| 1 | /* Copyright Joyent, Inc. and other Node contributors. All rights reserved. |
| 2 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 3 | * of this software and associated documentation files (the "Software"), to |
| 4 | * deal in the Software without restriction, including without limitation the |
| 5 | * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or |
| 6 | * sell copies of the Software, and to permit persons to whom the Software is |
| 7 | * furnished to do so, subject to the following conditions: |
| 8 | * |
| 9 | * The above copyright notice and this permission notice shall be included in |
| 10 | * all copies or substantial portions of the Software. |
| 11 | * |
| 12 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 13 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 14 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 15 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 16 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| 17 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| 18 | * IN THE SOFTWARE. |
| 19 | */ |
| 20 | |
| 21 | #include "uv.h" |
| 22 | #include "internal.h" |
| 23 | |
| 24 | #include <assert.h> |
| 25 | #include <errno.h> |
| 26 | #include <signal.h> |
| 27 | #include <stdlib.h> |
| 28 | #include <string.h> |
| 29 | #include <unistd.h> |
| 30 | |
| 31 | #ifndef SA_RESTART |
| 32 | # define SA_RESTART 0 |
| 33 | #endif |
| 34 | |
| 35 | typedef struct { |
| 36 | uv_signal_t* handle; |
| 37 | int signum; |
| 38 | } uv__signal_msg_t; |
| 39 | |
| 40 | RB_HEAD(uv__signal_tree_s, uv_signal_s); |
| 41 | |
| 42 | |
| 43 | static int uv__signal_unlock(void); |
| 44 | static int uv__signal_start(uv_signal_t* handle, |
| 45 | uv_signal_cb signal_cb, |
| 46 | int signum, |
| 47 | int oneshot); |
| 48 | static void uv__signal_event(uv_loop_t* loop, uv__io_t* w, unsigned int events); |
| 49 | static int uv__signal_compare(uv_signal_t* w1, uv_signal_t* w2); |
| 50 | static void uv__signal_stop(uv_signal_t* handle); |
| 51 | static void uv__signal_unregister_handler(int signum); |
| 52 | |
| 53 | |
| 54 | static uv_once_t uv__signal_global_init_guard = UV_ONCE_INIT; |
| 55 | static struct uv__signal_tree_s uv__signal_tree = |
| 56 | RB_INITIALIZER(uv__signal_tree); |
| 57 | static int uv__signal_lock_pipefd[2] = { -1, -1 }; |
| 58 | |
| 59 | RB_GENERATE_STATIC(uv__signal_tree_s, |
| 60 | uv_signal_s, tree_entry, |
| 61 | uv__signal_compare) |
| 62 | |
| 63 | static void uv__signal_global_reinit(void); |
| 64 | |
| 65 | static void uv__signal_global_init(void) { |
| 66 | if (uv__signal_lock_pipefd[0] == -1) |
| 67 | /* pthread_atfork can register before and after handlers, one |
| 68 | * for each child. This only registers one for the child. That |
| 69 | * state is both persistent and cumulative, so if we keep doing |
| 70 | * it the handler functions will be called multiple times. Thus |
| 71 | * we only want to do it once. |
| 72 | */ |
| 73 | if (pthread_atfork(NULL, NULL, &uv__signal_global_reinit)) |
| 74 | abort(); |
| 75 | |
| 76 | uv__signal_global_reinit(); |
| 77 | } |
| 78 | |
| 79 | |
| 80 | void uv__signal_cleanup(void) { |
