| 1 | // Copyright (c) 2018 Google LLC. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include "source/opt/scalar_analysis.h" |
| 16 | |
| 17 | #include <functional> |
| 18 | #include <map> |
| 19 | #include <memory> |
| 20 | #include <set> |
| 21 | #include <unordered_set> |
| 22 | #include <utility> |
| 23 | #include <vector> |
| 24 | |
| 25 | // Simplifies scalar analysis DAGs. |
| 26 | // |
| 27 | // 1. Given a node passed to SimplifyExpression we first simplify the graph by |
| 28 | // calling SimplifyPolynomial. This groups like nodes following basic arithmetic |
| 29 | // rules, so multiple adds of the same load instruction could be grouped into a |
| 30 | // single multiply of that instruction. SimplifyPolynomial will traverse the DAG |
| 31 | // and build up an accumulator buffer for each class of instruction it finds. |
| 32 | // For example take the loop: |
| 33 | // for (i=0, i<N; i++) { i+B+23+4+B+C; } |
| 34 | // In this example the expression "i+B+23+4+B+C" has four classes of |
| 35 | // instruction, induction variable i, the two value unknowns B and C, and the |
| 36 | // constants. The accumulator buffer is then used to rebuild the graph using |
| 37 | // the accumulation of each type. This example would then be folded into |
| 38 | // i+2*B+C+27. |
| 39 | // |
| 40 | // This new graph contains a single add node (or if only one type found then |
| 41 | // just that node) with each of the like terms (or multiplication node) as a |
| 42 | // child. |
| 43 | // |
| 44 | // 2. FoldRecurrentAddExpressions is then called on this new DAG. This will take |
| 45 | // RecurrentAddExpressions which are with respect to the same loop and fold them |
| 46 | // into a single new RecurrentAddExpression with respect to that same loop. An |
| 47 | // expression can have multiple RecurrentAddExpression's with respect to |
| 48 | // different loops in the case of nested loops. These expressions cannot be |
| 49 | // folded further. For example: |
| 50 | // |
| 51 | // for (i=0; i<N;i++) for(j=0,k=1; j<N;++j,++k) |
| 52 | // |
| 53 | // The 'j' and 'k' are RecurrentAddExpression with respect to the second loop |
| 54 | // and 'i' to the first. If 'j' and 'k' are used in an expression together then |
| 55 | // they will be folded into a new RecurrentAddExpression with respect to the |
| 56 | // second loop in that expression. |
| 57 | // |
| 58 | // |
| 59 | // 3. If the DAG now only contains a single RecurrentAddExpression we can now |
| 60 | // perform a final optimization SimplifyRecurrentAddExpression. This will |
| 61 | // transform the entire DAG into a RecurrentAddExpression. Additions to the |
| 62 | // RecurrentAddExpression are added to the offset field and multiplications to |
| 63 | // the coefficient. |
| 64 | // |
| 65 | |
| 66 | namespace spvtools { |
| 67 | namespace opt { |
| 68 | |
| 69 | // Implementation of the functions which are used to simplify the graph. Graphs |
| 70 | // of unknowns, multiplies, additions, and constants can be turned into a linear |
| 71 | // add node with each term as a child. For instance a large graph built from, X |
| 72 | // + X*2 + Y - Y*3 + 4 - 1, would become a single add expression with the |
| 73 | // children X*3, -Y*2, and the constant 3. Graphs containing a recurrent |
| 74 | // expression will be simplified to represent the entire graph around a single |
| 75 | // recurrent expression. So for an induction variable (i=0, i++) if you add 1 to |
| 76 | // i in an expression we can rewrite the graph of that expression to be a single |
| 77 | // recurrent expression of (i=1,i++). |
| 78 | class SENodeSimplifyImpl { |
| 79 | public: |
| 80 | SENodeSimplifyImpl(ScalarEvolutionAnalysis* analysis, |
| 81 | SENode* node_to_simplify) |
| 82 | : analysis_(*analysis), |
| 83 | node_(node_to_simplify), |
| 84 | constant_accumulator_(0) {} |
| 85 | |
| 86 | // Return the result of the simplification. |
