1 | /* |
2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
5 | Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
6 | |
7 | Stockfish is free software: you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by |
9 | the Free Software Foundation, either version 3 of the License, or |
10 | (at your option) any later version. |
11 | |
12 | Stockfish is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 | GNU General Public License for more details. |
16 | |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
19 | */ |
20 | |
21 | #ifndef BITBOARD_H_INCLUDED |
22 | #define BITBOARD_H_INCLUDED |
23 | |
24 | #include <string> |
25 | |
26 | #include "types.h" |
27 | |
28 | namespace Bitbases { |
29 | |
30 | void init(); |
31 | bool probe(Square wksq, Square wpsq, Square bksq, Color us); |
32 | |
33 | } |
34 | |
35 | namespace Bitboards { |
36 | |
37 | void init(); |
38 | const std::string pretty(Bitboard b); |
39 | |
40 | } |
41 | |
42 | constexpr Bitboard AllSquares = ~Bitboard(0); |
43 | constexpr Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL; |
44 | |
45 | constexpr Bitboard FileABB = 0x0101010101010101ULL; |
46 | constexpr Bitboard FileBBB = FileABB << 1; |
47 | constexpr Bitboard FileCBB = FileABB << 2; |
48 | constexpr Bitboard FileDBB = FileABB << 3; |
49 | constexpr Bitboard FileEBB = FileABB << 4; |
50 | constexpr Bitboard FileFBB = FileABB << 5; |
51 | constexpr Bitboard FileGBB = FileABB << 6; |
52 | constexpr Bitboard FileHBB = FileABB << 7; |
53 | |
54 | constexpr Bitboard Rank1BB = 0xFF; |
55 | constexpr Bitboard Rank2BB = Rank1BB << (8 * 1); |
56 | constexpr Bitboard Rank3BB = Rank1BB << (8 * 2); |
57 | constexpr Bitboard Rank4BB = Rank1BB << (8 * 3); |
58 | constexpr Bitboard Rank5BB = Rank1BB << (8 * 4); |
59 | constexpr Bitboard Rank6BB = Rank1BB << (8 * 5); |
60 | constexpr Bitboard Rank7BB = Rank1BB << (8 * 6); |
61 | constexpr Bitboard Rank8BB = Rank1BB << (8 * 7); |
62 | |
63 | constexpr Bitboard QueenSide = FileABB | FileBBB | FileCBB | FileDBB; |
64 | constexpr Bitboard CenterFiles = FileCBB | FileDBB | FileEBB | FileFBB; |
65 | constexpr Bitboard KingSide = FileEBB | FileFBB | FileGBB | FileHBB; |
66 | constexpr Bitboard Center = (FileDBB | FileEBB) & (Rank4BB | Rank5BB); |
67 | |
68 | constexpr Bitboard KingFlank[FILE_NB] = { |
69 | QueenSide ^ FileDBB, QueenSide, QueenSide, |
70 | CenterFiles, CenterFiles, |
71 | KingSide, KingSide, KingSide ^ FileEBB |
72 | }; |
73 | |
74 | extern uint8_t PopCnt16[1 << 16]; |
75 | extern uint8_t SquareDistance[SQUARE_NB][SQUARE_NB]; |
76 | |
77 | extern Bitboard SquareBB[SQUARE_NB]; |
78 | extern Bitboard LineBB[SQUARE_NB][SQUARE_NB]; |
79 | extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; |
80 | extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB]; |
81 | |
82 | |
83 | /// Magic holds all magic bitboards relevant data for a single square |
84 | struct Magic { |
85 | Bitboard mask; |
86 | Bitboard magic; |
87 | Bitboard* attacks; |
88 | unsigned shift; |
89 | |
90 | // Compute the attack's index using the 'magic bitboards' approach |
91 | unsigned index(Bitboard occupied) const { |
92 | |
93 | if (HasPext) |
94 | return unsigned(pext(occupied, mask)); |
95 | |
96 | if (Is64Bit) |
97 | return unsigned(((occupied & mask) * magic) >> shift); |
98 | |