| 81 | /* We can only use signal-safe functions here. |
| 82 | * That includes read/write and close, fortunately. |
| 83 | * We do all of this directly here instead of resetting |
| 84 | * uv__signal_global_init_guard because |
| 85 | * uv__signal_global_once_init is only called from uv_loop_init |
| 86 | * and this needs to function in existing loops. |
| 87 | */ |
| 88 | if (uv__signal_lock_pipefd[0] != -1) { |
| 89 | uv__close(uv__signal_lock_pipefd[0]); |
| 90 | uv__signal_lock_pipefd[0] = -1; |
| 91 | } |
| 92 | |
| 93 | if (uv__signal_lock_pipefd[1] != -1) { |
| 94 | uv__close(uv__signal_lock_pipefd[1]); |
| 95 | uv__signal_lock_pipefd[1] = -1; |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | |
| 100 | static void uv__signal_global_reinit(void) { |
| 101 | uv__signal_cleanup(); |
| 102 | |
| 103 | if (uv__make_pipe(uv__signal_lock_pipefd, 0)) |
| 104 | abort(); |
| 105 | |
| 106 | if (uv__signal_unlock()) |
| 107 | abort(); |
| 108 | } |
| 109 | |
| 110 | |
| 111 | void uv__signal_global_once_init(void) { |
| 112 | uv_once(&uv__signal_global_init_guard, uv__signal_global_init); |
| 113 | } |
| 114 | |
| 115 | |
| 116 | static int uv__signal_lock(void) { |
| 117 | int r; |
| 118 | char data; |
| 119 | |
| 120 | do { |
| 121 | r = read(uv__signal_lock_pipefd[0], &data, sizeof data); |
| 122 | } while (r < 0 && errno == EINTR); |
| 123 | |
| 124 | return (r < 0) ? -1 : 0; |
| 125 | } |
| 126 | |
| 127 | |
| 128 | static int uv__signal_unlock(void) { |
| 129 | int r; |
| 130 | char data = 42; |
| 131 | |
| 132 | do { |
| 133 | r = write(uv__signal_lock_pipefd[1], &data, sizeof data); |
| 134 | } while (r < 0 && errno == EINTR); |
| 135 | |
| 136 | return (r < 0) ? -1 : 0; |
| 137 | } |
| 138 | |
| 139 | |
| 140 | static void uv__signal_block_and_lock(sigset_t* saved_sigmask) { |
| 141 | sigset_t new_mask; |
| 142 | |
| 143 | if (sigfillset(&new_mask)) |
| 144 | abort(); |
| 145 | |
| 146 | /* to shut up valgrind */ |
| 147 | sigemptyset(saved_sigmask); |
| 148 | if (pthread_sigmask(SIG_SETMASK, &new_mask, saved_sigmask)) |
| 149 | abort(); |
| 150 | |
| 151 | if (uv__signal_lock()) |
| 152 | abort(); |
| 153 | } |
| 154 | |
| 155 | |
| 156 | static void uv__signal_unlock_and_unblock(sigset_t* saved_sigmask) { |
| 157 | if (uv__signal_unlock()) |
| 158 | abort(); |
| 159 | |
| 160 | if (pthread_sigmask(SIG_SETMASK, saved_sigmask, NULL)) |
| 161 | abort(); |
| 162 | } |
| 163 | |
| 164 | |
| 165 | static uv_signal_t* uv__signal_first_handle(int signum) { |
| 166 | /* This function must be called with the signal lock held. */ |
| 167 | uv_signal_t lookup; |
| 168 | uv_signal_t* handle; |
| 169 | |
| 170 | lookup.signum = signum; |
| 171 | lookup.flags = 0; |
| 172 | lookup.loop = NULL; |
| 173 | |
| 174 | handle = RB_NFIND(uv__signal_tree_s, &uv__signal_tree, &lookup); |
| 175 | |
| 176 | if (handle != NULL && handle->signum == signum) |
| 177 | return handle; |
| 178 | |
| 179 | return NULL; |
| 180 | } |
| 181 | |
| 182 | |
| 183 | static void uv__signal_handler(int signum) { |
| 184 | uv__signal_msg_t msg; |
| 185 | uv_signal_t* handle; |
