| 1 | /* |
| 2 | * i386 specific functions for TCC assembler |
| 3 | * |
| 4 | * Copyright (c) 2001, 2002 Fabrice Bellard |
| 5 | * Copyright (c) 2009 Frédéric Feret (x86_64 support) |
| 6 | * |
| 7 | * This library is free software; you can redistribute it and/or |
| 8 | * modify it under the terms of the GNU Lesser General Public |
| 9 | * License as published by the Free Software Foundation; either |
| 10 | * version 2 of the License, or (at your option) any later version. |
| 11 | * |
| 12 | * This library is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 15 | * Lesser General Public License for more details. |
| 16 | * |
| 17 | * You should have received a copy of the GNU Lesser General Public |
| 18 | * License along with this library; if not, write to the Free Software |
| 19 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 20 | */ |
| 21 | |
| 22 | #define USING_GLOBALS |
| 23 | #include "tcc.h" |
| 24 | |
| 25 | #define MAX_OPERANDS 3 |
| 26 | |
| 27 | #define TOK_ASM_first TOK_ASM_clc |
| 28 | #define TOK_ASM_last TOK_ASM_emms |
| 29 | #define TOK_ASM_alllast TOK_ASM_subps |
| 30 | |
| 31 | #define OPC_B 0x01 /* only used with OPC_WL */ |
| 32 | #define OPC_WL 0x02 /* accepts w, l or no suffix */ |
| 33 | #define OPC_BWL (OPC_B | OPC_WL) /* accepts b, w, l or no suffix */ |
| 34 | #define OPC_REG 0x04 /* register is added to opcode */ |
| 35 | #define OPC_MODRM 0x08 /* modrm encoding */ |
| 36 | |
| 37 | #define OPCT_MASK 0x70 |
| 38 | #define OPC_FWAIT 0x10 /* add fwait opcode */ |
| 39 | #define OPC_SHIFT 0x20 /* shift opcodes */ |
| 40 | #define OPC_ARITH 0x30 /* arithmetic opcodes */ |
| 41 | #define OPC_FARITH 0x40 /* FPU arithmetic opcodes */ |
| 42 | #define OPC_TEST 0x50 /* test opcodes */ |
| 43 | #define OPCT_IS(v,i) (((v) & OPCT_MASK) == (i)) |
| 44 | |
| 45 | #define OPC_0F 0x100 /* Is secondary map (0x0f prefix) */ |
| 46 | #define OPC_48 0x200 /* Always has REX prefix */ |
| 47 | #ifdef TCC_TARGET_X86_64 |
| 48 | # define OPC_WLQ 0x1000 /* accepts w, l, q or no suffix */ |
| 49 | # define OPC_BWLQ (OPC_B | OPC_WLQ) /* accepts b, w, l, q or no suffix */ |
| 50 | # define OPC_WLX OPC_WLQ |
| 51 | # define OPC_BWLX OPC_BWLQ |
| 52 | #else |
| 53 | # define OPC_WLX OPC_WL |
| 54 | # define OPC_BWLX OPC_BWL |
| 55 | #endif |
| 56 | |
| 57 | #define OPC_GROUP_SHIFT 13 |
| 58 | |
| 59 | /* in order to compress the operand type, we use specific operands and |
| 60 | we or only with EA */ |
| 61 | enum { |
| 62 | OPT_REG8=0, /* warning: value is hardcoded from TOK_ASM_xxx */ |
| 63 | OPT_REG16, /* warning: value is hardcoded from TOK_ASM_xxx */ |
| 64 | OPT_REG32, /* warning: value is hardcoded from TOK_ASM_xxx */ |
| 65 | #ifdef TCC_TARGET_X86_64 |
| 66 | OPT_REG64, /* warning: value is hardcoded from TOK_ASM_xxx */ |
| 67 | #endif |
| 68 | OPT_MMX, /* warning: value is hardcoded from TOK_ASM_xxx */ |
| 69 | OPT_SSE, /* warning: value is hardcoded from TOK_ASM_xxx */ |
| 70 | OPT_CR, /* warning: value is hardcoded from TOK_ASM_xxx */ |
| 71 | OPT_TR, /* warning: value is hardcoded from TOK_ASM_xxx */ |
