1 | // Copyright (c) 2018 Google LLC. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | |
15 | #include "source/opt/loop_dependence.h" |
16 | |
17 | #include <functional> |
18 | #include <memory> |
19 | #include <numeric> |
20 | #include <string> |
21 | #include <utility> |
22 | #include <vector> |
23 | |
24 | #include "source/opt/instruction.h" |
25 | #include "source/opt/scalar_analysis.h" |
26 | #include "source/opt/scalar_analysis_nodes.h" |
27 | |
28 | namespace spvtools { |
29 | namespace opt { |
30 | |
31 | using SubscriptPair = std::pair<SENode*, SENode*>; |
32 | |
33 | namespace { |
34 | |
35 | // Calculate the greatest common divisor of a & b using Stein's algorithm. |
36 | // https://en.wikipedia.org/wiki/Binary_GCD_algorithm |
37 | int64_t GreatestCommonDivisor(int64_t a, int64_t b) { |
38 | // Simple cases |
39 | if (a == b) { |
40 | return a; |
41 | } else if (a == 0) { |
42 | return b; |
43 | } else if (b == 0) { |
44 | return a; |
45 | } |
46 | |
47 | // Both even |
48 | if (a % 2 == 0 && b % 2 == 0) { |
49 | return 2 * GreatestCommonDivisor(a / 2, b / 2); |
50 | } |
51 | |
52 | // Even a, odd b |
53 | if (a % 2 == 0 && b % 2 == 1) { |
54 | return GreatestCommonDivisor(a / 2, b); |
55 | } |
56 | |
57 | // Odd a, even b |
58 | if (a % 2 == 1 && b % 2 == 0) { |
59 | return GreatestCommonDivisor(a, b / 2); |
60 | } |
61 | |
62 | // Both odd, reduce the larger argument |
63 | if (a > b) { |
64 | return GreatestCommonDivisor((a - b) / 2, b); |
65 | } else { |
66 | return GreatestCommonDivisor((b - a) / 2, a); |
67 | } |
68 | } |
69 | |
70 | // Check if node is affine, ie in the form: a0*i0 + a1*i1 + ... an*in + c |
71 | // and contains only the following types of nodes: SERecurrentNode, SEAddNode |
72 | // and SEConstantNode |
73 | bool IsInCorrectFormForGCDTest(SENode* node) { |
74 | bool children_ok = true; |
75 | |
76 | if (auto add_node = node->AsSEAddNode()) { |
77 | for (auto child : add_node->GetChildren()) { |
78 | children_ok &= IsInCorrectFormForGCDTest(child); |
79 | } |
80 | } |
81 | |
82 | bool this_ok = node->AsSERecurrentNode() || node->AsSEAddNode() || |
83 | node->AsSEConstantNode(); |
84 | |
85 | return children_ok && this_ok; |
86 | } |
87 | |
88 | // If |node| is an SERecurrentNode then returns |node| or if |node| is an |
89 | // SEAddNode returns a vector of SERecurrentNode that are its children. |
90 | std::vector<SERecurrentNode*> GetAllTopLevelRecurrences(SENode* node) { |
91 | auto nodes = std::vector<SERecurrentNode*>{}; |
92 | if (auto recurrent_node = node->AsSERecurrentNode()) { |
93 | nodes.push_back(recurrent_node); |
94 | } |
95 | |
96 | if (auto add_node = node->AsSEAddNode()) { |
97 | for (auto child : add_node->GetChildren()) { |
98 | auto child_nodes = GetAllTopLevelRecurrences(child); |
99 | nodes.insert(nodes.end(), child_nodes.begin(), child_nodes.end()); |
100 | } |
101 | } |
102 | |
103 | return nodes; |
104 | } |
105 | |
106 | // If |node| is an SEConstantNode then returns |node| or if |node| is an |
107 | // SEAddNode returns a vector of SEConstantNode that are its children. |
108 | std::vector<SEConstantNode*> GetAllTopLevelConstants(SENode* node) { |
109 | auto nodes = std::vector<SEConstantNode*>{}; |
110 | if (auto recurrent_node = node->AsSEConstantNode()) { |
111 | nodes.push_back(recurrent_node); |
112 | } |
113 | |
114 | if (auto add_node = node->AsSEAddNode()) { |
115 | for (auto child : add_node->GetChildren()) { |
116 | auto child_nodes = GetAllTopLevelConstants(child); |
117 | nodes.insert(nodes.end(), child_nodes.begin(), child_nodes.end()); |
118 | } |
119 | } |
120 | |
121 | return nodes; |
122 | } |
123 | |
124 | bool AreOffsetsAndCoefficientsConstant( |
125 | const std::vector<SERecurrentNode*>& nodes) { |
126 | for (auto node : nodes) { |
127 | if (!node->GetOffset()->AsSEConstantNode() || |
128 | !node->GetOffset()->AsSEConstantNode()) { |
129 | return false; |
130 | } |
131 | } |
132 | return true; |
133 | } |
134 | |
135 | // Fold all SEConstantNode that appear in |recurrences| and |constants| into a |
136 | // single integer value. |
137 | int64_t CalculateConstantTerm(const std::vector<SERecurrentNode*>& recurrences, |
138 | const std::vector<SEConstantNode*>& constants) { |
139 | int64_t constant_term = 0; |
140 | for (auto recurrence : recurrences) { |
141 | constant_term += |
142 | recurrence->GetOffset()->AsSEConstantNode()->FoldToSingleValue(); |
143 | } |
144 | |
145 | for (auto constant : constants) { |
146 | constant_term += constant->FoldToSingleValue(); |
147 | } |
148 | |
149 | return constant_term; |
150 | } |
151 | |
152 | int64_t CalculateGCDFromCoefficients( |
153 | const std::vector<SERecurrentNode*>& recurrences, int64_t running_gcd) { |
154 | for (SERecurrentNode* recurrence : recurrences) { |
155 | auto coefficient = recurrence->GetCoefficient()->AsSEConstantNode(); |
156 | |
157 | running_gcd = GreatestCommonDivisor( |
158 | running_gcd, std::abs(coefficient->FoldToSingleValue())); |
159 | } |
160 | |
161 | return running_gcd; |
162 | } |
163 | |
164 | // Compare 2 fractions while first normalizing them, e.g. 2/4 and 4/8 will both |
165 | // be simplified to 1/2 and then determined to be equal. |
166 | bool NormalizeAndCompareFractions(int64_t numerator_0, int64_t denominator_0, |
167 | int64_t numerator_1, int64_t denominator_1) { |
168 | auto gcd_0 = |
169 | GreatestCommonDivisor(std::abs(numerator_0), std::abs(denominator_0)); |
170 | auto gcd_1 = |
171 | GreatestCommonDivisor(std::abs(numerator_1), std::abs(denominator_1)); |
172 | |
173 | auto normalized_numerator_0 = numerator_0 / gcd_0; |
174 | auto normalized_denominator_0 = denominator_0 / gcd_0; |
175 | auto normalized_numerator_1 = numerator_1 / gcd_1; |
176 | auto normalized_denominator_1 = denominator_1 / gcd_1; |
177 | |
178 | return normalized_numerator_0 == normalized_numerator_1 && |
179 | normalized_denominator_0 == normalized_denominator_1; |
180 | } |
181 | |
182 | } // namespace |
183 | |
184 | bool LoopDependenceAnalysis::GetDependence(const Instruction* source, |
185 | const Instruction* destination, |
186 | DistanceVector* distance_vector) { |
187 | // Start off by finding and marking all the loops in |loops_| that are |
188 | // irrelevant to the dependence analysis. |
189 | MarkUnsusedDistanceEntriesAsIrrelevant(source, destination, distance_vector); |
190 | |
191 | Instruction* source_access_chain = GetOperandDefinition(source, 0); |
192 | Instruction* destination_access_chain = GetOperandDefinition(destination, 0); |
193 | |
194 | auto num_access_chains = |
195 | (source_access_chain->opcode() == SpvOpAccessChain) + |
196 | (destination_access_chain->opcode() == SpvOpAccessChain); |
197 | |
198 | // If neither is an access chain, then they are load/store to a variable. |
199 | if (num_access_chains == 0) { |
200 | if (source_access_chain != destination_access_chain) { |
201 | // Not the same location, report independence |
202 | return true; |
203 | } else { |
204 | // Accessing the same variable |
205 | for (auto& entry : distance_vector->GetEntries()) { |
206 | entry = DistanceEntry(); |
207 | } |
208 | return false; |
209 | } |
210 | } |
211 | |
212 | // If only one is an access chain, it could be accessing a part of a struct |
213 | if (num_access_chains == 1) { |
214 | auto source_is_chain = source_access_chain->opcode() == SpvOpAccessChain; |
215 | auto access_chain = |
216 | source_is_chain ? source_access_chain : destination_access_chain; |
217 | auto variable = |
218 | source_is_chain ? destination_access_chain : source_access_chain; |
219 | |
220 | auto location_in_chain = GetOperandDefinition(access_chain, 0); |
221 | |
222 | if (variable != location_in_chain) { |
223 | // Not the same location, report independence |
224 | return true; |
225 | } else { |
226 | // Accessing the same variable |
227 | for (auto& entry : distance_vector->GetEntries()) { |
228 | entry = DistanceEntry(); |
229 | } |
230 | return false; |
231 | } |
232 | } |
233 | |
234 | // If the access chains aren't collecting from the same structure there is no |
235 | // dependence. |
236 | Instruction* source_array = GetOperandDefinition(source_access_chain, 0); |
237 | Instruction* destination_array = |
238 | GetOperandDefinition(destination_access_chain, 0); |
239 | |
240 | // Nested access chains are not supported yet, bail out. |
241 | if (source_array->opcode() == SpvOpAccessChain || |
242 | destination_array->opcode() == SpvOpAccessChain) { |
243 | for (auto& entry : distance_vector->GetEntries()) { |
244 | entry = DistanceEntry(); |
245 | } |
246 | return false; |
247 | } |
248 | |
249 | if (source_array != destination_array) { |
250 | PrintDebug("Proved independence through different arrays." ); |
251 | return true; |