99 | unsigned lo = unsigned(occupied) & unsigned(mask); |
100 | unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32); |
101 | return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift; |
102 | } |
103 | }; |
104 | |
105 | extern Magic RookMagics[SQUARE_NB]; |
106 | extern Magic BishopMagics[SQUARE_NB]; |
107 | |
108 | inline Bitboard square_bb(Square s) { |
109 | assert(s >= SQ_A1 && s <= SQ_H8); |
110 | return SquareBB[s]; |
111 | } |
112 | |
113 | /// Overloads of bitwise operators between a Bitboard and a Square for testing |
114 | /// whether a given bit is set in a bitboard, and for setting and clearing bits. |
115 | |
116 | inline Bitboard operator&( Bitboard b, Square s) { return b & square_bb(s); } |
117 | inline Bitboard operator|( Bitboard b, Square s) { return b | square_bb(s); } |
118 | inline Bitboard operator^( Bitboard b, Square s) { return b ^ square_bb(s); } |
119 | inline Bitboard& operator|=(Bitboard& b, Square s) { return b |= square_bb(s); } |
120 | inline Bitboard& operator^=(Bitboard& b, Square s) { return b ^= square_bb(s); } |
121 | |
122 | constexpr bool more_than_one(Bitboard b) { |
123 | return b & (b - 1); |
124 | } |
125 | |
126 | inline bool opposite_colors(Square s1, Square s2) { |
127 | return bool(DarkSquares & s1) != bool(DarkSquares & s2); |
128 | } |
129 | |
130 | |
131 | /// rank_bb() and file_bb() return a bitboard representing all the squares on |
132 | /// the given file or rank. |
133 | |
134 | inline Bitboard rank_bb(Rank r) { |
135 | return Rank1BB << (8 * r); |
136 | } |
137 | |
138 | inline Bitboard rank_bb(Square s) { |
139 | return rank_bb(rank_of(s)); |
140 | } |
141 | |
142 | inline Bitboard file_bb(File f) { |
143 | return FileABB << f; |
144 | } |
145 | |
146 | inline Bitboard file_bb(Square s) { |
147 | return file_bb(file_of(s)); |
148 | } |
149 | |
150 | |
151 | /// shift() moves a bitboard one step along direction D |
152 | |
153 | template<Direction D> |
154 | constexpr Bitboard shift(Bitboard b) { |
155 | return D == NORTH ? b << 8 : D == SOUTH ? b >> 8 |
156 | : D == NORTH+NORTH? b <<16 : D == SOUTH+SOUTH? b >>16 |
157 | : D == EAST ? (b & ~FileHBB) << 1 : D == WEST ? (b & ~FileABB) >> 1 |
158 | : D == NORTH_EAST ? (b & ~FileHBB) << 9 : D == NORTH_WEST ? (b & ~FileABB) << 7 |
159 | : D == SOUTH_EAST ? (b & ~FileHBB) >> 7 : D == SOUTH_WEST ? (b & ~FileABB) >> 9 |
160 | : 0; |
161 | } |
162 | |
163 | |
164 | /// pawn_attacks_bb() returns the squares attacked by pawns of the given color |
165 | /// from the squares in the given bitboard. |
166 | |
167 | template<Color C> |
168 | constexpr Bitboard pawn_attacks_bb(Bitboard b) { |
169 | return C == WHITE ? shift<NORTH_WEST>(b) | shift<NORTH_EAST>(b) |
170 | : shift<SOUTH_WEST>(b) | shift<SOUTH_EAST>(b); |
171 | } |
172 | |
173 | |
174 | /// pawn_double_attacks_bb() returns the squares doubly attacked by pawns of the |
175 | /// given color from the squares in the given bitboard. |
176 | |
177 | template<Color C> |
178 | constexpr Bitboard pawn_double_attacks_bb(Bitboard b) { |
179 | return C == WHITE ? shift<NORTH_WEST>(b) & shift<NORTH_EAST>(b) |
180 | : shift<SOUTH_WEST>(b) & shift<SOUTH_EAST>(b); |
181 | } |
182 | |
183 | |
184 | /// adjacent_files_bb() returns a bitboard representing all the squares on the |