| 72 | OPT_DB, /* warning: value is hardcoded from TOK_ASM_xxx */ |
| 73 | OPT_SEG, |
| 74 | OPT_ST, |
| 75 | #ifdef TCC_TARGET_X86_64 |
| 76 | OPT_REG8_LOW, /* %spl,%bpl,%sil,%dil, encoded like ah,ch,dh,bh, but |
| 77 | with REX prefix, not used in insn templates */ |
| 78 | #endif |
| 79 | OPT_IM8, |
| 80 | OPT_IM8S, |
| 81 | OPT_IM16, |
| 82 | OPT_IM32, |
| 83 | #ifdef TCC_TARGET_X86_64 |
| 84 | OPT_IM64, |
| 85 | #endif |
| 86 | OPT_EAX, /* %al, %ax, %eax or %rax register */ |
| 87 | OPT_ST0, /* %st(0) register */ |
| 88 | OPT_CL, /* %cl register */ |
| 89 | OPT_DX, /* %dx register */ |
| 90 | OPT_ADDR, /* OP_EA with only offset */ |
| 91 | OPT_INDIR, /* *(expr) */ |
| 92 | /* composite types */ |
| 93 | OPT_COMPOSITE_FIRST, |
| 94 | OPT_IM, /* IM8 | IM16 | IM32 */ |
| 95 | OPT_REG, /* REG8 | REG16 | REG32 | REG64 */ |
| 96 | OPT_REGW, /* REG16 | REG32 | REG64 */ |
| 97 | OPT_IMW, /* IM16 | IM32 */ |
| 98 | OPT_MMXSSE, /* MMX | SSE */ |
| 99 | OPT_DISP, /* Like OPT_ADDR, but emitted as displacement (for jumps) */ |
| 100 | OPT_DISP8, /* Like OPT_ADDR, but only 8bit (short jumps) */ |
| 101 | /* can be ored with any OPT_xxx */ |
| 102 | OPT_EA = 0x80 |
| 103 | }; |
| 104 | |
| 105 | #define OP_REG8 (1 << OPT_REG8) |
| 106 | #define OP_REG16 (1 << OPT_REG16) |
| 107 | #define OP_REG32 (1 << OPT_REG32) |
| 108 | #define OP_MMX (1 << OPT_MMX) |
| 109 | #define OP_SSE (1 << OPT_SSE) |
| 110 | #define OP_CR (1 << OPT_CR) |
| 111 | #define OP_TR (1 << OPT_TR) |
| 112 | #define OP_DB (1 << OPT_DB) |
| 113 | #define OP_SEG (1 << OPT_SEG) |
| 114 | #define OP_ST (1 << OPT_ST) |
| 115 | #define OP_IM8 (1 << OPT_IM8) |
| 116 | #define OP_IM8S (1 << OPT_IM8S) |
| 117 | #define OP_IM16 (1 << OPT_IM16) |
| 118 | #define OP_IM32 (1 << OPT_IM32) |
| 119 | #define OP_EAX (1 << OPT_EAX) |
| 120 | #define OP_ST0 (1 << OPT_ST0) |
| 121 | #define OP_CL (1 << OPT_CL) |
| 122 | #define OP_DX (1 << OPT_DX) |
| 123 | #define OP_ADDR (1 << OPT_ADDR) |
| 124 | #define OP_INDIR (1 << OPT_INDIR) |
| 125 | #ifdef TCC_TARGET_X86_64 |
| 126 | # define OP_REG64 (1 << OPT_REG64) |
| 127 | # define OP_REG8_LOW (1 << OPT_REG8_LOW) |
| 128 | # define OP_IM64 (1 << OPT_IM64) |
| 129 | # define OP_EA32 (OP_EA << 1) |
| 130 | #else |
| 131 | # define OP_REG64 0 |
| 132 | # define OP_REG8_LOW 0 |
| 133 | # define OP_IM64 0 |
| 134 | # define OP_EA32 0 |
| 135 | #endif |
| 136 | |
| 137 | #define OP_EA 0x40000000 |
| 138 | #define OP_REG (OP_REG8 | OP_REG16 | OP_REG32 | OP_REG64) |
| 139 | |
| 140 | #ifdef TCC_TARGET_X86_64 |
| 141 | # define TREG_XAX TREG_RAX |
| 142 | # define TREG_XCX TREG_RCX |
| 143 | # define TREG_XDX TREG_RDX |
| 144 | #else |
| 145 | # define TREG_XAX TREG_EAX |
| 146 | # define TREG_XCX TREG_ECX |
| 147 | # define TREG_XDX TREG_EDX |
| 148 | #endif |
| 149 | |
| 150 | typedef struct ASMInstr { |
| 151 | uint16_t sym; |
| 152 | uint16_t opcode; |
| 153 | uint16_t instr_type; |
| 154 | uint8_t nb_ops; |
| 155 | uint8_t op_type[MAX_OPERANDS]; /* see OP_xxx */ |
| 156 | } ASMInstr; |
| 157 | |
| 158 | typedef struct Operand { |
| 159 | uint32_t type; |