252 | } |
253 | |
254 | // To handle multiple subscripts we must get every operand in the access |
255 | // chains past the first. |
256 | std::vector<Instruction*> source_subscripts = GetSubscripts(source); |
257 | std::vector<Instruction*> destination_subscripts = GetSubscripts(destination); |
258 | |
259 | auto sets_of_subscripts = |
260 | PartitionSubscripts(source_subscripts, destination_subscripts); |
261 | |
262 | auto first_coupled = std::partition( |
263 | std::begin(sets_of_subscripts), std::end(sets_of_subscripts), |
264 | [](const std::set<std::pair<Instruction*, Instruction*>>& set) { |
265 | return set.size() == 1; |
266 | }); |
267 | |
268 | // Go through each subscript testing for independence. |
269 | // If any subscript results in independence, we prove independence between the |
270 | // load and store. |
271 | // If we can't prove independence we store what information we can gather in |
272 | // a DistanceVector. |
273 | for (auto it = std::begin(sets_of_subscripts); it < first_coupled; ++it) { |
274 | auto source_subscript = std::get<0>(*(*it).begin()); |
275 | auto destination_subscript = std::get<1>(*(*it).begin()); |
276 | |
277 | SENode* source_node = scalar_evolution_.SimplifyExpression( |
278 | scalar_evolution_.AnalyzeInstruction(source_subscript)); |
279 | SENode* destination_node = scalar_evolution_.SimplifyExpression( |
280 | scalar_evolution_.AnalyzeInstruction(destination_subscript)); |
281 | |
282 | // Check the loops are in a form we support. |
283 | auto subscript_pair = std::make_pair(source_node, destination_node); |
284 | |
285 | const Loop* loop = GetLoopForSubscriptPair(subscript_pair); |
286 | if (loop) { |
287 | if (!IsSupportedLoop(loop)) { |
288 | PrintDebug( |
289 | "GetDependence found an unsupported loop form. Assuming <=> for " |
290 | "loop." ); |
291 | DistanceEntry* distance_entry = |
292 | GetDistanceEntryForSubscriptPair(subscript_pair, distance_vector); |
293 | if (distance_entry) { |
294 | distance_entry->direction = DistanceEntry::Directions::ALL; |
295 | } |
296 | continue; |
297 | } |
298 | } |
299 | |
300 | // If either node is simplified to a CanNotCompute we can't perform any |
301 | // analysis so must assume <=> dependence and return. |
302 | if (source_node->GetType() == SENode::CanNotCompute || |
303 | destination_node->GetType() == SENode::CanNotCompute) { |
304 | // Record the <=> dependence if we can get a DistanceEntry |
305 | PrintDebug( |
306 | "GetDependence found source_node || destination_node as " |
307 | "CanNotCompute. Abandoning evaluation for this subscript." ); |
308 | DistanceEntry* distance_entry = |
309 | GetDistanceEntryForSubscriptPair(subscript_pair, distance_vector); |
310 | if (distance_entry) { |
311 | distance_entry->direction = DistanceEntry::Directions::ALL; |
312 | } |
313 | continue; |
314 | } |
315 | |
316 | // We have no induction variables so can apply a ZIV test. |
317 | if (IsZIV(subscript_pair)) { |
318 | PrintDebug("Found a ZIV subscript pair" ); |
319 | if (ZIVTest(subscript_pair)) { |
320 | PrintDebug("Proved independence with ZIVTest." ); |
321 | return true; |
322 | } |
323 | } |
324 | |
325 | // We have only one induction variable so should attempt an SIV test. |
326 | if (IsSIV(subscript_pair)) { |
327 | PrintDebug("Found a SIV subscript pair." ); |
328 | if (SIVTest(subscript_pair, distance_vector)) { |
329 | PrintDebug("Proved independence with SIVTest." ); |
330 | return true; |
331 | } |
332 | } |
333 | |
334 | // We have multiple induction variables so should attempt an MIV test. |
335 | if (IsMIV(subscript_pair)) { |
336 | PrintDebug("Found a MIV subscript pair." ); |
337 | if (GCDMIVTest(subscript_pair)) { |
338 | PrintDebug("Proved independence with the GCD test." ); |
339 | auto current_loops = CollectLoops(source_node, destination_node); |
340 | |
341 | for (auto current_loop : current_loops) { |
342 | auto distance_entry = |
343 | GetDistanceEntryForLoop(current_loop, distance_vector); |
344 | distance_entry->direction = DistanceEntry::Directions::NONE; |
345 | } |
346 | return true; |
347 | } |
348 | } |
349 | } |
350 | |
351 | for (auto it = first_coupled; it < std::end(sets_of_subscripts); ++it) { |
352 | auto coupled_instructions = *it; |
353 | std::vector<SubscriptPair> coupled_subscripts{}; |
354 | |
355 | for (const auto& elem : coupled_instructions) { |
356 | auto source_subscript = std::get<0>(elem); |
357 | auto destination_subscript = std::get<1>(elem); |
358 | |
359 | SENode* source_node = scalar_evolution_.SimplifyExpression( |
360 | scalar_evolution_.AnalyzeInstruction(source_subscript)); |
361 | SENode* destination_node = scalar_evolution_.SimplifyExpression( |
362 | scalar_evolution_.AnalyzeInstruction(destination_subscript)); |
363 | |
364 | coupled_subscripts.push_back({source_node, destination_node}); |
365 | } |
366 | |
367 | auto supported = true; |
368 | |
369 | for (const auto& subscript : coupled_subscripts) { |
370 | auto loops = CollectLoops(std::get<0>(subscript), std::get<1>(subscript)); |
371 | |
372 | auto is_subscript_supported = |
373 | std::all_of(std::begin(loops), std::end(loops), |
374 | [this](const Loop* l) { return IsSupportedLoop(l); }); |
375 | |
376 | supported = supported && is_subscript_supported; |
377 | } |
378 | |
379 | if (DeltaTest(coupled_subscripts, distance_vector)) { |
380 | return true; |
381 | } |
382 | } |
383 | |
384 | // We were unable to prove independence so must gather all of the direction |
385 | // information we found. |
386 | PrintDebug( |
387 | "Couldn't prove independence.\n" |
388 | "All possible direction information has been collected in the input " |
389 | "DistanceVector." ); |
390 | |
391 | return false; |
392 | } |
393 | |
394 | bool LoopDependenceAnalysis::ZIVTest( |
395 | const std::pair<SENode*, SENode*>& subscript_pair) { |
396 | auto source = std::get<0>(subscript_pair); |
397 | auto destination = std::get<1>(subscript_pair); |
398 | |
399 | PrintDebug("Performing ZIVTest" ); |
400 | // If source == destination, dependence with direction = and distance 0. |
401 | if (source == destination) { |
402 | PrintDebug("ZIVTest found EQ dependence." ); |
403 | return false; |
404 | } else { |
405 | PrintDebug("ZIVTest found independence." ); |
406 | // Otherwise we prove independence. |
407 | return true; |
408 | } |
409 | } |
410 | |
411 | bool LoopDependenceAnalysis::SIVTest( |
412 | const std::pair<SENode*, SENode*>& subscript_pair, |
413 | DistanceVector* distance_vector) { |
414 | DistanceEntry* distance_entry = |
415 | GetDistanceEntryForSubscriptPair(subscript_pair, distance_vector); |
416 | if (!distance_entry) { |
417 | PrintDebug( |
418 | "SIVTest could not find a DistanceEntry for subscript_pair. Exiting" ); |
419 | } |
420 | |
421 | SENode* source_node = std::get<0>(subscript_pair); |
422 | SENode* destination_node = std::get<1>(subscript_pair); |
423 | |
424 | int64_t source_induction_count = CountInductionVariables(source_node); |
425 | int64_t destination_induction_count = |
426 | CountInductionVariables(destination_node); |
427 | |
428 | // If the source node has no induction variables we can apply a |
429 | // WeakZeroSrcTest. |
430 | if (source_induction_count == 0) { |
431 | PrintDebug("Found source has no induction variable." ); |
432 | if (WeakZeroSourceSIVTest( |
433 | source_node, destination_node->AsSERecurrentNode(), |
434 | destination_node->AsSERecurrentNode()->GetCoefficient(), |
435 | distance_entry)) { |
436 | PrintDebug("Proved independence with WeakZeroSourceSIVTest." ); |
437 | distance_entry->dependence_information = |
438 | DistanceEntry::DependenceInformation::DIRECTION; |
439 | distance_entry->direction = DistanceEntry::Directions::NONE; |
440 | return true; |
441 | } |
442 | } |
443 | |
444 | // If the destination has no induction variables we can apply a |
445 | // WeakZeroDestTest. |
446 | if (destination_induction_count == 0) { |
447 | PrintDebug("Found destination has no induction variable." ); |
448 | if (WeakZeroDestinationSIVTest( |
449 | source_node->AsSERecurrentNode(), destination_node, |
450 | source_node->AsSERecurrentNode()->GetCoefficient(), |
451 | distance_entry)) { |
452 | PrintDebug("Proved independence with WeakZeroDestinationSIVTest." ); |
453 | distance_entry->dependence_information = |
454 | DistanceEntry::DependenceInformation::DIRECTION; |
455 | distance_entry->direction = DistanceEntry::Directions::NONE; |
456 | return true; |
457 | } |
458 | } |
459 | |
460 | // We now need to collect the SERecurrentExpr nodes from source and |
461 | // destination. We do not handle cases where source or destination have |
462 | // multiple SERecurrentExpr nodes. |
463 | std::vector<SERecurrentNode*> source_recurrent_nodes = |
