| 1664 | std::vector<bool> results(miv_subscripts.size()); |
| 1665 | |
| 1666 | std::transform(std::begin(miv_subscripts), std::end(miv_subscripts), |
| 1667 | std::begin(results), |
| 1668 | [this](const SubscriptPair& p) { return GCDMIVTest(p); }); |
| 1669 | |
| 1670 | return std::accumulate(std::begin(results), std::end(results), false, |
| 1671 | std::logical_or<bool>{}); |
| 1672 | } |
| 1673 | |
| 1674 | } // namespace opt |
| 1675 | } // namespace spvtools |
| 1676 | |