| 160 | int8_t reg; /* register, -1 if none */ |
| 161 | int8_t reg2; /* second register, -1 if none */ |
| 162 | uint8_t shift; |
| 163 | ExprValue e; |
| 164 | } Operand; |
| 165 | |
| 166 | static const uint8_t reg_to_size[9] = { |
| 167 | /* |
| 168 | [OP_REG8] = 0, |
| 169 | [OP_REG16] = 1, |
| 170 | [OP_REG32] = 2, |
| 171 | #ifdef TCC_TARGET_X86_64 |
| 172 | [OP_REG64] = 3, |
| 173 | #endif |
| 174 | */ |
| 175 | 0, 0, 1, 0, 2, 0, 0, 0, 3 |
| 176 | }; |
| 177 | |
| 178 | #define NB_TEST_OPCODES 30 |
| 179 | |
| 180 | static const uint8_t test_bits[NB_TEST_OPCODES] = { |
| 181 | 0x00, /* o */ |
| 182 | 0x01, /* no */ |
| 183 | 0x02, /* b */ |
| 184 | 0x02, /* c */ |
| 185 | 0x02, /* nae */ |
| 186 | 0x03, /* nb */ |
| 187 | 0x03, /* nc */ |
| 188 | 0x03, /* ae */ |
| 189 | 0x04, /* e */ |
| 190 | 0x04, /* z */ |
| 191 | 0x05, /* ne */ |
| 192 | 0x05, /* nz */ |
| 193 | 0x06, /* be */ |
| 194 | 0x06, /* na */ |
| 195 | 0x07, /* nbe */ |
| 196 | 0x07, /* a */ |
| 197 | 0x08, /* s */ |
| 198 | 0x09, /* ns */ |
| 199 | 0x0a, /* p */ |
| 200 | 0x0a, /* pe */ |
| 201 | 0x0b, /* np */ |
| 202 | 0x0b, /* po */ |
| 203 | 0x0c, /* l */ |
| 204 | 0x0c, /* nge */ |
| 205 | 0x0d, /* nl */ |
| 206 | 0x0d, /* ge */ |
| 207 | 0x0e, /* le */ |
| 208 | 0x0e, /* ng */ |
| 209 | 0x0f, /* nle */ |
| 210 | 0x0f, /* g */ |
| 211 | }; |
| 212 | |
| 213 | static const uint8_t segment_prefixes[] = { |
| 214 | 0x26, /* es */ |
| 215 | 0x2e, /* cs */ |
| 216 | 0x36, /* ss */ |
| 217 | 0x3e, /* ds */ |
| 218 | 0x64, /* fs */ |
| 219 | 0x65 /* gs */ |
| 220 | }; |
| 221 | |
| 222 | static const ASMInstr asm_instrs[] = { |
| 223 | #define ALT(x) x |
| 224 | /* This removes a 0x0f in the second byte */ |
| 225 | #define O(o) ((uint64_t) ((((o) & 0xff00) == 0x0f00) ? ((((o) >> 8) & ~0xff) | ((o) & 0xff)) : (o))) |
| 226 | /* This constructs instr_type from opcode, type and group. */ |
| 227 | #define T(o,i,g) ((i) | ((g) << OPC_GROUP_SHIFT) | ((((o) & 0xff00) == 0x0f00) ? OPC_0F : 0)) |
| 228 | #define DEF_ASM_OP0(name, opcode) |
| 229 | #define DEF_ASM_OP0L(name, opcode, group, instr_type) { TOK_ASM_ ## name, O(opcode), T(opcode, instr_type, group), 0, { 0 } }, |
| 230 | #define DEF_ASM_OP1(name, opcode, group, instr_type, op0) { TOK_ASM_ ## name, O(opcode), T(opcode, instr_type, group), 1, { op0 }}, |
| 231 | #define DEF_ASM_OP2(name, opcode, group, instr_type, op0, op1) { TOK_ASM_ ## name, O(opcode), T(opcode, instr_type, group), 2, { op0, op1 }}, |
| 232 | #define DEF_ASM_OP3(name, opcode, group, instr_type, op0, op1, op2) { TOK_ASM_ ## name, O(opcode), T(opcode, instr_type, group), 3, { op0, op1, op2 }}, |
| 233 | #ifdef TCC_TARGET_X86_64 |
| 234 | # include "x86_64-asm.h" |
| 235 | #else |
| 236 | # include "i386-asm.h" |
| 237 | #endif |
| 238 | /* last operation */ |
| 239 | { 0, }, |
| 240 | }; |
| 241 | |
| 242 | static const uint16_t op0_codes[] = { |
| 243 | #define ALT(x) |
| 244 | #define DEF_ASM_OP0(x, opcode) opcode, |
| 245 | #define DEF_ASM_OP0L(name, opcode, group, instr_type) |
| 246 | #define DEF_ASM_OP1(name, opcode, group, instr_type, op0) |