| 186 | int saved_errno; |
| 187 | |
| 188 | saved_errno = errno; |
| 189 | memset(&msg, 0, sizeof msg); |
| 190 | |
| 191 | if (uv__signal_lock()) { |
| 192 | errno = saved_errno; |
| 193 | return; |
| 194 | } |
| 195 | |
| 196 | for (handle = uv__signal_first_handle(signum); |
| 197 | handle != NULL && handle->signum == signum; |
| 198 | handle = RB_NEXT(uv__signal_tree_s, &uv__signal_tree, handle)) { |
| 199 | int r; |
| 200 | |
| 201 | msg.signum = signum; |
| 202 | msg.handle = handle; |
| 203 | |
| 204 | /* write() should be atomic for small data chunks, so the entire message |
| 205 | * should be written at once. In theory the pipe could become full, in |
| 206 | * which case the user is out of luck. |
| 207 | */ |
| 208 | do { |
| 209 | r = write(handle->loop->signal_pipefd[1], &msg, sizeof msg); |
| 210 | } while (r == -1 && errno == EINTR); |
| 211 | |
| 212 | assert(r == sizeof msg || |
| 213 | (r == -1 && (errno == EAGAIN || errno == EWOULDBLOCK))); |
| 214 | |
| 215 | if (r != -1) |
| 216 | handle->caught_signals++; |
| 217 | } |
| 218 | |
| 219 | uv__signal_unlock(); |
| 220 | errno = saved_errno; |
| 221 | } |
| 222 | |
| 223 | |
| 224 | static int uv__signal_register_handler(int signum, int oneshot) { |
| 225 | /* When this function is called, the signal lock must be held. */ |
| 226 | struct sigaction sa; |
| 227 | |
| 228 | /* XXX use a separate signal stack? */ |
| 229 | memset(&sa, 0, sizeof(sa)); |
| 230 | if (sigfillset(&sa.sa_mask)) |
| 231 | abort(); |
| 232 | sa.sa_handler = uv__signal_handler; |
| 233 | sa.sa_flags = SA_RESTART; |
| 234 | if (oneshot) |
| 235 | sa.sa_flags |= SA_RESETHAND; |
| 236 | |
| 237 | /* XXX save old action so we can restore it later on? */ |
| 238 | if (sigaction(signum, &sa, NULL)) |
| 239 | return UV__ERR(errno); |
| 240 | |
| 241 | return 0; |
| 242 | } |
| 243 | |
| 244 | |
| 245 | static void uv__signal_unregister_handler(int signum) { |
| 246 | /* When this function is called, the signal lock must be held. */ |
| 247 | struct sigaction sa; |
| 248 | |
| 249 | memset(&sa, 0, sizeof(sa)); |
| 250 | sa.sa_handler = SIG_DFL; |
| 251 | |
| 252 | /* sigaction can only fail with EINVAL or EFAULT; an attempt to deregister a |
| 253 | * signal implies that it was successfully registered earlier, so EINVAL |
| 254 | * should never happen. |
| 255 | */ |
| 256 | if (sigaction(signum, &sa, NULL)) |
| 257 | abort(); |
| 258 | } |
| 259 | |
| 260 | |
| 261 | static int uv__signal_loop_once_init(uv_loop_t* loop) { |
| 262 | int err; |
| 263 | |
| 264 | /* Return if already initialized. */ |
| 265 | if (loop->signal_pipefd[0] != -1) |
| 266 | return 0; |
| 267 | |
| 268 | err = uv__make_pipe(loop->signal_pipefd, UV_NONBLOCK_PIPE); |
| 269 | if (err) |
| 270 | return err; |
| 271 | |
| 272 | uv__io_init(&loop->signal_io_watcher, |
| 273 | uv__signal_event, |
| 274 | loop->signal_pipefd[0]); |
| 275 | uv__io_start(loop, &loop->signal_io_watcher, POLLIN); |
| 276 | |
| 277 | return 0; |
| 278 | } |
| 279 | |
| 280 | |
| 281 | int uv__signal_loop_fork(uv_loop_t* loop) { |
| 282 | uv__io_stop(loop, &loop->signal_io_watcher, POLLIN); |