464 | source_node->CollectRecurrentNodes(); |
465 | std::vector<SERecurrentNode*> destination_recurrent_nodes = |
466 | destination_node->CollectRecurrentNodes(); |
467 | |
468 | if (source_recurrent_nodes.size() == 1 && |
469 | destination_recurrent_nodes.size() == 1) { |
470 | PrintDebug("Found source and destination have 1 induction variable." ); |
471 | SERecurrentNode* source_recurrent_expr = *source_recurrent_nodes.begin(); |
472 | SERecurrentNode* destination_recurrent_expr = |
473 | *destination_recurrent_nodes.begin(); |
474 | |
475 | // If the coefficients are identical we can apply a StrongSIVTest. |
476 | if (source_recurrent_expr->GetCoefficient() == |
477 | destination_recurrent_expr->GetCoefficient()) { |
478 | PrintDebug("Found source and destination share coefficient." ); |
479 | if (StrongSIVTest(source_node, destination_node, |
480 | source_recurrent_expr->GetCoefficient(), |
481 | distance_entry)) { |
482 | PrintDebug("Proved independence with StrongSIVTest" ); |
483 | distance_entry->dependence_information = |
484 | DistanceEntry::DependenceInformation::DIRECTION; |
485 | distance_entry->direction = DistanceEntry::Directions::NONE; |
486 | return true; |
487 | } |
488 | } |
489 | |
490 | // If the coefficients are of equal magnitude and opposite sign we can |
491 | // apply a WeakCrossingSIVTest. |
492 | if (source_recurrent_expr->GetCoefficient() == |
493 | scalar_evolution_.CreateNegation( |
494 | destination_recurrent_expr->GetCoefficient())) { |
495 | PrintDebug("Found source coefficient = -destination coefficient." ); |
496 | if (WeakCrossingSIVTest(source_node, destination_node, |
497 | source_recurrent_expr->GetCoefficient(), |
498 | distance_entry)) { |
499 | PrintDebug("Proved independence with WeakCrossingSIVTest" ); |
500 | distance_entry->dependence_information = |
501 | DistanceEntry::DependenceInformation::DIRECTION; |
502 | distance_entry->direction = DistanceEntry::Directions::NONE; |
503 | return true; |
504 | } |
505 | } |
506 | } |
507 | |
508 | return false; |
509 | } |
510 | |
511 | bool LoopDependenceAnalysis::StrongSIVTest(SENode* source, SENode* destination, |
512 | SENode* coefficient, |
513 | DistanceEntry* distance_entry) { |
514 | PrintDebug("Performing StrongSIVTest." ); |
515 | // If both source and destination are SERecurrentNodes we can perform tests |
516 | // based on distance. |
517 | // If either source or destination contain value unknown nodes or if one or |
518 | // both are not SERecurrentNodes we must attempt a symbolic test. |
519 | std::vector<SEValueUnknown*> source_value_unknown_nodes = |
520 | source->CollectValueUnknownNodes(); |
521 | std::vector<SEValueUnknown*> destination_value_unknown_nodes = |
522 | destination->CollectValueUnknownNodes(); |
523 | if (source_value_unknown_nodes.size() > 0 || |
524 | destination_value_unknown_nodes.size() > 0) { |
525 | PrintDebug( |
526 | "StrongSIVTest found symbolics. Will attempt SymbolicStrongSIVTest." ); |
527 | return SymbolicStrongSIVTest(source, destination, coefficient, |
528 | distance_entry); |
529 | } |
530 | |
531 | if (!source->AsSERecurrentNode() || !destination->AsSERecurrentNode()) { |
532 | PrintDebug( |
533 | "StrongSIVTest could not simplify source and destination to " |
534 | "SERecurrentNodes so will exit." ); |
535 | distance_entry->direction = DistanceEntry::Directions::ALL; |
536 | return false; |
537 | } |
538 | |
539 | // Build an SENode for distance. |
540 | std::pair<SENode*, SENode*> subscript_pair = |
541 | std::make_pair(source, destination); |
542 | const Loop* subscript_loop = GetLoopForSubscriptPair(subscript_pair); |
543 | SENode* source_constant_term = |
544 | GetConstantTerm(subscript_loop, source->AsSERecurrentNode()); |
545 | SENode* destination_constant_term = |
546 | GetConstantTerm(subscript_loop, destination->AsSERecurrentNode()); |
547 | if (!source_constant_term || !destination_constant_term) { |
548 | PrintDebug( |
549 | "StrongSIVTest could not collect the constant terms of either source " |
550 | "or destination so will exit." ); |
551 | return false; |
552 | } |
553 | SENode* constant_term_delta = |
554 | scalar_evolution_.SimplifyExpression(scalar_evolution_.CreateSubtraction( |
555 | destination_constant_term, source_constant_term)); |
556 | |
557 | // Scalar evolution doesn't perform division, so we must fold to constants and |
558 | // do it manually. |
559 | // We must check the offset delta and coefficient are constants. |
560 | int64_t distance = 0; |
561 | SEConstantNode* delta_constant = constant_term_delta->AsSEConstantNode(); |
562 | SEConstantNode* coefficient_constant = coefficient->AsSEConstantNode(); |
563 | if (delta_constant && coefficient_constant) { |
564 | int64_t delta_value = delta_constant->FoldToSingleValue(); |
565 | int64_t coefficient_value = coefficient_constant->FoldToSingleValue(); |
566 | PrintDebug( |
567 | "StrongSIVTest found delta value and coefficient value as constants " |
568 | "with values:\n" |
569 | "\tdelta value: " + |
570 | ToString(delta_value) + |
571 | "\n\tcoefficient value: " + ToString(coefficient_value) + "\n" ); |
572 | // Check if the distance is not integral to try to prove independence. |
573 | if (delta_value % coefficient_value != 0) { |
574 | PrintDebug( |
575 | "StrongSIVTest proved independence through distance not being an " |
576 | "integer." ); |
577 | distance_entry->dependence_information = |
578 | DistanceEntry::DependenceInformation::DIRECTION; |
579 | distance_entry->direction = DistanceEntry::Directions::NONE; |
580 | return true; |
581 | } else { |
582 | distance = delta_value / coefficient_value; |
583 | PrintDebug("StrongSIV test found distance as " + ToString(distance)); |
584 | } |
585 | } else { |
586 | // If we can't fold delta and coefficient to single values we can't produce |
587 | // distance. |
588 | // As a result we can't perform the rest of the pass and must assume |
589 | // dependence in all directions. |
590 | PrintDebug("StrongSIVTest could not produce a distance. Must exit." ); |
591 | distance_entry->distance = DistanceEntry::Directions::ALL; |
592 | return false; |
593 | } |
594 | |
595 | // Next we gather the upper and lower bounds as constants if possible. If |
596 | // distance > upper_bound - lower_bound we prove independence. |
597 | SENode* lower_bound = GetLowerBound(subscript_loop); |
598 | SENode* upper_bound = GetUpperBound(subscript_loop); |
599 | if (lower_bound && upper_bound) { |
600 | PrintDebug("StrongSIVTest found bounds." ); |
601 | SENode* bounds = scalar_evolution_.SimplifyExpression( |
602 | scalar_evolution_.CreateSubtraction(upper_bound, lower_bound)); |
603 | |
604 | if (bounds->GetType() == SENode::SENodeType::Constant) { |
605 | int64_t bounds_value = bounds->AsSEConstantNode()->FoldToSingleValue(); |
606 | PrintDebug( |
607 | "StrongSIVTest found upper_bound - lower_bound as a constant with " |
608 | "value " + |
609 | ToString(bounds_value)); |
610 | |
611 | // If the absolute value of the distance is > upper bound - lower bound |
612 | // then we prove independence. |
613 | if (llabs(distance) > llabs(bounds_value)) { |
614 | PrintDebug( |
615 | "StrongSIVTest proved independence through distance escaping the " |
616 | "loop bounds." ); |
617 | distance_entry->dependence_information = |
618 | DistanceEntry::DependenceInformation::DISTANCE; |
619 | distance_entry->direction = DistanceEntry::Directions::NONE; |
620 | distance_entry->distance = distance; |
621 | return true; |
622 | } |
623 | } |
624 | } else { |
625 | PrintDebug("StrongSIVTest was unable to gather lower and upper bounds." ); |
626 | } |
627 | |
628 | // Otherwise we can get a direction as follows |
629 | // { < if distance > 0 |
630 | // direction = { = if distance == 0 |
631 | // { > if distance < 0 |
632 | PrintDebug( |
633 | "StrongSIVTest could not prove independence. Gathering direction " |
634 | "information." ); |
635 | if (distance > 0) { |
636 | distance_entry->dependence_information = |
637 | DistanceEntry::DependenceInformation::DISTANCE; |
638 | distance_entry->direction = DistanceEntry::Directions::LT; |
639 | distance_entry->distance = distance; |
640 | return false; |
641 | } |
642 | if (distance == 0) { |
643 | distance_entry->dependence_information = |
644 | DistanceEntry::DependenceInformation::DISTANCE; |
645 | distance_entry->direction = DistanceEntry::Directions::EQ; |
646 | distance_entry->distance = 0; |
647 | return false; |
648 | } |
649 | if (distance < 0) { |
650 | distance_entry->dependence_information = |
651 | DistanceEntry::DependenceInformation::DISTANCE; |
652 | distance_entry->direction = DistanceEntry::Directions::GT; |
653 | distance_entry->distance = distance; |
654 | return false; |
655 | } |
656 | |