| 247 | #define DEF_ASM_OP2(name, opcode, group, instr_type, op0, op1) |
| 248 | #define DEF_ASM_OP3(name, opcode, group, instr_type, op0, op1, op2) |
| 249 | #ifdef TCC_TARGET_X86_64 |
| 250 | # include "x86_64-asm.h" |
| 251 | #else |
| 252 | # include "i386-asm.h" |
| 253 | #endif |
| 254 | }; |
| 255 | |
| 256 | static inline int get_reg_shift(TCCState *s1) |
| 257 | { |
| 258 | int shift, v; |
| 259 | v = asm_int_expr(s1); |
| 260 | switch(v) { |
| 261 | case 1: |
| 262 | shift = 0; |
| 263 | break; |
| 264 | case 2: |
| 265 | shift = 1; |
| 266 | break; |
| 267 | case 4: |
| 268 | shift = 2; |
| 269 | break; |
| 270 | case 8: |
| 271 | shift = 3; |
| 272 | break; |
| 273 | default: |
| 274 | expect("1, 2, 4 or 8 constant" ); |
| 275 | shift = 0; |
| 276 | break; |
| 277 | } |
| 278 | return shift; |
| 279 | } |
| 280 | |
| 281 | #ifdef TCC_TARGET_X86_64 |
| 282 | static int asm_parse_numeric_reg(int t, unsigned int *type) |
| 283 | { |
| 284 | int reg = -1; |
| 285 | if (t >= TOK_IDENT && t < tok_ident) { |
| 286 | const char *s = table_ident[t - TOK_IDENT]->str; |
| 287 | char c; |
| 288 | *type = OP_REG64; |
| 289 | if (*s == 'c') { |
| 290 | s++; |
| 291 | *type = OP_CR; |
| 292 | } |
| 293 | if (*s++ != 'r') |
| 294 | return -1; |
| 295 | /* Don't allow leading '0'. */ |
| 296 | if ((c = *s++) >= '1' && c <= '9') |
| 297 | reg = c - '0'; |
| 298 | else |
| 299 | return -1; |
| 300 | if ((c = *s) >= '0' && c <= '5') |
| 301 | s++, reg = reg * 10 + c - '0'; |
| 302 | if (reg > 15) |
| 303 | return -1; |
| 304 | if ((c = *s) == 0) |
| 305 | ; |
| 306 | else if (*type != OP_REG64) |
| 307 | return -1; |
| 308 | else if (c == 'b' && !s[1]) |
| 309 | *type = OP_REG8; |
| 310 | else if (c == 'w' && !s[1]) |
| 311 | *type = OP_REG16; |
| 312 | else if (c == 'd' && !s[1]) |
| 313 | *type = OP_REG32; |
| 314 | else |
| 315 | return -1; |
| 316 | } |
| 317 | return reg; |
| 318 | } |
| 319 | #endif |
| 320 | |
| 321 | static int asm_parse_reg(unsigned int *type) |
| 322 | { |
| 323 | int reg = 0; |
| 324 | *type = 0; |
| 325 | if (tok != '%') |
| 326 | goto error_32; |
| 327 | next(); |
| 328 | if (tok >= TOK_ASM_eax && tok <= TOK_ASM_edi) { |
| 329 | reg = tok - TOK_ASM_eax; |
| 330 | *type = OP_REG32; |
| 331 | #ifdef TCC_TARGET_X86_64 |
| 332 | } else if (tok >= TOK_ASM_rax && tok <= TOK_ASM_rdi) { |
| 333 | reg = tok - TOK_ASM_rax; |
| 334 | *type = OP_REG64; |
| 335 | } else if (tok == TOK_ASM_rip) { |
| 336 | reg = -2; /* Probably should use different escape code. */ |
| 337 | *type = OP_REG64; |
| 338 | } else if ((reg = asm_parse_numeric_reg(tok, type)) >= 0 |
| 339 | && (*type == OP_REG32 || *type == OP_REG64)) { |
| 340 | ; |
| 341 | #endif |
| 342 | } else { |
| 343 | error_32: |
| 344 | expect("register" ); |
| 345 | } |
| 346 | next(); |
| 347 | return reg; |
| 348 | } |
| 349 | |
| 350 | static void parse_operand(TCCState *s1, Operand *op) |
| 351 | { |
| 352 | ExprValue e; |
| 353 | int reg, indir; |
| 354 | const char *p; |
| 355 | |
| 356 | indir = 0; |
| 357 | if (tok == '*') { |
| 358 | next(); |
| 359 | indir = OP_INDIR; |
| 360 | } |
| 361 | |