| 283 | uv__close(loop->signal_pipefd[0]); |
| 284 | uv__close(loop->signal_pipefd[1]); |
| 285 | loop->signal_pipefd[0] = -1; |
| 286 | loop->signal_pipefd[1] = -1; |
| 287 | return uv__signal_loop_once_init(loop); |
| 288 | } |
| 289 | |
| 290 | |
| 291 | void uv__signal_loop_cleanup(uv_loop_t* loop) { |
| 292 | QUEUE* q; |
| 293 | |
| 294 | /* Stop all the signal watchers that are still attached to this loop. This |
| 295 | * ensures that the (shared) signal tree doesn't contain any invalid entries |
| 296 | * entries, and that signal handlers are removed when appropriate. |
| 297 | * It's safe to use QUEUE_FOREACH here because the handles and the handle |
| 298 | * queue are not modified by uv__signal_stop(). |
| 299 | */ |
| 300 | QUEUE_FOREACH(q, &loop->handle_queue) { |
| 301 | uv_handle_t* handle = QUEUE_DATA(q, uv_handle_t, handle_queue); |
| 302 | |
| 303 | if (handle->type == UV_SIGNAL) |
| 304 | uv__signal_stop((uv_signal_t*) handle); |
| 305 | } |
| 306 | |
| 307 | if (loop->signal_pipefd[0] != -1) { |
| 308 | uv__close(loop->signal_pipefd[0]); |
| 309 | loop->signal_pipefd[0] = -1; |
| 310 | } |
| 311 | |
| 312 | if (loop->signal_pipefd[1] != -1) { |
| 313 | uv__close(loop->signal_pipefd[1]); |
| 314 | loop->signal_pipefd[1] = -1; |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | |
| 319 | int uv_signal_init(uv_loop_t* loop, uv_signal_t* handle) { |
| 320 | int err; |
| 321 | |
| 322 | err = uv__signal_loop_once_init(loop); |
| 323 | if (err) |
| 324 | return err; |
| 325 | |
| 326 | uv__handle_init(loop, (uv_handle_t*) handle, UV_SIGNAL); |
| 327 | handle->signum = 0; |
| 328 | handle->caught_signals = 0; |
| 329 | handle->dispatched_signals = 0; |
| 330 | |
| 331 | return 0; |
| 332 | } |
| 333 | |
| 334 | |
| 335 | void uv__signal_close(uv_signal_t* handle) { |
| 336 | uv__signal_stop(handle); |
| 337 | } |
| 338 | |
| 339 | |
| 340 | int uv_signal_start(uv_signal_t* handle, uv_signal_cb signal_cb, int signum) { |
| 341 | return uv__signal_start(handle, signal_cb, signum, 0); |
| 342 | } |
| 343 | |
| 344 | |
| 345 | int uv_signal_start_oneshot(uv_signal_t* handle, |
| 346 | uv_signal_cb signal_cb, |
| 347 | int signum) { |
| 348 | return uv__signal_start(handle, signal_cb, signum, 1); |
| 349 | } |
| 350 | |
| 351 | |
| 352 | static int uv__signal_start(uv_signal_t* handle, |
| 353 | uv_signal_cb signal_cb, |
| 354 | int signum, |
| 355 | int oneshot) { |
| 356 | sigset_t saved_sigmask; |
| 357 | int err; |
| 358 | uv_signal_t* first_handle; |
| 359 | |
| 360 | assert(!uv__is_closing(handle)); |
| 361 | |
| 362 | /* If the user supplies signum == 0, then return an error already. If the |
| 363 | * signum is otherwise invalid then uv__signal_register will find out |
| 364 | * eventually. |
| 365 | */ |
| 366 | if (signum == 0) |
| 367 | return UV_EINVAL; |
| 368 | |
| 369 | /* Short circuit: if the signal watcher is already watching {signum} don't |
| 370 | * go through the process of deregistering and registering the handler. |
| 371 | * Additionally, this avoids pending signals getting lost in the small |
| 372 | * time frame that handle->signum == 0. |