657 | // We were unable to prove independence or discern any additional information |
658 | // Must assume <=> direction. |
659 | PrintDebug( |
660 | "StrongSIVTest was unable to determine any dependence information." ); |
661 | distance_entry->direction = DistanceEntry::Directions::ALL; |
662 | return false; |
663 | } |
664 | |
665 | bool LoopDependenceAnalysis::SymbolicStrongSIVTest( |
666 | SENode* source, SENode* destination, SENode* coefficient, |
667 | DistanceEntry* distance_entry) { |
668 | PrintDebug("Performing SymbolicStrongSIVTest." ); |
669 | SENode* source_destination_delta = scalar_evolution_.SimplifyExpression( |
670 | scalar_evolution_.CreateSubtraction(source, destination)); |
671 | // By cancelling out the induction variables by subtracting the source and |
672 | // destination we can produce an expression of symbolics and constants. This |
673 | // expression can be compared to the loop bounds to find if the offset is |
674 | // outwith the bounds. |
675 | std::pair<SENode*, SENode*> subscript_pair = |
676 | std::make_pair(source, destination); |
677 | const Loop* subscript_loop = GetLoopForSubscriptPair(subscript_pair); |
678 | if (IsProvablyOutsideOfLoopBounds(subscript_loop, source_destination_delta, |
679 | coefficient)) { |
680 | PrintDebug( |
681 | "SymbolicStrongSIVTest proved independence through loop bounds." ); |
682 | distance_entry->dependence_information = |
683 | DistanceEntry::DependenceInformation::DIRECTION; |
684 | distance_entry->direction = DistanceEntry::Directions::NONE; |
685 | return true; |
686 | } |
687 | // We were unable to prove independence or discern any additional information. |
688 | // Must assume <=> direction. |
689 | PrintDebug( |
690 | "SymbolicStrongSIVTest was unable to determine any dependence " |
691 | "information." ); |
692 | distance_entry->direction = DistanceEntry::Directions::ALL; |
693 | return false; |
694 | } |
695 | |
696 | bool LoopDependenceAnalysis::WeakZeroSourceSIVTest( |
697 | SENode* source, SERecurrentNode* destination, SENode* coefficient, |
698 | DistanceEntry* distance_entry) { |
699 | PrintDebug("Performing WeakZeroSourceSIVTest." ); |
700 | std::pair<SENode*, SENode*> subscript_pair = |
701 | std::make_pair(source, destination); |
702 | const Loop* subscript_loop = GetLoopForSubscriptPair(subscript_pair); |
703 | // Build an SENode for distance. |
704 | SENode* destination_constant_term = |
705 | GetConstantTerm(subscript_loop, destination); |
706 | SENode* delta = scalar_evolution_.SimplifyExpression( |
707 | scalar_evolution_.CreateSubtraction(source, destination_constant_term)); |
708 | |
709 | // Scalar evolution doesn't perform division, so we must fold to constants and |
710 | // do it manually. |
711 | int64_t distance = 0; |
712 | SEConstantNode* delta_constant = delta->AsSEConstantNode(); |
713 | SEConstantNode* coefficient_constant = coefficient->AsSEConstantNode(); |
714 | if (delta_constant && coefficient_constant) { |
715 | PrintDebug( |
716 | "WeakZeroSourceSIVTest folding delta and coefficient to constants." ); |
717 | int64_t delta_value = delta_constant->FoldToSingleValue(); |
718 | int64_t coefficient_value = coefficient_constant->FoldToSingleValue(); |
719 | // Check if the distance is not integral. |
720 | if (delta_value % coefficient_value != 0) { |
721 | PrintDebug( |
722 | "WeakZeroSourceSIVTest proved independence through distance not " |
723 | "being an integer." ); |
724 | distance_entry->dependence_information = |
725 | DistanceEntry::DependenceInformation::DIRECTION; |
726 | distance_entry->direction = DistanceEntry::Directions::NONE; |
727 | return true; |
728 | } else { |
729 | distance = delta_value / coefficient_value; |
730 | PrintDebug( |
731 | "WeakZeroSourceSIVTest calculated distance with the following " |
732 | "values\n" |
733 | "\tdelta value: " + |
734 | ToString(delta_value) + |
735 | "\n\tcoefficient value: " + ToString(coefficient_value) + |
736 | "\n\tdistance: " + ToString(distance) + "\n" ); |
737 | } |
738 | } else { |
739 | PrintDebug( |
740 | "WeakZeroSourceSIVTest was unable to fold delta and coefficient to " |
741 | "constants." ); |
742 | } |
743 | |
744 | // If we can prove the distance is outside the bounds we prove independence. |
745 | SEConstantNode* lower_bound = |
746 | GetLowerBound(subscript_loop)->AsSEConstantNode(); |
747 | SEConstantNode* upper_bound = |
748 | GetUpperBound(subscript_loop)->AsSEConstantNode(); |
749 | if (lower_bound && upper_bound) { |
750 | PrintDebug("WeakZeroSourceSIVTest found bounds as SEConstantNodes." ); |
751 | int64_t lower_bound_value = lower_bound->FoldToSingleValue(); |
752 | int64_t upper_bound_value = upper_bound->FoldToSingleValue(); |
753 | if (!IsWithinBounds(llabs(distance), lower_bound_value, |
754 | upper_bound_value)) { |
755 | PrintDebug( |
756 | "WeakZeroSourceSIVTest proved independence through distance escaping " |
757 | "the loop bounds." ); |
758 | PrintDebug( |
759 | "Bound values were as follow\n" |
760 | "\tlower bound value: " + |
761 | ToString(lower_bound_value) + |
762 | "\n\tupper bound value: " + ToString(upper_bound_value) + |
763 | "\n\tdistance value: " + ToString(distance) + "\n" ); |
764 | distance_entry->dependence_information = |
765 | DistanceEntry::DependenceInformation::DISTANCE; |
766 | distance_entry->direction = DistanceEntry::Directions::NONE; |
767 | distance_entry->distance = distance; |
768 | return true; |
769 | } |
770 | } else { |
771 | PrintDebug( |
772 | "WeakZeroSourceSIVTest was unable to find lower and upper bound as " |
773 | "SEConstantNodes." ); |
774 | } |
775 | |
776 | // Now we want to see if we can detect to peel the first or last iterations. |
777 | |
778 | // We get the FirstTripValue as GetFirstTripInductionNode() + |
779 | // GetConstantTerm(destination) |
780 | SENode* first_trip_SENode = |
781 | scalar_evolution_.SimplifyExpression(scalar_evolution_.CreateAddNode( |
782 | GetFirstTripInductionNode(subscript_loop), |
783 | GetConstantTerm(subscript_loop, destination))); |
784 | |
785 | // If source == FirstTripValue, peel_first. |
786 | if (first_trip_SENode) { |
787 | PrintDebug("WeakZeroSourceSIVTest built first_trip_SENode." ); |
788 | if (first_trip_SENode->AsSEConstantNode()) { |
789 | PrintDebug( |
790 | "WeakZeroSourceSIVTest has found first_trip_SENode as an " |
791 | "SEConstantNode with value: " + |
792 | ToString(first_trip_SENode->AsSEConstantNode()->FoldToSingleValue()) + |
793 | "\n" ); |
794 | } |
795 | if (source == first_trip_SENode) { |
796 | // We have found that peeling the first iteration will break dependency. |
797 | PrintDebug( |
798 | "WeakZeroSourceSIVTest has found peeling first iteration will break " |
799 | "dependency" ); |
800 | distance_entry->dependence_information = |
801 | DistanceEntry::DependenceInformation::PEEL; |
802 | distance_entry->peel_first = true; |
803 | return false; |
804 | } |
805 | } else { |
806 | PrintDebug("WeakZeroSourceSIVTest was unable to build first_trip_SENode" ); |
807 | } |
808 | |
809 | // We get the LastTripValue as GetFinalTripInductionNode(coefficient) + |
810 | // GetConstantTerm(destination) |
811 | SENode* final_trip_SENode = |
812 | scalar_evolution_.SimplifyExpression(scalar_evolution_.CreateAddNode( |
813 | GetFinalTripInductionNode(subscript_loop, coefficient), |
814 | GetConstantTerm(subscript_loop, destination))); |
815 | |
816 | // If source == LastTripValue, peel_last. |
817 | if (final_trip_SENode) { |
818 | PrintDebug("WeakZeroSourceSIVTest built final_trip_SENode." ); |
819 | if (first_trip_SENode->AsSEConstantNode()) { |
820 | PrintDebug( |
821 | "WeakZeroSourceSIVTest has found final_trip_SENode as an " |
822 | "SEConstantNode with value: " + |
823 | ToString(final_trip_SENode->AsSEConstantNode()->FoldToSingleValue()) + |
824 | "\n" ); |
825 | } |
826 | if (source == final_trip_SENode) { |
827 | // We have found that peeling the last iteration will break dependency. |
828 | PrintDebug( |
829 | "WeakZeroSourceSIVTest has found peeling final iteration will break " |
830 | "dependency" ); |
831 | distance_entry->dependence_information = |
832 | DistanceEntry::DependenceInformation::PEEL; |
833 | distance_entry->peel_last = true; |
834 | return false; |
835 | } |
836 | } else { |
837 | PrintDebug("WeakZeroSourceSIVTest was unable to build final_trip_SENode" ); |
838 | } |
839 | |
840 | // We were unable to prove independence or discern any additional information. |
841 | // Must assume <=> direction. |
842 | PrintDebug( |
843 | "WeakZeroSourceSIVTest was unable to determine any dependence " |
844 | "information." ); |
845 | distance_entry->direction = DistanceEntry::Directions::ALL; |
846 | return false; |
847 | } |
848 | |
849 | bool LoopDependenceAnalysis::WeakZeroDestinationSIVTest( |
