1 | // Copyright (c) 2015-2016 The Khronos Group Inc. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | |
15 | #include "source/val/function.h" |
16 | |
17 | #include <algorithm> |
18 | #include <cassert> |
19 | #include <sstream> |
20 | #include <unordered_map> |
21 | #include <unordered_set> |
22 | #include <utility> |
23 | |
24 | #include "source/cfa.h" |
25 | #include "source/val/basic_block.h" |
26 | #include "source/val/construct.h" |
27 | #include "source/val/validate.h" |
28 | |
29 | namespace spvtools { |
30 | namespace val { |
31 | |
32 | // Universal Limit of ResultID + 1 |
33 | static const uint32_t kInvalidId = 0x400000; |
34 | |
35 | Function::Function(uint32_t function_id, uint32_t result_type_id, |
36 | SpvFunctionControlMask function_control, |
37 | uint32_t function_type_id) |
38 | : id_(function_id), |
39 | function_type_id_(function_type_id), |
40 | result_type_id_(result_type_id), |
41 | function_control_(function_control), |
42 | declaration_type_(FunctionDecl::kFunctionDeclUnknown), |
43 | end_has_been_registered_(false), |
44 | blocks_(), |
45 | current_block_(nullptr), |
46 | pseudo_entry_block_(0), |
47 | pseudo_exit_block_(kInvalidId), |
48 | cfg_constructs_(), |
49 | variable_ids_(), |
50 | parameter_ids_() {} |
51 | |
52 | bool Function::IsFirstBlock(uint32_t block_id) const { |
53 | return !ordered_blocks_.empty() && *first_block() == block_id; |
54 | } |
55 | |
56 | spv_result_t Function::RegisterFunctionParameter(uint32_t parameter_id, |
57 | uint32_t type_id) { |
58 | assert(current_block_ == nullptr && |
59 | "RegisterFunctionParameter can only be called when parsing the binary " |
60 | "ouside of a block" ); |
61 | // TODO(umar): Validate function parameter type order and count |
62 | // TODO(umar): Use these variables to validate parameter type |
63 | (void)parameter_id; |
64 | (void)type_id; |
65 | return SPV_SUCCESS; |
66 | } |
67 | |
68 | spv_result_t Function::RegisterLoopMerge(uint32_t merge_id, |
69 | uint32_t continue_id) { |
70 | RegisterBlock(merge_id, false); |
71 | RegisterBlock(continue_id, false); |
72 | BasicBlock& merge_block = blocks_.at(merge_id); |
73 | BasicBlock& continue_target_block = blocks_.at(continue_id); |
74 | assert(current_block_ && |
75 | "RegisterLoopMerge must be called when called within a block" ); |
76 | |
77 | current_block_->set_type(kBlockTypeLoop); |
78 | merge_block.set_type(kBlockTypeMerge); |
79 | continue_target_block.set_type(kBlockTypeContinue); |
80 | Construct& loop_construct = |
81 | AddConstruct({ConstructType::kLoop, current_block_, &merge_block}); |
82 | Construct& continue_construct = |
83 | AddConstruct({ConstructType::kContinue, &continue_target_block}); |
84 | |
85 | continue_construct.set_corresponding_constructs({&loop_construct}); |
86 | loop_construct.set_corresponding_constructs({&continue_construct}); |
87 | merge_block_header_[&merge_block] = current_block_; |
88 | if (continue_target_headers_.find(&continue_target_block) == |
89 | continue_target_headers_.end()) { |
90 | continue_target_headers_[&continue_target_block] = {current_block_}; |
91 | } else { |
92 | continue_target_headers_[&continue_target_block].push_back(current_block_); |
93 | } |
94 | |
95 | return SPV_SUCCESS; |
96 | } |
97 | |
98 | spv_result_t Function::RegisterSelectionMerge(uint32_t merge_id) { |
99 | RegisterBlock(merge_id, false); |
100 | BasicBlock& merge_block = blocks_.at(merge_id); |
101 | current_block_->set_type(kBlockTypeSelection); |
102 | merge_block.set_type(kBlockTypeMerge); |
103 | merge_block_header_[&merge_block] = current_block_; |
104 | |
105 | AddConstruct({ConstructType::kSelection, current_block(), &merge_block}); |
106 | |
107 | return SPV_SUCCESS; |
108 | } |
109 | |
110 | spv_result_t Function::RegisterSetFunctionDeclType(FunctionDecl type) { |
111 | assert(declaration_type_ == FunctionDecl::kFunctionDeclUnknown); |
112 | declaration_type_ = type; |