| 87 | SENode* Simplify(); |
| 88 | |
| 89 | private: |
| 90 | // Recursively descend through the graph to build up the accumulator objects |
| 91 | // which are used to flatten the graph. |child| is the node currenty being |
| 92 | // traversed and the |negation| flag is used to signify that this operation |
| 93 | // was preceded by a unary negative operation and as such the result should be |
| 94 | // negated. |
| 95 | void GatherAccumulatorsFromChildNodes(SENode* new_node, SENode* child, |
| 96 | bool negation); |
| 97 | |
| 98 | // Given a |multiply| node add to the accumulators for the term type within |
| 99 | // the |multiply| expression. Will return true if the accumulators could be |
| 100 | // calculated successfully. If the |multiply| is in any form other than |
| 101 | // unknown*constant then we return false. |negation| signifies that the |
| 102 | // operation was preceded by a unary negative. |
| 103 | bool AccumulatorsFromMultiply(SENode* multiply, bool negation); |
| 104 | |
| 105 | SERecurrentNode* UpdateCoefficient(SERecurrentNode* recurrent, |
| 106 | int64_t coefficient_update) const; |
| 107 | |
| 108 | // If the graph contains a recurrent expression, ie, an expression with the |
| 109 | // loop iterations as a term in the expression, then the whole expression |
| 110 | // can be rewritten to be a recurrent expression. |
| 111 | SENode* SimplifyRecurrentAddExpression(SERecurrentNode* node); |
| 112 | |
| 113 | // Simplify the whole graph by linking like terms together in a single flat |
| 114 | // add node. So X*2 + Y -Y + 3 +6 would become X*2 + 9. Where X and Y are a |
| 115 | // ValueUnknown node (i.e, a load) or a recurrent expression. |
| 116 | SENode* SimplifyPolynomial(); |
| 117 | |
| 118 | // Each recurrent expression is an expression with respect to a specific loop. |
| 119 | // If we have two different recurrent terms with respect to the same loop in a |
| 120 | // single expression then we can fold those terms into a single new term. |
| 121 | // For instance: |
| 122 | // |
| 123 | // induction i = 0, i++ |
| 124 | // temp = i*10 |
| 125 | // array[i+temp] |
| 126 | // |
| 127 | // We can fold the i + temp into a single expression. Rec(0,1) + Rec(0,10) can |
| 128 | // become Rec(0,11). |
| 129 | SENode* FoldRecurrentAddExpressions(SENode*); |
| 130 | |
| 131 | // We can eliminate recurrent expressions which have a coefficient of zero by |
| 132 | // replacing them with their offset value. We are able to do this because a |
| 133 | // recurrent expression represents the equation coefficient*iterations + |
| 134 | // offset. |
| 135 | SENode* EliminateZeroCoefficientRecurrents(SENode* node); |
| 136 | |
| 137 | // A reference the the analysis which requested the simplification. |
| 138 | ScalarEvolutionAnalysis& analysis_; |
| 139 | |
| 140 | // The node being simplified. |
| 141 | SENode* node_; |
| 142 | |
| 143 | // An accumulator of the net result of all the constant operations performed |
| 144 | // in a graph. |
| 145 | int64_t constant_accumulator_; |
| 146 | |
| 147 | // An accumulator for each of the non constant terms in the graph. |
| 148 | std::map<SENode*, int64_t> accumulators_; |
| 149 | }; |
| 150 | |
| 151 | // From a |multiply| build up the accumulator objects. |
| 152 | bool SENodeSimplifyImpl::AccumulatorsFromMultiply(SENode* multiply, |
| 153 | bool negation) { |
| 154 | if (multiply->GetChildren().size() != 2 || |
| 155 | multiply->GetType() != SENode::Multiply) |
| 156 | return false; |
| 157 | |
| 158 | SENode* operand_1 = multiply->GetChild(0); |
| 159 | SENode* operand_2 = multiply->GetChild(1); |
| 160 | |
| 161 | SENode* value_unknown = nullptr; |
| 162 | SENode* constant = nullptr; |
| 163 | |
| 164 | // Work out which operand is the unknown value. |
| 165 | if (operand_1->GetType() == SENode::ValueUnknown || |