850 | SERecurrentNode* source, SENode* destination, SENode* coefficient, |
851 | DistanceEntry* distance_entry) { |
852 | PrintDebug("Performing WeakZeroDestinationSIVTest." ); |
853 | // Build an SENode for distance. |
854 | std::pair<SENode*, SENode*> subscript_pair = |
855 | std::make_pair(source, destination); |
856 | const Loop* subscript_loop = GetLoopForSubscriptPair(subscript_pair); |
857 | SENode* source_constant_term = GetConstantTerm(subscript_loop, source); |
858 | SENode* delta = scalar_evolution_.SimplifyExpression( |
859 | scalar_evolution_.CreateSubtraction(destination, source_constant_term)); |
860 | |
861 | // Scalar evolution doesn't perform division, so we must fold to constants and |
862 | // do it manually. |
863 | int64_t distance = 0; |
864 | SEConstantNode* delta_constant = delta->AsSEConstantNode(); |
865 | SEConstantNode* coefficient_constant = coefficient->AsSEConstantNode(); |
866 | if (delta_constant && coefficient_constant) { |
867 | PrintDebug( |
868 | "WeakZeroDestinationSIVTest folding delta and coefficient to " |
869 | "constants." ); |
870 | int64_t delta_value = delta_constant->FoldToSingleValue(); |
871 | int64_t coefficient_value = coefficient_constant->FoldToSingleValue(); |
872 | // Check if the distance is not integral. |
873 | if (delta_value % coefficient_value != 0) { |
874 | PrintDebug( |
875 | "WeakZeroDestinationSIVTest proved independence through distance not " |
876 | "being an integer." ); |
877 | distance_entry->dependence_information = |
878 | DistanceEntry::DependenceInformation::DIRECTION; |
879 | distance_entry->direction = DistanceEntry::Directions::NONE; |
880 | return true; |
881 | } else { |
882 | distance = delta_value / coefficient_value; |
883 | PrintDebug( |
884 | "WeakZeroDestinationSIVTest calculated distance with the following " |
885 | "values\n" |
886 | "\tdelta value: " + |
887 | ToString(delta_value) + |
888 | "\n\tcoefficient value: " + ToString(coefficient_value) + |
889 | "\n\tdistance: " + ToString(distance) + "\n" ); |
890 | } |
891 | } else { |
892 | PrintDebug( |
893 | "WeakZeroDestinationSIVTest was unable to fold delta and coefficient " |
894 | "to constants." ); |
895 | } |
896 | |
897 | // If we can prove the distance is outside the bounds we prove independence. |
898 | SEConstantNode* lower_bound = |
899 | GetLowerBound(subscript_loop)->AsSEConstantNode(); |
900 | SEConstantNode* upper_bound = |
901 | GetUpperBound(subscript_loop)->AsSEConstantNode(); |
902 | if (lower_bound && upper_bound) { |
903 | PrintDebug("WeakZeroDestinationSIVTest found bounds as SEConstantNodes." ); |
904 | int64_t lower_bound_value = lower_bound->FoldToSingleValue(); |
905 | int64_t upper_bound_value = upper_bound->FoldToSingleValue(); |
906 | if (!IsWithinBounds(llabs(distance), lower_bound_value, |
907 | upper_bound_value)) { |
908 | PrintDebug( |
909 | "WeakZeroDestinationSIVTest proved independence through distance " |
910 | "escaping the loop bounds." ); |
911 | PrintDebug( |
912 | "Bound values were as follows\n" |
913 | "\tlower bound value: " + |
914 | ToString(lower_bound_value) + |
915 | "\n\tupper bound value: " + ToString(upper_bound_value) + |
916 | "\n\tdistance value: " + ToString(distance)); |
917 | distance_entry->dependence_information = |
918 | DistanceEntry::DependenceInformation::DISTANCE; |
919 | distance_entry->direction = DistanceEntry::Directions::NONE; |
920 | distance_entry->distance = distance; |
921 | return true; |
922 | } |
923 | } else { |
924 | PrintDebug( |
925 | "WeakZeroDestinationSIVTest was unable to find lower and upper bound " |
926 | "as SEConstantNodes." ); |
927 | } |
928 | |
929 | // Now we want to see if we can detect to peel the first or last iterations. |
930 | |
931 | // We get the FirstTripValue as GetFirstTripInductionNode() + |
932 | // GetConstantTerm(source) |
933 | SENode* first_trip_SENode = scalar_evolution_.SimplifyExpression( |
934 | scalar_evolution_.CreateAddNode(GetFirstTripInductionNode(subscript_loop), |
935 | GetConstantTerm(subscript_loop, source))); |
936 | |
937 | // If destination == FirstTripValue, peel_first. |
938 | if (first_trip_SENode) { |
939 | PrintDebug("WeakZeroDestinationSIVTest built first_trip_SENode." ); |
940 | if (first_trip_SENode->AsSEConstantNode()) { |
941 | PrintDebug( |
942 | "WeakZeroDestinationSIVTest has found first_trip_SENode as an " |
943 | "SEConstantNode with value: " + |
944 | ToString(first_trip_SENode->AsSEConstantNode()->FoldToSingleValue()) + |
945 | "\n" ); |
946 | } |
947 | if (destination == first_trip_SENode) { |
948 | // We have found that peeling the first iteration will break dependency. |
949 | PrintDebug( |
950 | "WeakZeroDestinationSIVTest has found peeling first iteration will " |
951 | "break dependency" ); |
952 | distance_entry->dependence_information = |
953 | DistanceEntry::DependenceInformation::PEEL; |
954 | distance_entry->peel_first = true; |
955 | return false; |
956 | } |
957 | } else { |
958 | PrintDebug( |
959 | "WeakZeroDestinationSIVTest was unable to build first_trip_SENode" ); |
960 | } |
961 | |
962 | // We get the LastTripValue as GetFinalTripInductionNode(coefficient) + |
963 | // GetConstantTerm(source) |
964 | SENode* final_trip_SENode = |
965 | scalar_evolution_.SimplifyExpression(scalar_evolution_.CreateAddNode( |
966 | GetFinalTripInductionNode(subscript_loop, coefficient), |
967 | GetConstantTerm(subscript_loop, source))); |
968 | |
969 | // If destination == LastTripValue, peel_last. |
970 | if (final_trip_SENode) { |
971 | PrintDebug("WeakZeroDestinationSIVTest built final_trip_SENode." ); |
972 | if (final_trip_SENode->AsSEConstantNode()) { |
973 | PrintDebug( |
974 | "WeakZeroDestinationSIVTest has found final_trip_SENode as an " |
975 | "SEConstantNode with value: " + |
976 | ToString(final_trip_SENode->AsSEConstantNode()->FoldToSingleValue()) + |
977 | "\n" ); |
978 | } |
979 | if (destination == final_trip_SENode) { |
980 | // We have found that peeling the last iteration will break dependency. |
981 | PrintDebug( |
982 | "WeakZeroDestinationSIVTest has found peeling final iteration will " |
983 | "break dependency" ); |
984 | distance_entry->dependence_information = |
985 | DistanceEntry::DependenceInformation::PEEL; |
986 | distance_entry->peel_last = true; |
987 | return false; |
988 | } |
989 | } else { |
990 | PrintDebug( |
991 | "WeakZeroDestinationSIVTest was unable to build final_trip_SENode" ); |
992 | } |
993 | |
994 | // We were unable to prove independence or discern any additional information. |
995 | // Must assume <=> direction. |
996 | PrintDebug( |
997 | "WeakZeroDestinationSIVTest was unable to determine any dependence " |
998 | "information." ); |
999 | distance_entry->direction = DistanceEntry::Directions::ALL; |
1000 | return false; |
1001 | } |
1002 | |
1003 | bool LoopDependenceAnalysis::WeakCrossingSIVTest( |
1004 | SENode* source, SENode* destination, SENode* coefficient, |
1005 | DistanceEntry* distance_entry) { |
1006 | PrintDebug("Performing WeakCrossingSIVTest." ); |
1007 | // We currently can't handle symbolic WeakCrossingSIVTests. If either source |
1008 | // or destination are not SERecurrentNodes we must exit. |
1009 | if (!source->AsSERecurrentNode() || !destination->AsSERecurrentNode()) { |
1010 | PrintDebug( |
1011 | "WeakCrossingSIVTest found source or destination != SERecurrentNode. " |
1012 | "Exiting" ); |
1013 | distance_entry->direction = DistanceEntry::Directions::ALL; |
1014 | return false; |
1015 | } |
1016 | |
1017 | // Build an SENode for distance. |
1018 | SENode* offset_delta = |
1019 | scalar_evolution_.SimplifyExpression(scalar_evolution_.CreateSubtraction( |
1020 | destination->AsSERecurrentNode()->GetOffset(), |
1021 | source->AsSERecurrentNode()->GetOffset())); |
1022 | |
1023 | // Scalar evolution doesn't perform division, so we must fold to constants and |
1024 | // do it manually. |
1025 | int64_t distance = 0; |
1026 | SEConstantNode* delta_constant = offset_delta->AsSEConstantNode(); |
1027 | SEConstantNode* coefficient_constant = coefficient->AsSEConstantNode(); |
1028 | if (delta_constant && coefficient_constant) { |
1029 | PrintDebug( |
1030 | "WeakCrossingSIVTest folding offset_delta and coefficient to " |
1031 | "constants." ); |
1032 | int64_t delta_value = delta_constant->FoldToSingleValue(); |
1033 | int64_t coefficient_value = coefficient_constant->FoldToSingleValue(); |
1034 | // Check if the distance is not integral or if it has a non-integral part |
1035 | // equal to 1/2. |
1036 | if (delta_value % (2 * coefficient_value) != 0 && |
1037 | static_cast<float>(delta_value % (2 * coefficient_value)) / |
1038 | static_cast<float>(2 * coefficient_value) != |
1039 | 0.5) { |