113 | return SPV_SUCCESS; |
114 | } |
115 | |
116 | spv_result_t Function::RegisterBlock(uint32_t block_id, bool is_definition) { |
117 | assert( |
118 | declaration_type_ == FunctionDecl::kFunctionDeclDefinition && |
119 | "RegisterBlocks can only be called after declaration_type_ is defined" ); |
120 | |
121 | std::unordered_map<uint32_t, BasicBlock>::iterator inserted_block; |
122 | bool success = false; |
123 | tie(inserted_block, success) = |
124 | blocks_.insert({block_id, BasicBlock(block_id)}); |
125 | if (is_definition) { // new block definition |
126 | assert(current_block_ == nullptr && |
127 | "Register Block can only be called when parsing a binary outside of " |
128 | "a BasicBlock" ); |
129 | |
130 | undefined_blocks_.erase(block_id); |
131 | current_block_ = &inserted_block->second; |
132 | ordered_blocks_.push_back(current_block_); |
133 | if (IsFirstBlock(block_id)) current_block_->set_reachable(true); |
134 | } else if (success) { // Block doesn't exsist but this is not a definition |
135 | undefined_blocks_.insert(block_id); |
136 | } |
137 | |
138 | return SPV_SUCCESS; |
139 | } |
140 | |
141 | void Function::RegisterBlockEnd(std::vector<uint32_t> next_list, |
142 | SpvOp branch_instruction) { |
143 | assert( |
144 | current_block_ && |
145 | "RegisterBlockEnd can only be called when parsing a binary in a block" ); |
146 | std::vector<BasicBlock*> next_blocks; |
147 | next_blocks.reserve(next_list.size()); |
148 | |
149 | std::unordered_map<uint32_t, BasicBlock>::iterator inserted_block; |
150 | bool success; |
151 | for (uint32_t successor_id : next_list) { |
152 | tie(inserted_block, success) = |
153 | blocks_.insert({successor_id, BasicBlock(successor_id)}); |
154 | if (success) { |
155 | undefined_blocks_.insert(successor_id); |
156 | } |
157 | next_blocks.push_back(&inserted_block->second); |
158 | } |
159 | |
160 | if (current_block_->is_type(kBlockTypeLoop)) { |
161 | // For each loop header, record the set of its successors, and include |
162 | // its continue target if the continue target is not the loop header |
163 | // itself. |
164 | std::vector<BasicBlock*>& next_blocks_plus_continue_target = |
165 | loop_header_successors_plus_continue_target_map_[current_block_]; |
166 | next_blocks_plus_continue_target = next_blocks; |
167 | auto continue_target = |
168 | FindConstructForEntryBlock(current_block_, ConstructType::kLoop) |
169 | .corresponding_constructs() |
170 | .back() |
171 | ->entry_block(); |
172 | if (continue_target != current_block_) { |
173 | next_blocks_plus_continue_target.push_back(continue_target); |
174 | } |
175 | } |
176 | |
177 | current_block_->RegisterBranchInstruction(branch_instruction); |
178 | current_block_->RegisterSuccessors(next_blocks); |
179 | current_block_ = nullptr; |
180 | return; |
181 | } |
182 | |
183 | void Function::RegisterFunctionEnd() { |
184 | if (!end_has_been_registered_) { |
185 | end_has_been_registered_ = true; |
186 | |
187 | ComputeAugmentedCFG(); |
188 | } |
189 | } |
190 | |
191 | size_t Function::block_count() const { return blocks_.size(); } |
192 | |
193 | size_t Function::undefined_block_count() const { |
194 | return undefined_blocks_.size(); |
195 | } |
196 | |
197 | const std::vector<BasicBlock*>& Function::ordered_blocks() const { |
198 | return ordered_blocks_; |
199 | } |
200 | std::vector<BasicBlock*>& Function::ordered_blocks() { return ordered_blocks_; } |
201 | |
202 | const BasicBlock* Function::current_block() const { return current_block_; } |
203 | BasicBlock* Function::current_block() { return current_block_; } |
204 | |
205 | const std::list<Construct>& Function::constructs() const { |
206 | return cfg_constructs_; |
207 | } |
208 | std::list<Construct>& Function::constructs() { return cfg_constructs_; } |
209 | |
210 | const BasicBlock* Function::first_block() const { |
211 | if (ordered_blocks_.empty()) return nullptr; |
212 | return ordered_blocks_[0]; |