| 166 | operand_1->GetType() == SENode::RecurrentAddExpr) |
| 167 | value_unknown = operand_1; |
| 168 | else if (operand_2->GetType() == SENode::ValueUnknown || |
| 169 | operand_2->GetType() == SENode::RecurrentAddExpr) |
| 170 | value_unknown = operand_2; |
| 171 | |
| 172 | // Work out which operand is the constant coefficient. |
| 173 | if (operand_1->GetType() == SENode::Constant) |
| 174 | constant = operand_1; |
| 175 | else if (operand_2->GetType() == SENode::Constant) |
| 176 | constant = operand_2; |
| 177 | |
| 178 | // If the expression is not a variable multiplied by a constant coefficient, |
| 179 | // exit out. |
| 180 | if (!(value_unknown && constant)) { |
| 181 | return false; |
| 182 | } |
| 183 | |
| 184 | int64_t sign = negation ? -1 : 1; |
| 185 | |
| 186 | auto iterator = accumulators_.find(value_unknown); |
| 187 | int64_t new_value = constant->AsSEConstantNode()->FoldToSingleValue() * sign; |
| 188 | // Add the result of the multiplication to the accumulators. |
| 189 | if (iterator != accumulators_.end()) { |
| 190 | (*iterator).second += new_value; |
| 191 | } else { |
| 192 | accumulators_.insert({value_unknown, new_value}); |
| 193 | } |
| 194 | |
| 195 | return true; |
| 196 | } |
| 197 | |
| 198 | SENode* SENodeSimplifyImpl::Simplify() { |
| 199 | // We only handle graphs with an addition, multiplication, or negation, at the |
| 200 | // root. |
| 201 | if (node_->GetType() != SENode::Add && node_->GetType() != SENode::Multiply && |
| 202 | node_->GetType() != SENode::Negative) |
| 203 | return node_; |
| 204 | |
| 205 | SENode* simplified_polynomial = SimplifyPolynomial(); |
| 206 | |
| 207 | SERecurrentNode* recurrent_expr = nullptr; |
| 208 | node_ = simplified_polynomial; |
| 209 | |
| 210 | // Fold recurrent expressions which are with respect to the same loop into a |
| 211 | // single recurrent expression. |
| 212 | simplified_polynomial = FoldRecurrentAddExpressions(simplified_polynomial); |
| 213 | |
| 214 | simplified_polynomial = |
| 215 | EliminateZeroCoefficientRecurrents(simplified_polynomial); |
| 216 | |
| 217 | // Traverse the immediate children of the new node to find the recurrent |
| 218 | // expression. If there is more than one there is nothing further we can do. |
| 219 | for (SENode* child : simplified_polynomial->GetChildren()) { |
| 220 | if (child->GetType() == SENode::RecurrentAddExpr) { |
| 221 | recurrent_expr = child->AsSERecurrentNode(); |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | // We need to count the number of unique recurrent expressions in the DAG to |
| 226 | // ensure there is only one. |
| 227 | for (auto child_iterator = simplified_polynomial->graph_begin(); |
| 228 | child_iterator != simplified_polynomial->graph_end(); ++child_iterator) { |
| 229 | if (child_iterator->GetType() == SENode::RecurrentAddExpr && |
| 230 | recurrent_expr != child_iterator->AsSERecurrentNode()) { |
| 231 | return simplified_polynomial; |
| 232 | } |
| 233 | } |
| 234 | |
| 235 | if (recurrent_expr) { |
| 236 | return SimplifyRecurrentAddExpression(recurrent_expr); |
| 237 | } |
| 238 | |
| 239 | return simplified_polynomial; |
| 240 | } |
| 241 | |
| 242 | // Traverse the graph to build up the accumulator objects. |
| 243 | void SENodeSimplifyImpl::GatherAccumulatorsFromChildNodes(SENode* new_node, |
| 244 | SENode* child, |
| 245 | bool negation) { |
| 246 | int32_t sign = negation ? -1 : 1; |
| 247 | |
| 248 | if (child->GetType() == SENode::Constant) { |
| 249 | // Collect all the constants and add them together. |
| 250 | constant_accumulator_ += |
| 251 | child->AsSEConstantNode()->FoldToSingleValue() * sign; |
| 252 | |
| 253 | } else if (child->GetType() == SENode::ValueUnknown || |
| 254 | child->GetType() == SENode::RecurrentAddExpr) { |
| 255 | // To rebuild the graph of X+X+X*2 into 4*X we count the occurrences of X |
| 256 | // and create a new node of count*X after. X can either be a ValueUnknown or |