1040 | PrintDebug( |
1041 | "WeakCrossingSIVTest proved independence through distance escaping " |
1042 | "the loop bounds." ); |
1043 | distance_entry->dependence_information = |
1044 | DistanceEntry::DependenceInformation::DIRECTION; |
1045 | distance_entry->direction = DistanceEntry::Directions::NONE; |
1046 | return true; |
1047 | } else { |
1048 | distance = delta_value / (2 * coefficient_value); |
1049 | } |
1050 | |
1051 | if (distance == 0) { |
1052 | PrintDebug("WeakCrossingSIVTest found EQ dependence." ); |
1053 | distance_entry->dependence_information = |
1054 | DistanceEntry::DependenceInformation::DISTANCE; |
1055 | distance_entry->direction = DistanceEntry::Directions::EQ; |
1056 | distance_entry->distance = 0; |
1057 | return false; |
1058 | } |
1059 | } else { |
1060 | PrintDebug( |
1061 | "WeakCrossingSIVTest was unable to fold offset_delta and coefficient " |
1062 | "to constants." ); |
1063 | } |
1064 | |
1065 | // We were unable to prove independence or discern any additional information. |
1066 | // Must assume <=> direction. |
1067 | PrintDebug( |
1068 | "WeakCrossingSIVTest was unable to determine any dependence " |
1069 | "information." ); |
1070 | distance_entry->direction = DistanceEntry::Directions::ALL; |
1071 | return false; |
1072 | } |
1073 | |
1074 | // Perform the GCD test if both, the source and the destination nodes, are in |
1075 | // the form a0*i0 + a1*i1 + ... an*in + c. |
1076 | bool LoopDependenceAnalysis::GCDMIVTest( |
1077 | const std::pair<SENode*, SENode*>& subscript_pair) { |
1078 | auto source = std::get<0>(subscript_pair); |
1079 | auto destination = std::get<1>(subscript_pair); |
1080 | |
1081 | // Bail out if source/destination is in an unexpected form. |
1082 | if (!IsInCorrectFormForGCDTest(source) || |
1083 | !IsInCorrectFormForGCDTest(destination)) { |
1084 | return false; |
1085 | } |
1086 | |
1087 | auto source_recurrences = GetAllTopLevelRecurrences(source); |
1088 | auto dest_recurrences = GetAllTopLevelRecurrences(destination); |
1089 | |
1090 | // Bail out if all offsets and coefficients aren't constant. |
1091 | if (!AreOffsetsAndCoefficientsConstant(source_recurrences) || |
1092 | !AreOffsetsAndCoefficientsConstant(dest_recurrences)) { |
1093 | return false; |
1094 | } |
1095 | |
1096 | // Calculate the GCD of all coefficients. |
1097 | auto source_constants = GetAllTopLevelConstants(source); |
1098 | int64_t source_constant = |
1099 | CalculateConstantTerm(source_recurrences, source_constants); |
1100 | |
1101 | auto dest_constants = GetAllTopLevelConstants(destination); |
1102 | int64_t destination_constant = |
1103 | CalculateConstantTerm(dest_recurrences, dest_constants); |
1104 | |
1105 | int64_t delta = std::abs(source_constant - destination_constant); |
1106 | |
1107 | int64_t running_gcd = 0; |
1108 | |
1109 | running_gcd = CalculateGCDFromCoefficients(source_recurrences, running_gcd); |
1110 | running_gcd = CalculateGCDFromCoefficients(dest_recurrences, running_gcd); |
1111 | |
1112 | return delta % running_gcd != 0; |
1113 | } |
1114 | |
1115 | using PartitionedSubscripts = |
1116 | std::vector<std::set<std::pair<Instruction*, Instruction*>>>; |
1117 | PartitionedSubscripts LoopDependenceAnalysis::PartitionSubscripts( |
1118 | const std::vector<Instruction*>& source_subscripts, |
1119 | const std::vector<Instruction*>& destination_subscripts) { |
1120 | PartitionedSubscripts partitions{}; |
1121 | |
1122 | auto num_subscripts = source_subscripts.size(); |
1123 | |
1124 | // Create initial partitions with one subscript pair per partition. |
1125 | for (size_t i = 0; i < num_subscripts; ++i) { |
1126 | partitions.push_back({{source_subscripts[i], destination_subscripts[i]}}); |
1127 | } |
1128 | |
1129 | // Iterate over the loops to create all partitions |
1130 | for (auto loop : loops_) { |
1131 | int64_t k = -1; |
1132 | |
1133 | for (size_t j = 0; j < partitions.size(); ++j) { |
1134 | auto& current_partition = partitions[j]; |
1135 | |
1136 | // Does |loop| appear in |current_partition| |
1137 | auto it = std::find_if( |
1138 | current_partition.begin(), current_partition.end(), |
1139 | [loop, |
1140 | this](const std::pair<Instruction*, Instruction*>& elem) -> bool { |
1141 | auto source_recurrences = |
1142 | scalar_evolution_.AnalyzeInstruction(std::get<0>(elem)) |
1143 | ->CollectRecurrentNodes(); |
1144 | auto destination_recurrences = |
1145 | scalar_evolution_.AnalyzeInstruction(std::get<1>(elem)) |
1146 | ->CollectRecurrentNodes(); |
1147 | |
1148 | source_recurrences.insert(source_recurrences.end(), |
1149 | destination_recurrences.begin(), |
1150 | destination_recurrences.end()); |
1151 | |
1152 | auto loops_in_pair = CollectLoops(source_recurrences); |
1153 | auto end_it = loops_in_pair.end(); |
1154 | |
1155 | return std::find(loops_in_pair.begin(), end_it, loop) != end_it; |
1156 | }); |
1157 | |
1158 | auto has_loop = it != current_partition.end(); |
1159 | |
1160 | if (has_loop) { |
1161 | if (k == -1) { |
1162 | k = j; |
1163 | } else { |
1164 | // Add |partitions[j]| to |partitions[k]| and discard |partitions[j]| |
1165 | partitions[static_cast<size_t>(k)].insert(current_partition.begin(), |
1166 | current_partition.end()); |
1167 | current_partition.clear(); |
1168 | } |
1169 | } |
1170 | } |
1171 | } |
1172 | |
1173 | // Remove empty (discarded) partitions |
1174 | partitions.erase( |
1175 | std::remove_if( |
1176 | partitions.begin(), partitions.end(), |
1177 | [](const std::set<std::pair<Instruction*, Instruction*>>& partition) { |
1178 | return partition.empty(); |
1179 | }), |
1180 | partitions.end()); |
1181 | |
1182 | return partitions; |
1183 | } |
1184 | |
1185 | Constraint* LoopDependenceAnalysis::IntersectConstraints( |
1186 | Constraint* constraint_0, Constraint* constraint_1, |
1187 | const SENode* lower_bound, const SENode* upper_bound) { |
1188 | if (constraint_0->AsDependenceNone()) { |
1189 | return constraint_1; |
1190 | } else if (constraint_1->AsDependenceNone()) { |
1191 | return constraint_0; |
1192 | } |
1193 | |
1194 | // Both constraints are distances. Either the same distance or independent. |
1195 | if (constraint_0->AsDependenceDistance() && |
1196 | constraint_1->AsDependenceDistance()) { |
1197 | auto dist_0 = constraint_0->AsDependenceDistance(); |
1198 | auto dist_1 = constraint_1->AsDependenceDistance(); |
1199 | |
1200 | if (*dist_0->GetDistance() == *dist_1->GetDistance()) { |
1201 | return constraint_0; |
1202 | } else { |
1203 | return make_constraint<DependenceEmpty>(); |
1204 | } |
1205 | } |
1206 | |
1207 | // Both constraints are points. Either the same point or independent. |
1208 | if (constraint_0->AsDependencePoint() && constraint_1->AsDependencePoint()) { |
1209 | auto point_0 = constraint_0->AsDependencePoint(); |
1210 | auto point_1 = constraint_1->AsDependencePoint(); |
1211 | |
1212 | if (*point_0->GetSource() == *point_1->GetSource() && |
1213 | *point_0->GetDestination() == *point_1->GetDestination()) { |
1214 | return constraint_0; |
1215 | } else { |
1216 | return make_constraint<DependenceEmpty>(); |
1217 | } |
1218 | } |
1219 | |
1220 | // Both constraints are lines/distances. |
1221 | if ((constraint_0->AsDependenceDistance() || |
1222 | constraint_0->AsDependenceLine()) && |
1223 | (constraint_1->AsDependenceDistance() || |
1224 | constraint_1->AsDependenceLine())) { |
1225 | auto is_distance_0 = constraint_0->AsDependenceDistance() != nullptr; |
1226 | auto is_distance_1 = constraint_1->AsDependenceDistance() != nullptr; |
1227 | |
1228 | auto a0 = is_distance_0 ? scalar_evolution_.CreateConstant(1) |
1229 | : constraint_0->AsDependenceLine()->GetA(); |
1230 | auto b0 = is_distance_0 ? scalar_evolution_.CreateConstant(-1) |
1231 | : constraint_0->AsDependenceLine()->GetB(); |
1232 | auto c0 = |
1233 | is_distance_0 |
1234 | ? scalar_evolution_.SimplifyExpression( |
1235 | scalar_evolution_.CreateNegation( |
1236 | constraint_0->AsDependenceDistance()->GetDistance())) |
1237 | : constraint_0->AsDependenceLine()->GetC(); |
1238 | |
1239 | auto a1 = is_distance_1 ? scalar_evolution_.CreateConstant(1) |
1240 | : constraint_1->AsDependenceLine()->GetA(); |
1241 | auto b1 = is_distance_1 ? scalar_evolution_.CreateConstant(-1) |
1242 | : constraint_1->AsDependenceLine()->GetB(); |
1243 | auto c1 = |
1244 | is_distance_1 |
1245 | ? scalar_evolution_.SimplifyExpression( |
1246 | scalar_evolution_.CreateNegation( |
1247 | constraint_1->AsDependenceDistance()->GetDistance())) |
1248 | : constraint_1->AsDependenceLine()->GetC(); |
1249 | |
1250 | if (a0->AsSEConstantNode() && b0->AsSEConstantNode() && |
1251 | c0->AsSEConstantNode() && a1->AsSEConstantNode() && |
1252 | b1->AsSEConstantNode() && c1->AsSEConstantNode()) { |