213 | } |
214 | BasicBlock* Function::first_block() { |
215 | if (ordered_blocks_.empty()) return nullptr; |
216 | return ordered_blocks_[0]; |
217 | } |
218 | |
219 | bool Function::IsBlockType(uint32_t merge_block_id, BlockType type) const { |
220 | bool ret = false; |
221 | const BasicBlock* block; |
222 | std::tie(block, std::ignore) = GetBlock(merge_block_id); |
223 | if (block) { |
224 | ret = block->is_type(type); |
225 | } |
226 | return ret; |
227 | } |
228 | |
229 | std::pair<const BasicBlock*, bool> Function::GetBlock(uint32_t block_id) const { |
230 | const auto b = blocks_.find(block_id); |
231 | if (b != end(blocks_)) { |
232 | const BasicBlock* block = &(b->second); |
233 | bool defined = |
234 | undefined_blocks_.find(block->id()) == std::end(undefined_blocks_); |
235 | return std::make_pair(block, defined); |
236 | } else { |
237 | return std::make_pair(nullptr, false); |
238 | } |
239 | } |
240 | |
241 | std::pair<BasicBlock*, bool> Function::GetBlock(uint32_t block_id) { |
242 | const BasicBlock* out; |
243 | bool defined; |
244 | std::tie(out, defined) = |
245 | const_cast<const Function*>(this)->GetBlock(block_id); |
246 | return std::make_pair(const_cast<BasicBlock*>(out), defined); |
247 | } |
248 | |
249 | Function::GetBlocksFunction Function::AugmentedCFGSuccessorsFunction() const { |
250 | return [this](const BasicBlock* block) { |
251 | auto where = augmented_successors_map_.find(block); |
252 | return where == augmented_successors_map_.end() ? block->successors() |
253 | : &(*where).second; |
254 | }; |
255 | } |
256 | |
257 | Function::GetBlocksFunction |
258 | Function::() const { |
259 | return [this](const BasicBlock* block) { |
260 | auto where = loop_header_successors_plus_continue_target_map_.find(block); |
261 | return where == loop_header_successors_plus_continue_target_map_.end() |
262 | ? AugmentedCFGSuccessorsFunction()(block) |
263 | : &(*where).second; |
264 | }; |
265 | } |
266 | |
267 | Function::GetBlocksFunction Function::AugmentedCFGPredecessorsFunction() const { |
268 | return [this](const BasicBlock* block) { |
269 | auto where = augmented_predecessors_map_.find(block); |
270 | return where == augmented_predecessors_map_.end() ? block->predecessors() |
271 | : &(*where).second; |
272 | }; |
273 | } |
274 | |
275 | void Function::ComputeAugmentedCFG() { |
276 | // Compute the successors of the pseudo-entry block, and |
277 | // the predecessors of the pseudo exit block. |
278 | auto succ_func = [](const BasicBlock* b) { return b->successors(); }; |
279 | auto pred_func = [](const BasicBlock* b) { return b->predecessors(); }; |
280 | CFA<BasicBlock>::ComputeAugmentedCFG( |
281 | ordered_blocks_, &pseudo_entry_block_, &pseudo_exit_block_, |
282 | &augmented_successors_map_, &augmented_predecessors_map_, succ_func, |
283 | pred_func); |
284 | } |
285 | |
286 | Construct& Function::AddConstruct(const Construct& new_construct) { |
287 | cfg_constructs_.push_back(new_construct); |
288 | auto& result = cfg_constructs_.back(); |
289 | entry_block_to_construct_[std::make_pair(new_construct.entry_block(), |
290 | new_construct.type())] = &result; |
291 | return result; |
292 | } |
293 | |
294 | Construct& Function::FindConstructForEntryBlock(const BasicBlock* entry_block, |
295 | ConstructType type) { |
296 | auto where = |
297 | entry_block_to_construct_.find(std::make_pair(entry_block, type)); |
298 | assert(where != entry_block_to_construct_.end()); |
299 | auto construct_ptr = (*where).second; |
300 | assert(construct_ptr); |
301 | return *construct_ptr; |
302 | } |
303 | |
304 | int Function::GetBlockDepth(BasicBlock* bb) { |
305 | // Guard against nullptr. |
306 | if (!bb) { |
307 | return 0; |
308 | } |
309 | // Only calculate the depth if it's not already calculated. |
310 | // This function uses memoization to avoid duplicate CFG depth calculations. |
311 | if (block_depth_.find(bb) != block_depth_.end()) { |