| 257 | // a RecurrentAddExpr. The count for each X is stored in the accumulators_ |
| 258 | // map. |
| 259 | |
| 260 | auto iterator = accumulators_.find(child); |
| 261 | // If we've encountered this term before add to the accumulator for it. |
| 262 | if (iterator == accumulators_.end()) |
| 263 | accumulators_.insert({child, sign}); |
| 264 | else |
| 265 | iterator->second += sign; |
| 266 | |
| 267 | } else if (child->GetType() == SENode::Multiply) { |
| 268 | if (!AccumulatorsFromMultiply(child, negation)) { |
| 269 | new_node->AddChild(child); |
| 270 | } |
| 271 | |
| 272 | } else if (child->GetType() == SENode::Add) { |
| 273 | for (SENode* next_child : *child) { |
| 274 | GatherAccumulatorsFromChildNodes(new_node, next_child, negation); |
| 275 | } |
| 276 | |
| 277 | } else if (child->GetType() == SENode::Negative) { |
| 278 | SENode* negated_node = child->GetChild(0); |
| 279 | GatherAccumulatorsFromChildNodes(new_node, negated_node, !negation); |
| 280 | } else { |
| 281 | // If we can't work out how to fold the expression just add it back into |
| 282 | // the graph. |
| 283 | new_node->AddChild(child); |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | SERecurrentNode* SENodeSimplifyImpl::UpdateCoefficient( |
| 288 | SERecurrentNode* recurrent, int64_t coefficient_update) const { |
| 289 | std::unique_ptr<SERecurrentNode> new_recurrent_node{new SERecurrentNode( |
| 290 | recurrent->GetParentAnalysis(), recurrent->GetLoop())}; |
| 291 | |
| 292 | SENode* new_coefficient = analysis_.CreateMultiplyNode( |
| 293 | recurrent->GetCoefficient(), |
| 294 | analysis_.CreateConstant(coefficient_update)); |
| 295 | |
| 296 | // See if the node can be simplified. |
| 297 | SENode* simplified = analysis_.SimplifyExpression(new_coefficient); |
| 298 | if (simplified->GetType() != SENode::CanNotCompute) |
| 299 | new_coefficient = simplified; |
| 300 | |
| 301 | if (coefficient_update < 0) { |
| 302 | new_recurrent_node->AddOffset( |
| 303 | analysis_.CreateNegation(recurrent->GetOffset())); |
| 304 | } else { |
| 305 | new_recurrent_node->AddOffset(recurrent->GetOffset()); |
| 306 | } |
| 307 | |
| 308 | new_recurrent_node->AddCoefficient(new_coefficient); |
| 309 | |
| 310 | return analysis_.GetCachedOrAdd(std::move(new_recurrent_node)) |
| 311 | ->AsSERecurrentNode(); |
| 312 | } |
| 313 | |
| 314 | // Simplify all the terms in the polynomial function. |
| 315 | SENode* SENodeSimplifyImpl::SimplifyPolynomial() { |
| 316 | std::unique_ptr<SENode> new_add{new SEAddNode(node_->GetParentAnalysis())}; |
| 317 | |
| 318 | // Traverse the graph and gather the accumulators from it. |
| 319 | GatherAccumulatorsFromChildNodes(new_add.get(), node_, false); |
| 320 | |
| 321 | // Fold all the constants into a single constant node. |
| 322 | if (constant_accumulator_ != 0) { |
| 323 | new_add->AddChild(analysis_.CreateConstant(constant_accumulator_)); |
| 324 | } |
| 325 | |
| 326 | for (auto& pair : accumulators_) { |
| 327 | SENode* term = pair.first; |
| 328 | int64_t count = pair.second; |
| 329 | |
| 330 | // We can eliminate the term completely. |
| 331 | if (count == 0) continue; |
| 332 | |
| 333 | if (count == 1) { |
| 334 | new_add->AddChild(term); |
| 335 | } else if (count == -1 && term->GetType() != SENode::RecurrentAddExpr) { |
| 336 | // If the count is -1 we can just add a negative version of that node, |
| 337 | // unless it is a recurrent expression as we would rather the negative |
| 338 | // goes on the recurrent expressions children. This makes it easier to |
| 339 | // work with in other places. |
| 340 | new_add->AddChild(analysis_.CreateNegation(term)); |
| 341 | } else { |
| 342 | // Output value unknown terms as count*term and output recurrent |
| 343 | // expression terms as rec(offset, coefficient + count) offset and |
| 344 | // coefficient are the same as in the original expression. |