185 | /// adjacent files of the given one. |
186 | |
187 | inline Bitboard adjacent_files_bb(Square s) { |
188 | return shift<EAST>(file_bb(s)) | shift<WEST>(file_bb(s)); |
189 | } |
190 | |
191 | |
192 | /// between_bb() returns squares that are linearly between the given squares |
193 | /// If the given squares are not on a same file/rank/diagonal, return 0. |
194 | |
195 | inline Bitboard between_bb(Square s1, Square s2) { |
196 | return LineBB[s1][s2] & ( (AllSquares << (s1 + (s1 < s2))) |
197 | ^(AllSquares << (s2 + !(s1 < s2)))); |
198 | } |
199 | |
200 | |
201 | /// forward_ranks_bb() returns a bitboard representing the squares on the ranks |
202 | /// in front of the given one, from the point of view of the given color. For instance, |
203 | /// forward_ranks_bb(BLACK, SQ_D3) will return the 16 squares on ranks 1 and 2. |
204 | |
205 | inline Bitboard forward_ranks_bb(Color c, Square s) { |
206 | return c == WHITE ? ~Rank1BB << 8 * (rank_of(s) - RANK_1) |
207 | : ~Rank8BB >> 8 * (RANK_8 - rank_of(s)); |
208 | } |
209 | |
210 | |
211 | /// forward_file_bb() returns a bitboard representing all the squares along the |
212 | /// line in front of the given one, from the point of view of the given color. |
213 | |
214 | inline Bitboard forward_file_bb(Color c, Square s) { |
215 | return forward_ranks_bb(c, s) & file_bb(s); |
216 | } |
217 | |
218 | |
219 | /// pawn_attack_span() returns a bitboard representing all the squares that can |
220 | /// be attacked by a pawn of the given color when it moves along its file, |
221 | /// starting from the given square. |
222 | |
223 | inline Bitboard pawn_attack_span(Color c, Square s) { |
224 | return forward_ranks_bb(c, s) & adjacent_files_bb(s); |
225 | } |
226 | |
227 | |
228 | /// passed_pawn_span() returns a bitboard which can be used to test if a pawn of |
229 | /// the given color and on the given square is a passed pawn. |
230 | |
231 | inline Bitboard passed_pawn_span(Color c, Square s) { |
232 | return forward_ranks_bb(c, s) & (adjacent_files_bb(s) | file_bb(s)); |
233 | } |
234 | |
235 | |
236 | /// aligned() returns true if the squares s1, s2 and s3 are aligned either on a |
237 | /// straight or on a diagonal line. |
238 | |
239 | inline bool aligned(Square s1, Square s2, Square s3) { |
240 | return LineBB[s1][s2] & s3; |
241 | } |
242 | |
243 | |
244 | /// distance() functions return the distance between x and y, defined as the |
245 | /// number of steps for a king in x to reach y. |
246 | |
247 | template<typename T1 = Square> inline int distance(Square x, Square y); |
248 | template<> inline int distance<File>(Square x, Square y) { return std::abs(file_of(x) - file_of(y)); } |
249 | template<> inline int distance<Rank>(Square x, Square y) { return std::abs(rank_of(x) - rank_of(y)); } |
250 | template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; } |
251 | |
252 | template<class T> constexpr const T& clamp(const T& v, const T& lo, const T& hi) { |
253 | return v < lo ? lo : v > hi ? hi : v; |
254 | } |
255 | |
256 | /// attacks_bb() returns a bitboard representing all the squares attacked by a |
257 | /// piece of type Pt (bishop or rook) placed on 's'. |
258 | |
259 | template<PieceType Pt> |
260 | inline Bitboard attacks_bb(Square s, Bitboard occupied) { |
261 | |