| 362 | if (tok == '%') { |
| 363 | next(); |
| 364 | if (tok >= TOK_ASM_al && tok <= TOK_ASM_db7) { |
| 365 | reg = tok - TOK_ASM_al; |
| 366 | op->type = 1 << (reg >> 3); /* WARNING: do not change constant order */ |
| 367 | op->reg = reg & 7; |
| 368 | if ((op->type & OP_REG) && op->reg == TREG_XAX) |
| 369 | op->type |= OP_EAX; |
| 370 | else if (op->type == OP_REG8 && op->reg == TREG_XCX) |
| 371 | op->type |= OP_CL; |
| 372 | else if (op->type == OP_REG16 && op->reg == TREG_XDX) |
| 373 | op->type |= OP_DX; |
| 374 | } else if (tok >= TOK_ASM_dr0 && tok <= TOK_ASM_dr7) { |
| 375 | op->type = OP_DB; |
| 376 | op->reg = tok - TOK_ASM_dr0; |
| 377 | } else if (tok >= TOK_ASM_es && tok <= TOK_ASM_gs) { |
| 378 | op->type = OP_SEG; |
| 379 | op->reg = tok - TOK_ASM_es; |
| 380 | } else if (tok == TOK_ASM_st) { |
| 381 | op->type = OP_ST; |
| 382 | op->reg = 0; |
| 383 | next(); |
| 384 | if (tok == '(') { |
| 385 | next(); |
| 386 | if (tok != TOK_PPNUM) |
| 387 | goto reg_error; |
| 388 | p = tokc.str.data; |
| 389 | reg = p[0] - '0'; |
| 390 | if ((unsigned)reg >= 8 || p[1] != '\0') |
| 391 | goto reg_error; |
| 392 | op->reg = reg; |
| 393 | next(); |
| 394 | skip(')'); |
| 395 | } |
| 396 | if (op->reg == 0) |
| 397 | op->type |= OP_ST0; |
| 398 | goto no_skip; |
| 399 | #ifdef TCC_TARGET_X86_64 |
| 400 | } else if (tok >= TOK_ASM_spl && tok <= TOK_ASM_dil) { |
| 401 | op->type = OP_REG8 | OP_REG8_LOW; |
| 402 | op->reg = 4 + tok - TOK_ASM_spl; |
| 403 | } else if ((op->reg = asm_parse_numeric_reg(tok, &op->type)) >= 0) { |
| 404 | ; |
| 405 | #endif |
| 406 | } else { |
| 407 | reg_error: |
| 408 | tcc_error("unknown register %%%s" , get_tok_str(tok, &tokc)); |
| 409 | } |
| 410 | next(); |
| 411 | no_skip: ; |
| 412 | } else if (tok == '$') { |
| 413 | /* constant value */ |
| 414 | next(); |
| 415 | asm_expr(s1, &e); |
| 416 | op->type = OP_IM32; |
| 417 | op->e = e; |
| 418 | if (!op->e.sym) { |
| 419 | if (op->e.v == (uint8_t)op->e.v) |
| 420 | op->type |= OP_IM8; |
| 421 | if (op->e.v == (int8_t)op->e.v) |
| 422 | op->type |= OP_IM8S; |
| 423 | if (op->e.v == (uint16_t)op->e.v) |
| 424 | op->type |= OP_IM16; |
| 425 | #ifdef TCC_TARGET_X86_64 |
| 426 | if (op->e.v != (int32_t)op->e.v && op->e.v != (uint32_t)op->e.v) |
| 427 | op->type = OP_IM64; |
| 428 | #endif |
| 429 | } |
| 430 | } else { |
| 431 | /* address(reg,reg2,shift) with all variants */ |
| 432 | op->type = OP_EA; |
| 433 | op->reg = -1; |
| 434 | op->reg2 = -1; |
| 435 | op->shift = 0; |
| 436 | if (tok != '(') { |
| 437 | asm_expr(s1, &e); |
| 438 | op->e = e; |
| 439 | } else { |
| 440 | next(); |
| 441 | if (tok == '%') { |
| 442 | unget_tok('('); |
| 443 | op->e.v = 0; |
| 444 | op->e.sym = NULL; |
| 445 | } else { |
| 446 | /* bracketed offset expression */ |
| 447 | asm_expr(s1, &e); |
| 448 | if (tok != ')') |
| 449 | expect(")" ); |
| 450 | next(); |
| 451 | op->e.v = e.v; |
| 452 | op->e.sym = e.sym; |
| 453 | } |
| 454 | op->e.pcrel = 0; |
| 455 | } |
| 456 | if (tok == '(') { |
| 457 | unsigned int type = 0; |
| 458 | next(); |
| 459 | if (tok != ',') { |