1253 | auto constant_a0 = a0->AsSEConstantNode()->FoldToSingleValue(); |
1254 | auto constant_b0 = b0->AsSEConstantNode()->FoldToSingleValue(); |
1255 | auto constant_c0 = c0->AsSEConstantNode()->FoldToSingleValue(); |
1256 | |
1257 | auto constant_a1 = a1->AsSEConstantNode()->FoldToSingleValue(); |
1258 | auto constant_b1 = b1->AsSEConstantNode()->FoldToSingleValue(); |
1259 | auto constant_c1 = c1->AsSEConstantNode()->FoldToSingleValue(); |
1260 | |
1261 | // a & b can't both be zero, otherwise it wouldn't be line. |
1262 | if (NormalizeAndCompareFractions(constant_a0, constant_b0, constant_a1, |
1263 | constant_b1)) { |
1264 | // Slopes are equal, either parallel lines or the same line. |
1265 | |
1266 | if (constant_b0 == 0 && constant_b1 == 0) { |
1267 | if (NormalizeAndCompareFractions(constant_c0, constant_a0, |
1268 | constant_c1, constant_a1)) { |
1269 | return constraint_0; |
1270 | } |
1271 | |
1272 | return make_constraint<DependenceEmpty>(); |
1273 | } else if (NormalizeAndCompareFractions(constant_c0, constant_b0, |
1274 | constant_c1, constant_b1)) { |
1275 | // Same line. |
1276 | return constraint_0; |
1277 | } else { |
1278 | // Parallel lines can't intersect, report independence. |
1279 | return make_constraint<DependenceEmpty>(); |
1280 | } |
1281 | |
1282 | } else { |
1283 | // Lines are not parallel, therefore, they must intersect. |
1284 | |
1285 | // Calculate intersection. |
1286 | if (upper_bound->AsSEConstantNode() && |
1287 | lower_bound->AsSEConstantNode()) { |
1288 | auto constant_lower_bound = |
1289 | lower_bound->AsSEConstantNode()->FoldToSingleValue(); |
1290 | auto constant_upper_bound = |
1291 | upper_bound->AsSEConstantNode()->FoldToSingleValue(); |
1292 | |
1293 | auto up = constant_b1 * constant_c0 - constant_b0 * constant_c1; |
1294 | // Both b or both a can't be 0, so down is never 0 |
1295 | // otherwise would have entered the parallel line section. |
1296 | auto down = constant_b1 * constant_a0 - constant_b0 * constant_a1; |
1297 | |
1298 | auto x_coord = up / down; |
1299 | |
1300 | int64_t y_coord = 0; |
1301 | int64_t arg1 = 0; |
1302 | int64_t const_b_to_use = 0; |
1303 | |
1304 | if (constant_b1 != 0) { |
1305 | arg1 = constant_c1 - constant_a1 * x_coord; |
1306 | y_coord = arg1 / constant_b1; |
1307 | const_b_to_use = constant_b1; |
1308 | } else if (constant_b0 != 0) { |
1309 | arg1 = constant_c0 - constant_a0 * x_coord; |
1310 | y_coord = arg1 / constant_b0; |
1311 | const_b_to_use = constant_b0; |
1312 | } |
1313 | |
1314 | if (up % down == 0 && |
1315 | arg1 % const_b_to_use == 0 && // Coordinates are integers. |
1316 | constant_lower_bound <= |
1317 | x_coord && // x_coord is within loop bounds. |
1318 | x_coord <= constant_upper_bound && |
1319 | constant_lower_bound <= |
1320 | y_coord && // y_coord is within loop bounds. |
1321 | y_coord <= constant_upper_bound) { |
1322 | // Lines intersect at integer coordinates. |
1323 | return make_constraint<DependencePoint>( |
1324 | scalar_evolution_.CreateConstant(x_coord), |
1325 | scalar_evolution_.CreateConstant(y_coord), |
1326 | constraint_0->GetLoop()); |
1327 | |
1328 | } else { |
1329 | return make_constraint<DependenceEmpty>(); |
1330 | } |
1331 | |
1332 | } else { |
1333 | // Not constants, bail out. |
1334 | return make_constraint<DependenceNone>(); |
1335 | } |
1336 | } |
1337 | |
1338 | } else { |
1339 | // Not constants, bail out. |
1340 | return make_constraint<DependenceNone>(); |
1341 | } |
1342 | } |
1343 | |
1344 | // One constraint is a line/distance and the other is a point. |
1345 | if ((constraint_0->AsDependencePoint() && |
1346 | (constraint_1->AsDependenceLine() || |
1347 | constraint_1->AsDependenceDistance())) || |
1348 | (constraint_1->AsDependencePoint() && |
1349 | (constraint_0->AsDependenceLine() || |
1350 | constraint_0->AsDependenceDistance()))) { |
1351 | auto point_0 = constraint_0->AsDependencePoint() != nullptr; |
1352 | |
1353 | auto point = point_0 ? constraint_0->AsDependencePoint() |
1354 | : constraint_1->AsDependencePoint(); |
1355 | |
1356 | auto line_or_distance = point_0 ? constraint_1 : constraint_0; |
1357 | |
1358 | auto is_distance = line_or_distance->AsDependenceDistance() != nullptr; |
1359 | |
1360 | auto a = is_distance ? scalar_evolution_.CreateConstant(1) |
1361 | : line_or_distance->AsDependenceLine()->GetA(); |
1362 | auto b = is_distance ? scalar_evolution_.CreateConstant(-1) |
1363 | : line_or_distance->AsDependenceLine()->GetB(); |
1364 | auto c = |
1365 | is_distance |
1366 | ? scalar_evolution_.SimplifyExpression( |
1367 | scalar_evolution_.CreateNegation( |
1368 | line_or_distance->AsDependenceDistance()->GetDistance())) |
1369 | : line_or_distance->AsDependenceLine()->GetC(); |
1370 | |
1371 | auto x = point->GetSource(); |
1372 | auto y = point->GetDestination(); |
1373 | |
1374 | if (a->AsSEConstantNode() && b->AsSEConstantNode() && |
1375 | c->AsSEConstantNode() && x->AsSEConstantNode() && |
1376 | y->AsSEConstantNode()) { |
1377 | auto constant_a = a->AsSEConstantNode()->FoldToSingleValue(); |
1378 | auto constant_b = b->AsSEConstantNode()->FoldToSingleValue(); |
1379 | auto constant_c = c->AsSEConstantNode()->FoldToSingleValue(); |
1380 | |
1381 | auto constant_x = x->AsSEConstantNode()->FoldToSingleValue(); |
1382 | auto constant_y = y->AsSEConstantNode()->FoldToSingleValue(); |
1383 | |
1384 | auto left_hand_side = constant_a * constant_x + constant_b * constant_y; |
1385 | |
1386 | if (left_hand_side == constant_c) { |
1387 | // Point is on line, return point |
1388 | return point_0 ? constraint_0 : constraint_1; |
1389 | } else { |
1390 | // Point not on line, report independence (empty constraint). |
1391 | return make_constraint<DependenceEmpty>(); |
1392 | } |
1393 | |
1394 | } else { |
1395 | // Not constants, bail out. |
1396 | return make_constraint<DependenceNone>(); |
1397 | } |
1398 | } |
1399 | |
1400 | return nullptr; |
1401 | } |
1402 | |
1403 | // Propagate constraints function as described in section 5 of Practical |
1404 | // Dependence Testing, Goff, Kennedy, Tseng, 1991. |
1405 | SubscriptPair LoopDependenceAnalysis::PropagateConstraints( |
1406 | const SubscriptPair& subscript_pair, |
1407 | const std::vector<Constraint*>& constraints) { |
1408 | SENode* new_first = subscript_pair.first; |
1409 | SENode* new_second = subscript_pair.second; |
1410 | |
1411 | for (auto& constraint : constraints) { |
1412 | // In the paper this is a[k]. We're extracting the coefficient ('a') of a |
1413 | // recurrent expression with respect to the loop 'k'. |
1414 | SENode* coefficient_of_recurrent = |
1415 | scalar_evolution_.GetCoefficientFromRecurrentTerm( |
1416 | new_first, constraint->GetLoop()); |
1417 | |
1418 | // In the paper this is a'[k]. |
1419 | SENode* coefficient_of_recurrent_prime = |
1420 | scalar_evolution_.GetCoefficientFromRecurrentTerm( |
1421 | new_second, constraint->GetLoop()); |
1422 | |
1423 | if (constraint->GetType() == Constraint::Distance) { |
1424 | DependenceDistance* as_distance = constraint->AsDependenceDistance(); |
1425 | |
1426 | // In the paper this is a[k]*d |
1427 | SENode* rhs = scalar_evolution_.CreateMultiplyNode( |
1428 | coefficient_of_recurrent, as_distance->GetDistance()); |
1429 | |
1430 | // In the paper this is a[k] <- 0 |
1431 | SENode* zeroed_coefficient = |
1432 | scalar_evolution_.BuildGraphWithoutRecurrentTerm( |
1433 | new_first, constraint->GetLoop()); |
1434 | |
1435 | // In the paper this is e <- e - a[k]*d. |
1436 | new_first = scalar_evolution_.CreateSubtraction(zeroed_coefficient, rhs); |
1437 | new_first = scalar_evolution_.SimplifyExpression(new_first); |
1438 | |
1439 | // In the paper this is a'[k] - a[k]. |
1440 | SENode* new_child = scalar_evolution_.SimplifyExpression( |
1441 | scalar_evolution_.CreateSubtraction(coefficient_of_recurrent_prime, |
1442 | coefficient_of_recurrent)); |
1443 | |
1444 | // In the paper this is a'[k]'i[k]. |
1445 | SERecurrentNode* prime_recurrent = |
1446 | scalar_evolution_.GetRecurrentTerm(new_second, constraint->GetLoop()); |
1447 | |
1448 | if (!prime_recurrent) continue; |
1449 | |
1450 | // As we hash the nodes we need to create a new node when we update a |
1451 | // child. |
1452 | SENode* new_recurrent = scalar_evolution_.CreateRecurrentExpression( |
1453 | constraint->GetLoop(), prime_recurrent->GetOffset(), new_child); |
1454 | // In the paper this is a'[k] <- a'[k] - a[k]. |
1455 | new_second = scalar_evolution_.UpdateChildNode( |
1456 | new_second, prime_recurrent, new_recurrent); |
1457 | } |
1458 | } |
1459 | |
1460 | new_second = scalar_evolution_.SimplifyExpression(new_second); |
1461 | return std::make_pair(new_first, new_second); |
1462 | } |
1463 | |
1464 | bool LoopDependenceAnalysis::DeltaTest( |