262 | const Magic& m = Pt == ROOK ? RookMagics[s] : BishopMagics[s]; |
263 | return m.attacks[m.index(occupied)]; |
264 | } |
265 | |
266 | inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) { |
267 | |
268 | assert(pt != PAWN); |
269 | |
270 | switch (pt) |
271 | { |
272 | case BISHOP: return attacks_bb<BISHOP>(s, occupied); |
273 | case ROOK : return attacks_bb< ROOK>(s, occupied); |
274 | case QUEEN : return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied); |
275 | default : return PseudoAttacks[pt][s]; |
276 | } |
277 | } |
278 | |
279 | |
280 | /// popcount() counts the number of non-zero bits in a bitboard |
281 | |
282 | inline int popcount(Bitboard b) { |
283 | |
284 | #ifndef USE_POPCNT |
285 | |
286 | union { Bitboard bb; uint16_t u[4]; } v = { b }; |
287 | return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]]; |
288 | |
289 | #elif defined(_MSC_VER) || defined(__INTEL_COMPILER) |
290 | |
291 | return (int)_mm_popcnt_u64(b); |
292 | |
293 | #else // Assumed gcc or compatible compiler |
294 | |
295 | return __builtin_popcountll(b); |
296 | |
297 | #endif |
298 | } |
299 | |
300 | |
301 | /// lsb() and msb() return the least/most significant bit in a non-zero bitboard |
302 | |
303 | #if defined(__GNUC__) // GCC, Clang, ICC |
304 | |
305 | inline Square lsb(Bitboard b) { |
306 | assert(b); |
307 | return Square(__builtin_ctzll(b)); |
308 | } |
309 | |
310 | inline Square msb(Bitboard b) { |
311 | assert(b); |
312 | return Square(63 ^ __builtin_clzll(b)); |
313 | } |
314 | |
315 | #elif defined(_MSC_VER) // MSVC |
316 | |
317 | #ifdef _WIN64 // MSVC, WIN64 |
318 | |
319 | inline Square lsb(Bitboard b) { |
320 | assert(b); |
321 | unsigned long idx; |
322 | _BitScanForward64(&idx, b); |
323 | return (Square) idx; |
324 | } |
325 | |
326 | inline Square msb(Bitboard b) { |
327 | assert(b); |
328 | unsigned long idx; |
329 | _BitScanReverse64(&idx, b); |
330 | return (Square) idx; |
331 | } |
332 | |
333 | #else // MSVC, WIN32 |
334 | |
335 | inline Square lsb(Bitboard b) { |
336 | assert(b); |
337 | unsigned long idx; |
338 | |
339 | if (b & 0xffffffff) { |
340 | _BitScanForward(&idx, int32_t(b)); |
341 | return Square(idx); |
342 | } else { |
343 | _BitScanForward(&idx, int32_t(b >> 32)); |
344 | return Square(idx + 32); |
345 | } |
346 | } |
347 | |
348 | inline Square msb(Bitboard b) { |
349 | assert(b); |
350 | unsigned long idx; |
351 | |
352 | if (b >> 32) { |
353 | _BitScanReverse(&idx, int32_t(b >> 32)); |
354 | return Square(idx + 32); |
355 | } else { |
356 | _BitScanReverse(&idx, int32_t(b)); |
357 | return Square(idx); |
358 | } |
359 | } |
360 | |
361 | #endif |
362 | |
363 | #else // Compiler is neither GCC nor MSVC compatible |
364 | |
365 | #error "Compiler not supported." |
366 | |
367 | #endif |
368 | |
369 | |
370 | /// pop_lsb() finds and clears the least significant bit in a non-zero bitboard |
371 | |
372 | inline Square pop_lsb(Bitboard* b) { |
373 | const Square s = lsb(*b); |
374 | *b &= *b - 1; |
375 | return s; |
376 | } |
377 | |
378 | |
379 | /// frontmost_sq() returns the most advanced square for the given color |
380 | inline Square frontmost_sq(Color c, Bitboard b) { |
381 | return c == WHITE ? msb(b) : lsb(b); |
382 | } |
383 | |
384 | #endif // #ifndef BITBOARD_H_INCLUDED |
385 | |