| 460 | op->reg = asm_parse_reg(&type); |
| 461 | } |
| 462 | if (tok == ',') { |
| 463 | next(); |
| 464 | if (tok != ',') { |
| 465 | op->reg2 = asm_parse_reg(&type); |
| 466 | } |
| 467 | if (tok == ',') { |
| 468 | next(); |
| 469 | op->shift = get_reg_shift(s1); |
| 470 | } |
| 471 | } |
| 472 | if (type & OP_REG32) |
| 473 | op->type |= OP_EA32; |
| 474 | skip(')'); |
| 475 | } |
| 476 | if (op->reg == -1 && op->reg2 == -1) |
| 477 | op->type |= OP_ADDR; |
| 478 | } |
| 479 | op->type |= indir; |
| 480 | } |
| 481 | |
| 482 | /* XXX: unify with C code output ? */ |
| 483 | ST_FUNC void gen_expr32(ExprValue *pe) |
| 484 | { |
| 485 | if (pe->pcrel) |
| 486 | /* If PC-relative, always set VT_SYM, even without symbol, |
| 487 | so as to force a relocation to be emitted. */ |
| 488 | gen_addrpc32(VT_SYM, pe->sym, pe->v); |
| 489 | else |
| 490 | gen_addr32(pe->sym ? VT_SYM : 0, pe->sym, pe->v); |
| 491 | } |
| 492 | |
| 493 | #ifdef TCC_TARGET_X86_64 |
| 494 | ST_FUNC void gen_expr64(ExprValue *pe) |
| 495 | { |
| 496 | gen_addr64(pe->sym ? VT_SYM : 0, pe->sym, pe->v); |
| 497 | } |
| 498 | #endif |
| 499 | |
| 500 | /* XXX: unify with C code output ? */ |
| 501 | static void gen_disp32(ExprValue *pe) |
| 502 | { |
| 503 | Sym *sym = pe->sym; |
| 504 | ElfSym *esym = elfsym(sym); |
| 505 | if (esym && esym->st_shndx == cur_text_section->sh_num) { |
| 506 | /* same section: we can output an absolute value. Note |
| 507 | that the TCC compiler behaves differently here because |
| 508 | it always outputs a relocation to ease (future) code |
| 509 | elimination in the linker */ |
| 510 | gen_le32(pe->v + esym->st_value - ind - 4); |
| 511 | } else { |
| 512 | if (sym && sym->type.t == VT_VOID) { |
| 513 | sym->type.t = VT_FUNC; |
| 514 | sym->type.ref = NULL; |
| 515 | } |
| 516 | gen_addrpc32(VT_SYM, sym, pe->v); |
| 517 | } |
| 518 | } |
| 519 | |
| 520 | /* generate the modrm operand */ |
| 521 | static inline int asm_modrm(int reg, Operand *op) |
| 522 | { |
| 523 | int mod, reg1, reg2, sib_reg1; |
| 524 | |
| 525 | if (op->type & (OP_REG | OP_MMX | OP_SSE)) { |
| 526 | g(0xc0 + (reg << 3) + op->reg); |
| 527 | } else if (op->reg == -1 && op->reg2 == -1) { |
| 528 | /* displacement only */ |
| 529 | #ifdef TCC_TARGET_X86_64 |
| 530 | g(0x04 + (reg << 3)); |
| 531 | g(0x25); |
| 532 | #else |
| 533 | g(0x05 + (reg << 3)); |
| 534 | #endif |
| 535 | gen_expr32(&op->e); |
| 536 | #ifdef TCC_TARGET_X86_64 |
| 537 | } else if (op->reg == -2) { |
| 538 | ExprValue *pe = &op->e; |
| 539 | g(0x05 + (reg << 3)); |
| 540 | gen_addrpc32(pe->sym ? VT_SYM : 0, pe->sym, pe->v); |
| 541 | return ind; |
| 542 | #endif |
| 543 | } else { |
| 544 | sib_reg1 = op->reg; |
| 545 | /* fist compute displacement encoding */ |
| 546 | if (sib_reg1 == -1) { |
| 547 | sib_reg1 = 5; |
| 548 | mod = 0x00; |
| 549 | } else if (op->e.v == 0 && !op->e.sym && op->reg != 5) { |
| 550 | mod = 0x00; |
| 551 | } else if (op->e.v == (int8_t)op->e.v && !op->e.sym) { |
| 552 | mod = 0x40; |
| 553 | } else { |
| 554 | mod = 0x80; |
| 555 | } |
| 556 | /* compute if sib byte needed */ |