| 373 | */ |
| 374 | if (signum == handle->signum) { |
| 375 | handle->signal_cb = signal_cb; |
| 376 | return 0; |
| 377 | } |
| 378 | |
| 379 | /* If the signal handler was already active, stop it first. */ |
| 380 | if (handle->signum != 0) { |
| 381 | uv__signal_stop(handle); |
| 382 | } |
| 383 | |
| 384 | uv__signal_block_and_lock(&saved_sigmask); |
| 385 | |
| 386 | /* If at this point there are no active signal watchers for this signum (in |
| 387 | * any of the loops), it's time to try and register a handler for it here. |
| 388 | * Also in case there's only one-shot handlers and a regular handler comes in. |
| 389 | */ |
| 390 | first_handle = uv__signal_first_handle(signum); |
| 391 | if (first_handle == NULL || |
| 392 | (!oneshot && (first_handle->flags & UV_SIGNAL_ONE_SHOT))) { |
| 393 | err = uv__signal_register_handler(signum, oneshot); |
| 394 | if (err) { |
| 395 | /* Registering the signal handler failed. Must be an invalid signal. */ |
| 396 | uv__signal_unlock_and_unblock(&saved_sigmask); |
| 397 | return err; |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | handle->signum = signum; |
| 402 | if (oneshot) |
| 403 | handle->flags |= UV_SIGNAL_ONE_SHOT; |
| 404 | |
| 405 | RB_INSERT(uv__signal_tree_s, &uv__signal_tree, handle); |
| 406 | |
| 407 | uv__signal_unlock_and_unblock(&saved_sigmask); |
| 408 | |
| 409 | handle->signal_cb = signal_cb; |
| 410 | uv__handle_start(handle); |
| 411 | |
| 412 | return 0; |
| 413 | } |
| 414 | |
| 415 | |
| 416 | static void uv__signal_event(uv_loop_t* loop, |
| 417 | uv__io_t* w, |
| 418 | unsigned int events) { |
| 419 | uv__signal_msg_t* msg; |
| 420 | uv_signal_t* handle; |
| 421 | char buf[sizeof(uv__signal_msg_t) * 32]; |
| 422 | size_t bytes, end, i; |
| 423 | int r; |
| 424 | |
| 425 | bytes = 0; |
| 426 | end = 0; |
| 427 | |
| 428 | do { |
| 429 | r = read(loop->signal_pipefd[0], buf + bytes, sizeof(buf) - bytes); |
| 430 | |
| 431 | if (r == -1 && errno == EINTR) |
| 432 | continue; |
| 433 | |
| 434 | if (r == -1 && (errno == EAGAIN || errno == EWOULDBLOCK)) { |
| 435 | /* If there are bytes in the buffer already (which really is extremely |
| 436 | * unlikely if possible at all) we can't exit the function here. We'll |
| 437 | * spin until more bytes are read instead. |
| 438 | */ |
| 439 | if (bytes > 0) |
| 440 | continue; |
| 441 | |
| 442 | /* Otherwise, there was nothing there. */ |
| 443 | return; |
| 444 | } |
| 445 | |
| 446 | /* Other errors really should never happen. */ |
| 447 | if (r == -1) |
| 448 | abort(); |
| 449 | |
| 450 | bytes += r; |
| 451 | |
| 452 | /* `end` is rounded down to a multiple of sizeof(uv__signal_msg_t). */ |
| 453 | end = (bytes / sizeof(uv__signal_msg_t)) * sizeof(uv__signal_msg_t); |
| 454 | |
| 455 | for (i = 0; i < end; i += sizeof(uv__signal_msg_t)) { |
| 456 | msg = (uv__signal_msg_t*) (buf + i); |
| 457 | handle = msg->handle; |
| 458 | |
| 459 | if (msg->signum == handle->signum) { |
| 460 | assert(!(handle->flags & UV_HANDLE_CLOSING)); |
| 461 | handle->signal_cb(handle, handle->signum); |
| 462 | } |
| 463 | |
| 464 | handle->dispatched_signals++; |