| 345 | if (term->GetType() == SENode::ValueUnknown) { |
| 346 | SENode* count_as_constant = analysis_.CreateConstant(count); |
| 347 | new_add->AddChild( |
| 348 | analysis_.CreateMultiplyNode(count_as_constant, term)); |
| 349 | } else { |
| 350 | assert(term->GetType() == SENode::RecurrentAddExpr && |
| 351 | "We only handle value unknowns or recurrent expressions" ); |
| 352 | |
| 353 | // Create a new recurrent expression by adding the count to the |
| 354 | // coefficient of the old one. |
| 355 | new_add->AddChild(UpdateCoefficient(term->AsSERecurrentNode(), count)); |
| 356 | } |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | // If there is only one term in the addition left just return that term. |
| 361 | if (new_add->GetChildren().size() == 1) { |
| 362 | return new_add->GetChild(0); |
| 363 | } |
| 364 | |
| 365 | // If there are no terms left in the addition just return 0. |
| 366 | if (new_add->GetChildren().size() == 0) { |
| 367 | return analysis_.CreateConstant(0); |
| 368 | } |
| 369 | |
| 370 | return analysis_.GetCachedOrAdd(std::move(new_add)); |
| 371 | } |
| 372 | |
| 373 | SENode* SENodeSimplifyImpl::FoldRecurrentAddExpressions(SENode* root) { |
| 374 | std::unique_ptr<SEAddNode> new_node{new SEAddNode(&analysis_)}; |
| 375 | |
| 376 | // A mapping of loops to the list of recurrent expressions which are with |
| 377 | // respect to those loops. |
| 378 | std::map<const Loop*, std::vector<std::pair<SERecurrentNode*, bool>>> |
| 379 | loops_to_recurrent{}; |
| 380 | |
| 381 | bool has_multiple_same_loop_recurrent_terms = false; |
| 382 | |
| 383 | for (SENode* child : *root) { |
| 384 | bool negation = false; |
| 385 | |
| 386 | if (child->GetType() == SENode::Negative) { |
| 387 | child = child->GetChild(0); |
| 388 | negation = true; |
| 389 | } |
| 390 | |
| 391 | if (child->GetType() == SENode::RecurrentAddExpr) { |
| 392 | const Loop* loop = child->AsSERecurrentNode()->GetLoop(); |
| 393 | |
| 394 | SERecurrentNode* rec = child->AsSERecurrentNode(); |
| 395 | if (loops_to_recurrent.find(loop) == loops_to_recurrent.end()) { |
| 396 | loops_to_recurrent[loop] = {std::make_pair(rec, negation)}; |
| 397 | } else { |
| 398 | loops_to_recurrent[loop].push_back(std::make_pair(rec, negation)); |
| 399 | has_multiple_same_loop_recurrent_terms = true; |
| 400 | } |
| 401 | } else { |
| 402 | new_node->AddChild(child); |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | if (!has_multiple_same_loop_recurrent_terms) return root; |
| 407 | |
| 408 | for (auto pair : loops_to_recurrent) { |
| 409 | std::vector<std::pair<SERecurrentNode*, bool>>& recurrent_expressions = |
| 410 | pair.second; |
| 411 | const Loop* loop = pair.first; |
| 412 | |
| 413 | std::unique_ptr<SENode> new_coefficient{new SEAddNode(&analysis_)}; |
| 414 | std::unique_ptr<SENode> new_offset{new SEAddNode(&analysis_)}; |
| 415 | |
| 416 | for (auto node_pair : recurrent_expressions) { |
| 417 | SERecurrentNode* node = node_pair.first; |
| 418 | bool negative = node_pair.second; |
| 419 | |
| 420 | if (!negative) { |
| 421 | new_coefficient->AddChild(node->GetCoefficient()); |
| 422 | new_offset->AddChild(node->GetOffset()); |
| 423 | } else { |
| 424 | new_coefficient->AddChild( |
| 425 | analysis_.CreateNegation(node->GetCoefficient())); |
| 426 | new_offset->AddChild(analysis_.CreateNegation(node->GetOffset())); |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | std::unique_ptr<SERecurrentNode> new_recurrent{ |
| 431 | new SERecurrentNode(&analysis_, loop)}; |
| 432 | |
| 433 | SENode* new_coefficient_simplified = |
| 434 | analysis_.SimplifyExpression(new_coefficient.get()); |
| 435 | |
| 436 | SENode* new_offset_simplified = |
| 437 | analysis_.SimplifyExpression(new_offset.get()); |
| 438 | |
| 439 | if (new_coefficient_simplified->GetType() == SENode::Constant && |