| 557 | reg1 = op->reg; |
| 558 | if (op->reg2 != -1) |
| 559 | reg1 = 4; |
| 560 | g(mod + (reg << 3) + reg1); |
| 561 | if (reg1 == 4) { |
| 562 | /* add sib byte */ |
| 563 | reg2 = op->reg2; |
| 564 | if (reg2 == -1) |
| 565 | reg2 = 4; /* indicate no index */ |
| 566 | g((op->shift << 6) + (reg2 << 3) + sib_reg1); |
| 567 | } |
| 568 | /* add offset */ |
| 569 | if (mod == 0x40) { |
| 570 | g(op->e.v); |
| 571 | } else if (mod == 0x80 || op->reg == -1) { |
| 572 | gen_expr32(&op->e); |
| 573 | } |
| 574 | } |
| 575 | return 0; |
| 576 | } |
| 577 | |
| 578 | #ifdef TCC_TARGET_X86_64 |
| 579 | #define REX_W 0x48 |
| 580 | #define REX_R 0x44 |
| 581 | #define REX_X 0x42 |
| 582 | #define REX_B 0x41 |
| 583 | |
| 584 | static void asm_rex(int width64, Operand *ops, int nb_ops, int *op_type, |
| 585 | int regi, int rmi) |
| 586 | { |
| 587 | unsigned char rex = width64 ? 0x48 : 0; |
| 588 | int saw_high_8bit = 0; |
| 589 | int i; |
| 590 | if (rmi == -1) { |
| 591 | /* No mod/rm byte, but we might have a register op nevertheless |
| 592 | (we will add it to the opcode later). */ |
| 593 | for(i = 0; i < nb_ops; i++) { |
| 594 | if (op_type[i] & (OP_REG | OP_ST)) { |
| 595 | if (ops[i].reg >= 8) { |
| 596 | rex |= REX_B; |
| 597 | ops[i].reg -= 8; |
| 598 | } else if (ops[i].type & OP_REG8_LOW) |
| 599 | rex |= 0x40; |
| 600 | else if (ops[i].type & OP_REG8 && ops[i].reg >= 4) |
| 601 | /* An 8 bit reg >= 4 without REG8 is ah/ch/dh/bh */ |
| 602 | saw_high_8bit = ops[i].reg; |
| 603 | break; |
| 604 | } |
| 605 | } |
| 606 | } else { |
| 607 | if (regi != -1) { |
| 608 | if (ops[regi].reg >= 8) { |
| 609 | rex |= REX_R; |
| 610 | ops[regi].reg -= 8; |
| 611 | } else if (ops[regi].type & OP_REG8_LOW) |
| 612 | rex |= 0x40; |
| 613 | else if (ops[regi].type & OP_REG8 && ops[regi].reg >= 4) |
| 614 | /* An 8 bit reg >= 4 without REG8 is ah/ch/dh/bh */ |
| 615 | saw_high_8bit = ops[regi].reg; |
| 616 | } |
| 617 | if (ops[rmi].type & (OP_REG | OP_MMX | OP_SSE | OP_CR | OP_EA)) { |
| 618 | if (ops[rmi].reg >= 8) { |
| 619 | rex |= REX_B; |
| 620 | ops[rmi].reg -= 8; |
| 621 | } else if (ops[rmi].type & OP_REG8_LOW) |
| 622 | rex |= 0x40; |
| 623 | else if (ops[rmi].type & OP_REG8 && ops[rmi].reg >= 4) |
| 624 | /* An 8 bit reg >= 4 without REG8 is ah/ch/dh/bh */ |
| 625 | saw_high_8bit = ops[rmi].reg; |
| 626 | } |
| 627 | if (ops[rmi].type & OP_EA && ops[rmi].reg2 >= 8) { |
| 628 | rex |= REX_X; |
| 629 | ops[rmi].reg2 -= 8; |
| 630 | } |
| 631 | } |
| 632 | if (rex) { |
| 633 | if (saw_high_8bit) |
| 634 | tcc_error("can't encode register %%%ch when REX prefix is required" , |
| 635 | "acdb" [saw_high_8bit-4]); |
| 636 | g(rex); |
| 637 | } |
| 638 | } |
| 639 | #endif |
| 640 | |
| 641 | static void maybe_print_stats (void) |
| 642 | { |
| 643 | static int already = 1; |
| 644 | if (!already) |
| 645 | /* print stats about opcodes */ |
| 646 | { |
| 647 | const struct ASMInstr *pa; |
| 648 | int freq[4]; |
| 649 | int op_vals[500]; |
| 650 | int nb_op_vals, i, j; |
| 651 | |
| 652 | already = 1; |
| 653 | nb_op_vals = 0; |
| 654 | memset(freq, 0, sizeof(freq)); |