| 465 | |
| 466 | if (handle->flags & UV_SIGNAL_ONE_SHOT) |
| 467 | uv__signal_stop(handle); |
| 468 | } |
| 469 | |
| 470 | bytes -= end; |
| 471 | |
| 472 | /* If there are any "partial" messages left, move them to the start of the |
| 473 | * the buffer, and spin. This should not happen. |
| 474 | */ |
| 475 | if (bytes) { |
| 476 | memmove(buf, buf + end, bytes); |
| 477 | continue; |
| 478 | } |
| 479 | } while (end == sizeof buf); |
| 480 | } |
| 481 | |
| 482 | |
| 483 | static int uv__signal_compare(uv_signal_t* w1, uv_signal_t* w2) { |
| 484 | int f1; |
| 485 | int f2; |
| 486 | /* Compare signums first so all watchers with the same signnum end up |
| 487 | * adjacent. |
| 488 | */ |
| 489 | if (w1->signum < w2->signum) return -1; |
| 490 | if (w1->signum > w2->signum) return 1; |
| 491 | |
| 492 | /* Handlers without UV_SIGNAL_ONE_SHOT set will come first, so if the first |
| 493 | * handler returned is a one-shot handler, the rest will be too. |
| 494 | */ |
| 495 | f1 = w1->flags & UV_SIGNAL_ONE_SHOT; |
| 496 | f2 = w2->flags & UV_SIGNAL_ONE_SHOT; |
| 497 | if (f1 < f2) return -1; |
| 498 | if (f1 > f2) return 1; |
| 499 | |
| 500 | /* Sort by loop pointer, so we can easily look up the first item after |
| 501 | * { .signum = x, .loop = NULL }. |
| 502 | */ |
| 503 | if (w1->loop < w2->loop) return -1; |
| 504 | if (w1->loop > w2->loop) return 1; |
| 505 | |
| 506 | if (w1 < w2) return -1; |
| 507 | if (w1 > w2) return 1; |
| 508 | |
| 509 | return 0; |
| 510 | } |
| 511 | |
| 512 | |
| 513 | int uv_signal_stop(uv_signal_t* handle) { |
| 514 | assert(!uv__is_closing(handle)); |
| 515 | uv__signal_stop(handle); |
| 516 | return 0; |
| 517 | } |
| 518 | |
| 519 | |
| 520 | static void uv__signal_stop(uv_signal_t* handle) { |
| 521 | uv_signal_t* removed_handle; |
| 522 | sigset_t saved_sigmask; |
| 523 | uv_signal_t* first_handle; |
| 524 | int rem_oneshot; |
| 525 | int first_oneshot; |
| 526 | int ret; |
| 527 | |
| 528 | /* If the watcher wasn't started, this is a no-op. */ |
| 529 | if (handle->signum == 0) |
| 530 | return; |
| 531 | |
| 532 | uv__signal_block_and_lock(&saved_sigmask); |
| 533 | |
| 534 | removed_handle = RB_REMOVE(uv__signal_tree_s, &uv__signal_tree, handle); |
| 535 | assert(removed_handle == handle); |
| 536 | (void) removed_handle; |
| 537 | |
| 538 | /* Check if there are other active signal watchers observing this signal. If |
| 539 | * not, unregister the signal handler. |
| 540 | */ |
| 541 | first_handle = uv__signal_first_handle(handle->signum); |
| 542 | if (first_handle == NULL) { |
| 543 | uv__signal_unregister_handler(handle->signum); |
| 544 | } else { |
| 545 | rem_oneshot = handle->flags & UV_SIGNAL_ONE_SHOT; |
| 546 | first_oneshot = first_handle->flags & UV_SIGNAL_ONE_SHOT; |
| 547 | if (first_oneshot && !rem_oneshot) { |
| 548 | ret = uv__signal_register_handler(handle->signum, 1); |
| 549 | assert(ret == 0); |
| 550 | (void)ret; |
| 551 | } |
| 552 | } |
| 553 | |
| 554 | uv__signal_unlock_and_unblock(&saved_sigmask); |
| 555 | |
| 556 | handle->signum = 0; |
| 557 | uv__handle_stop(handle); |
| 558 | } |
| 559 | |