312 | return block_depth_[bb]; |
313 | } |
314 | |
315 | BasicBlock* bb_dom = bb->immediate_dominator(); |
316 | if (!bb_dom || bb == bb_dom) { |
317 | // This block has no dominator, so it's at depth 0. |
318 | block_depth_[bb] = 0; |
319 | } else if (bb->is_type(kBlockTypeContinue)) { |
320 | // This rule must precede the rule for merge blocks in order to set up |
321 | // depths correctly. If a block is both a merge and continue then the merge |
322 | // is nested within the continue's loop (or the graph is incorrect). |
323 | // The depth of the continue block entry point is 1 + loop header depth. |
324 | Construct* continue_construct = |
325 | entry_block_to_construct_[std::make_pair(bb, ConstructType::kContinue)]; |
326 | assert(continue_construct); |
327 | // Continue construct has only 1 corresponding construct (loop header). |
328 | Construct* loop_construct = |
329 | continue_construct->corresponding_constructs()[0]; |
330 | assert(loop_construct); |
331 | BasicBlock* = loop_construct->entry_block(); |
332 | // The continue target may be the loop itself (while 1). |
333 | // In such cases, the depth of the continue block is: 1 + depth of the |
334 | // loop's dominator block. |
335 | if (loop_header == bb) { |
336 | block_depth_[bb] = 1 + GetBlockDepth(bb_dom); |
337 | } else { |
338 | block_depth_[bb] = 1 + GetBlockDepth(loop_header); |
339 | } |
340 | } else if (bb->is_type(kBlockTypeMerge)) { |
341 | // If this is a merge block, its depth is equal to the block before |
342 | // branching. |
343 | BasicBlock* = merge_block_header_[bb]; |
344 | assert(header); |
345 | block_depth_[bb] = GetBlockDepth(header); |
346 | } else if (bb_dom->is_type(kBlockTypeSelection) || |
347 | bb_dom->is_type(kBlockTypeLoop)) { |
348 | // The dominator of the given block is a header block. So, the nesting |
349 | // depth of this block is: 1 + nesting depth of the header. |
350 | block_depth_[bb] = 1 + GetBlockDepth(bb_dom); |
351 | } else { |
352 | block_depth_[bb] = GetBlockDepth(bb_dom); |
353 | } |
354 | return block_depth_[bb]; |
355 | } |
356 | |
357 | void Function::RegisterExecutionModelLimitation(SpvExecutionModel model, |
358 | const std::string& message) { |
359 | execution_model_limitations_.push_back( |
360 | [model, message](SpvExecutionModel in_model, std::string* out_message) { |
361 | if (model != in_model) { |
362 | if (out_message) { |
363 | *out_message = message; |
364 | } |
365 | return false; |
366 | } |
367 | return true; |
368 | }); |
369 | } |
370 | |
371 | bool Function::IsCompatibleWithExecutionModel(SpvExecutionModel model, |
372 | std::string* reason) const { |
373 | bool return_value = true; |
374 | std::stringstream ss_reason; |
375 | |
376 | for (const auto& is_compatible : execution_model_limitations_) { |
377 | std::string message; |
378 | if (!is_compatible(model, &message)) { |
379 | if (!reason) return false; |
380 | return_value = false; |
381 | if (!message.empty()) { |
382 | ss_reason << message << "\n" ; |
383 | } |
384 | } |
385 | } |
386 | |
387 | if (!return_value && reason) { |
388 | *reason = ss_reason.str(); |
389 | } |
390 | |
391 | return return_value; |
392 | } |
393 | |
394 | bool Function::CheckLimitations(const ValidationState_t& _, |
395 | const Function* entry_point, |
396 | std::string* reason) const { |
397 | bool return_value = true; |
398 | std::stringstream ss_reason; |
399 | |
400 | for (const auto& is_compatible : limitations_) { |
401 | std::string message; |
402 | if (!is_compatible(_, entry_point, &message)) { |
403 | if (!reason) return false; |
404 | return_value = false; |
405 | if (!message.empty()) { |
406 | ss_reason << message << "\n" ; |
407 | } |
408 | } |
409 | } |
410 | |
411 | if (!return_value && reason) { |
412 | *reason = ss_reason.str(); |
413 | } |
414 | |
415 | return return_value; |
416 | } |
417 | |
418 | } // namespace val |
419 | } // namespace spvtools |
420 | |