| 440 | new_coefficient_simplified->AsSEConstantNode()->FoldToSingleValue() == |
| 441 | 0) { |
| 442 | return new_offset_simplified; |
| 443 | } |
| 444 | |
| 445 | new_recurrent->AddCoefficient(new_coefficient_simplified); |
| 446 | new_recurrent->AddOffset(new_offset_simplified); |
| 447 | |
| 448 | new_node->AddChild(analysis_.GetCachedOrAdd(std::move(new_recurrent))); |
| 449 | } |
| 450 | |
| 451 | // If we only have one child in the add just return that. |
| 452 | if (new_node->GetChildren().size() == 1) { |
| 453 | return new_node->GetChild(0); |
| 454 | } |
| 455 | |
| 456 | return analysis_.GetCachedOrAdd(std::move(new_node)); |
| 457 | } |
| 458 | |
| 459 | SENode* SENodeSimplifyImpl::EliminateZeroCoefficientRecurrents(SENode* node) { |
| 460 | if (node->GetType() != SENode::Add) return node; |
| 461 | |
| 462 | bool has_change = false; |
| 463 | |
| 464 | std::vector<SENode*> new_children{}; |
| 465 | for (SENode* child : *node) { |
| 466 | if (child->GetType() == SENode::RecurrentAddExpr) { |
| 467 | SENode* coefficient = child->AsSERecurrentNode()->GetCoefficient(); |
| 468 | // If coefficient is zero then we can eliminate the recurrent expression |
| 469 | // entirely and just return the offset as the recurrent expression is |
| 470 | // representing the equation coefficient*iterations + offset. |
| 471 | if (coefficient->GetType() == SENode::Constant && |
| 472 | coefficient->AsSEConstantNode()->FoldToSingleValue() == 0) { |
| 473 | new_children.push_back(child->AsSERecurrentNode()->GetOffset()); |
| 474 | has_change = true; |
| 475 | } else { |
| 476 | new_children.push_back(child); |
| 477 | } |
| 478 | } else { |
| 479 | new_children.push_back(child); |
| 480 | } |
| 481 | } |
| 482 | |
| 483 | if (!has_change) return node; |
| 484 | |
| 485 | std::unique_ptr<SENode> new_add{new SEAddNode(node_->GetParentAnalysis())}; |
| 486 | |
| 487 | for (SENode* child : new_children) { |
| 488 | new_add->AddChild(child); |
| 489 | } |
| 490 | |
| 491 | return analysis_.GetCachedOrAdd(std::move(new_add)); |
| 492 | } |
| 493 | |
| 494 | SENode* SENodeSimplifyImpl::SimplifyRecurrentAddExpression( |
| 495 | SERecurrentNode* recurrent_expr) { |
| 496 | const std::vector<SENode*>& children = node_->GetChildren(); |
| 497 | |
| 498 | std::unique_ptr<SERecurrentNode> recurrent_node{new SERecurrentNode( |
| 499 | recurrent_expr->GetParentAnalysis(), recurrent_expr->GetLoop())}; |
| 500 | |
| 501 | // Create and simplify the new offset node. |
| 502 | std::unique_ptr<SENode> new_offset{ |
| 503 | new SEAddNode(recurrent_expr->GetParentAnalysis())}; |
| 504 | new_offset->AddChild(recurrent_expr->GetOffset()); |
| 505 | |
| 506 | for (SENode* child : children) { |
| 507 | if (child->GetType() != SENode::RecurrentAddExpr) { |
| 508 | new_offset->AddChild(child); |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | // Simplify the new offset. |
| 513 | SENode* simplified_child = analysis_.SimplifyExpression(new_offset.get()); |
| 514 | |
| 515 | // If the child can be simplified, add the simplified form otherwise, add it |
| 516 | // via the usual caching mechanism. |
| 517 | if (simplified_child->GetType() != SENode::CanNotCompute) { |
| 518 | recurrent_node->AddOffset(simplified_child); |
| 519 | } else { |
| 520 | recurrent_expr->AddOffset(analysis_.GetCachedOrAdd(std::move(new_offset))); |
| 521 | } |
| 522 | |
| 523 | recurrent_node->AddCoefficient(recurrent_expr->GetCoefficient()); |
| 524 | |
| 525 | return analysis_.GetCachedOrAdd(std::move(recurrent_node)); |
| 526 | } |
| 527 | |
| 528 | /* |
| 529 | * Scalar Analysis simplification public methods. |
| 530 | */ |
| 531 | |
| 532 | SENode* ScalarEvolutionAnalysis::SimplifyExpression(SENode* node) { |
| 533 | SENodeSimplifyImpl impl{this, node}; |
| 534 | |
| 535 | return impl.Simplify(); |
| 536 | } |
| 537 | |
| 538 | } // namespace opt |
| 539 | } // namespace spvtools |
| 540 | |