1465 | const std::vector<SubscriptPair>& coupled_subscripts, |
1466 | DistanceVector* dv_entry) { |
1467 | std::vector<Constraint*> constraints(loops_.size()); |
1468 | |
1469 | std::vector<bool> loop_appeared(loops_.size()); |
1470 | |
1471 | std::generate(std::begin(constraints), std::end(constraints), |
1472 | [this]() { return make_constraint<DependenceNone>(); }); |
1473 | |
1474 | // Separate SIV and MIV subscripts |
1475 | std::vector<SubscriptPair> siv_subscripts{}; |
1476 | std::vector<SubscriptPair> miv_subscripts{}; |
1477 | |
1478 | for (const auto& subscript_pair : coupled_subscripts) { |
1479 | if (IsSIV(subscript_pair)) { |
1480 | siv_subscripts.push_back(subscript_pair); |
1481 | } else { |
1482 | miv_subscripts.push_back(subscript_pair); |
1483 | } |
1484 | } |
1485 | |
1486 | // Delta Test |
1487 | while (!siv_subscripts.empty()) { |
1488 | std::vector<bool> results(siv_subscripts.size()); |
1489 | |
1490 | std::vector<DistanceVector> current_distances( |
1491 | siv_subscripts.size(), DistanceVector(loops_.size())); |
1492 | |
1493 | // Apply SIV test to all SIV subscripts, report independence if any of them |
1494 | // is independent |
1495 | std::transform( |
1496 | std::begin(siv_subscripts), std::end(siv_subscripts), |
1497 | std::begin(current_distances), std::begin(results), |
1498 | [this](SubscriptPair& p, DistanceVector& d) { return SIVTest(p, &d); }); |
1499 | |
1500 | if (std::accumulate(std::begin(results), std::end(results), false, |
1501 | std::logical_or<bool>{})) { |
1502 | return true; |
1503 | } |
1504 | |
1505 | // Derive new constraint vector. |
1506 | std::vector<std::pair<Constraint*, size_t>> all_new_constrants{}; |
1507 | |
1508 | for (size_t i = 0; i < siv_subscripts.size(); ++i) { |
1509 | auto loop = GetLoopForSubscriptPair(siv_subscripts[i]); |
1510 | |
1511 | auto loop_id = |
1512 | std::distance(std::begin(loops_), |
1513 | std::find(std::begin(loops_), std::end(loops_), loop)); |
1514 | |
1515 | loop_appeared[loop_id] = true; |
1516 | auto distance_entry = current_distances[i].GetEntries()[loop_id]; |
1517 | |
1518 | if (distance_entry.dependence_information == |
1519 | DistanceEntry::DependenceInformation::DISTANCE) { |
1520 | // Construct a DependenceDistance. |
1521 | auto node = scalar_evolution_.CreateConstant(distance_entry.distance); |
1522 | |
1523 | all_new_constrants.push_back( |
1524 | {make_constraint<DependenceDistance>(node, loop), loop_id}); |
1525 | } else { |
1526 | // Construct a DependenceLine. |
1527 | const auto& subscript_pair = siv_subscripts[i]; |
1528 | SENode* source_node = std::get<0>(subscript_pair); |
1529 | SENode* destination_node = std::get<1>(subscript_pair); |
1530 | |
1531 | int64_t source_induction_count = CountInductionVariables(source_node); |
1532 | int64_t destination_induction_count = |
1533 | CountInductionVariables(destination_node); |
1534 | |
1535 | SENode* a = nullptr; |
1536 | SENode* b = nullptr; |
1537 | SENode* c = nullptr; |
1538 | |
1539 | if (destination_induction_count != 0) { |
1540 | a = destination_node->AsSERecurrentNode()->GetCoefficient(); |
1541 | c = scalar_evolution_.CreateNegation( |
1542 | destination_node->AsSERecurrentNode()->GetOffset()); |
1543 | } else { |
1544 | a = scalar_evolution_.CreateConstant(0); |
1545 | c = scalar_evolution_.CreateNegation(destination_node); |
1546 | } |
1547 | |
1548 | if (source_induction_count != 0) { |
1549 | b = scalar_evolution_.CreateNegation( |
1550 | source_node->AsSERecurrentNode()->GetCoefficient()); |
1551 | c = scalar_evolution_.CreateAddNode( |
1552 | c, source_node->AsSERecurrentNode()->GetOffset()); |
1553 | } else { |
1554 | b = scalar_evolution_.CreateConstant(0); |
1555 | c = scalar_evolution_.CreateAddNode(c, source_node); |
1556 | } |
1557 | |
1558 | a = scalar_evolution_.SimplifyExpression(a); |
1559 | b = scalar_evolution_.SimplifyExpression(b); |
1560 | c = scalar_evolution_.SimplifyExpression(c); |
1561 | |
1562 | all_new_constrants.push_back( |
1563 | {make_constraint<DependenceLine>(a, b, c, loop), loop_id}); |
1564 | } |
1565 | } |
1566 | |
1567 | // Calculate the intersection between the new and existing constraints. |
1568 | std::vector<Constraint*> intersection = constraints; |
1569 | for (const auto& constraint_to_intersect : all_new_constrants) { |
1570 | auto loop_id = std::get<1>(constraint_to_intersect); |
1571 | auto loop = loops_[loop_id]; |
1572 | intersection[loop_id] = IntersectConstraints( |
1573 | intersection[loop_id], std::get<0>(constraint_to_intersect), |
1574 | GetLowerBound(loop), GetUpperBound(loop)); |
1575 | } |
1576 | |
1577 | // Report independence if an empty constraint (DependenceEmpty) is found. |
1578 | auto first_empty = |
1579 | std::find_if(std::begin(intersection), std::end(intersection), |
1580 | [](Constraint* constraint) { |
1581 | return constraint->AsDependenceEmpty() != nullptr; |
1582 | }); |
1583 | if (first_empty != std::end(intersection)) { |
1584 | return true; |
1585 | } |
1586 | std::vector<SubscriptPair> new_siv_subscripts{}; |
1587 | std::vector<SubscriptPair> new_miv_subscripts{}; |
1588 | |
1589 | auto equal = |
1590 | std::equal(std::begin(constraints), std::end(constraints), |
1591 | std::begin(intersection), |
1592 | [](Constraint* a, Constraint* b) { return *a == *b; }); |
1593 | |
1594 | // If any constraints have changed, propagate them into the rest of the |
1595 | // subscripts possibly creating new ZIV/SIV subscripts. |
1596 | if (!equal) { |
1597 | std::vector<SubscriptPair> new_subscripts(miv_subscripts.size()); |
1598 | |
1599 | // Propagate constraints into MIV subscripts |
1600 | std::transform(std::begin(miv_subscripts), std::end(miv_subscripts), |
1601 | std::begin(new_subscripts), |
1602 | [this, &intersection](SubscriptPair& subscript_pair) { |
1603 | return PropagateConstraints(subscript_pair, |
1604 | intersection); |
1605 | }); |
1606 | |
1607 | // If a ZIV subscript is returned, apply test, otherwise, update untested |
1608 | // subscripts. |
1609 | for (auto& subscript : new_subscripts) { |
1610 | if (IsZIV(subscript) && ZIVTest(subscript)) { |
1611 | return true; |
1612 | } else if (IsSIV(subscript)) { |
1613 | new_siv_subscripts.push_back(subscript); |
1614 | } else { |
1615 | new_miv_subscripts.push_back(subscript); |
1616 | } |
1617 | } |
1618 | } |
1619 | |
1620 | // Set new constraints and subscripts to test. |
1621 | std::swap(siv_subscripts, new_siv_subscripts); |
1622 | std::swap(miv_subscripts, new_miv_subscripts); |
1623 | std::swap(constraints, intersection); |
1624 | } |
1625 | |
1626 | // Create the dependence vector from the constraints. |
1627 | for (size_t i = 0; i < loops_.size(); ++i) { |
1628 | // Don't touch entries for loops that weren't tested. |
1629 | if (loop_appeared[i]) { |
1630 | auto current_constraint = constraints[i]; |
1631 | auto& current_distance_entry = (*dv_entry).GetEntries()[i]; |
1632 | |
1633 | if (auto dependence_distance = |
1634 | current_constraint->AsDependenceDistance()) { |
1635 | if (auto constant_node = |
1636 | dependence_distance->GetDistance()->AsSEConstantNode()) { |
1637 | current_distance_entry.dependence_information = |
1638 | DistanceEntry::DependenceInformation::DISTANCE; |
1639 | |
1640 | current_distance_entry.distance = constant_node->FoldToSingleValue(); |
1641 | if (current_distance_entry.distance == 0) { |
1642 | current_distance_entry.direction = DistanceEntry::Directions::EQ; |
1643 | } else if (current_distance_entry.distance < 0) { |
1644 | current_distance_entry.direction = DistanceEntry::Directions::GT; |
1645 | } else { |
1646 | current_distance_entry.direction = DistanceEntry::Directions::LT; |
1647 | } |
1648 | } |
1649 | } else if (auto dependence_point = |
1650 | current_constraint->AsDependencePoint()) { |
1651 | auto source = dependence_point->GetSource(); |
1652 | auto destination = dependence_point->GetDestination(); |
1653 | |
1654 | if (source->AsSEConstantNode() && destination->AsSEConstantNode()) { |
1655 | current_distance_entry = DistanceEntry( |
1656 | source->AsSEConstantNode()->FoldToSingleValue(), |
1657 | destination->AsSEConstantNode()->FoldToSingleValue()); |
1658 | } |
1659 | } |
1660 | } |
1661 | } |
1662 | |
1663 | // Test any remaining MIV subscripts and report independence if found. |
1664 | std::vector<bool> results(miv_subscripts.size()); |
1665 | |
1666 | std::transform(std::begin(miv_subscripts), std::end(miv_subscripts), |
1667 | std::begin(results), |
1668 | [this](const SubscriptPair& p) { return GCDMIVTest(p); }); |
1669 | |
1670 | return std::accumulate(std::begin(results), std::end(results), false, |
1671 | std::logical_or<bool>{}); |
1672 | } |
1673 | |
1674 | } // namespace opt |
1675 | } // namespace spvtools |
1676 | |