| 655 | for(pa = asm_instrs; pa->sym != 0; pa++) { |
| 656 | freq[pa->nb_ops]++; |
| 657 | //for(i=0;i<pa->nb_ops;i++) { |
| 658 | for(j=0;j<nb_op_vals;j++) { |
| 659 | //if (pa->op_type[i] == op_vals[j]) |
| 660 | if (pa->instr_type == op_vals[j]) |
| 661 | goto found; |
| 662 | } |
| 663 | //op_vals[nb_op_vals++] = pa->op_type[i]; |
| 664 | op_vals[nb_op_vals++] = pa->instr_type; |
| 665 | found: ; |
| 666 | //} |
| 667 | } |
| 668 | for(i=0;i<nb_op_vals;i++) { |
| 669 | int v = op_vals[i]; |
| 670 | //if ((v & (v - 1)) != 0) |
| 671 | printf("%3d: %08x\n" , i, v); |
| 672 | } |
| 673 | printf("size=%d nb=%d f0=%d f1=%d f2=%d f3=%d\n" , |
| 674 | (int)sizeof(asm_instrs), |
| 675 | (int)sizeof(asm_instrs) / (int)sizeof(ASMInstr), |
| 676 | freq[0], freq[1], freq[2], freq[3]); |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | ST_FUNC void asm_opcode(TCCState *s1, int opcode) |
| 681 | { |
| 682 | const ASMInstr *pa; |
| 683 | int i, modrm_index, modreg_index, reg, v, op1, seg_prefix, pc; |
| 684 | int nb_ops, s; |
| 685 | Operand ops[MAX_OPERANDS], *pop; |
| 686 | int op_type[3]; /* decoded op type */ |
| 687 | int alltypes; /* OR of all operand types */ |
| 688 | int autosize; |
| 689 | int p66; |
| 690 | #ifdef TCC_TARGET_X86_64 |
| 691 | int rex64; |
| 692 | #endif |
| 693 | |
| 694 | maybe_print_stats(); |
| 695 | /* force synthetic ';' after prefix instruction, so we can handle */ |
| 696 | /* one-line things like "rep stosb" instead of only "rep\nstosb" */ |
| 697 | if (opcode >= TOK_ASM_wait && opcode <= TOK_ASM_repnz) |
| 698 | unget_tok(';'); |
| 699 | |
| 700 | /* get operands */ |
| 701 | pop = ops; |
| 702 | nb_ops = 0; |
| 703 | seg_prefix = 0; |
| 704 | alltypes = 0; |
| 705 | for(;;) { |
| 706 | if (tok == ';' || tok == TOK_LINEFEED) |
| 707 | break; |
| 708 | if (nb_ops >= MAX_OPERANDS) { |
| 709 | tcc_error("incorrect number of operands" ); |
| 710 | } |
| 711 | parse_operand(s1, pop); |
| 712 | if (tok == ':') { |
| 713 | if (pop->type != OP_SEG || seg_prefix) |
| 714 | tcc_error("incorrect prefix" ); |
| 715 | seg_prefix = segment_prefixes[pop->reg]; |
| 716 | next(); |
| 717 | parse_operand(s1, pop); |
| 718 | if (!(pop->type & OP_EA)) { |
| 719 | tcc_error("segment prefix must be followed by memory reference" ); |
| 720 | } |
| 721 | } |
| 722 | pop++; |
| 723 | nb_ops++; |
| 724 | if (tok != ',') |
| 725 | break; |
| 726 | next(); |
| 727 | } |
| 728 | |
| 729 | s = 0; /* avoid warning */ |
| 730 | |
| 731 | again: |
| 732 | /* optimize matching by using a lookup table (no hashing is needed |
| 733 | !) */ |
| 734 | for(pa = asm_instrs; pa->sym != 0; pa++) { |
| 735 | int it = pa->instr_type & OPCT_MASK; |
| 736 | s = 0; |
| 737 | if (it == OPC_FARITH) { |
| 738 | v = opcode - pa->sym; |
| 739 | if (!((unsigned)v < 8 * 6 && (v % 6) == 0)) |
| 740 | continue; |
| 741 | } else if (it == OPC_ARITH) { |
| 742 | if (!(opcode >= pa->sym && opcode < pa->sym + 8*NBWLX)) |
| 743 | continue; |
| 744 | s = (opcode - pa->sym) % NBWLX; |
| 745 | if ((pa->instr_type & OPC_BWLX) == OPC_WLX) |
| 746 | { |
| 747 | /* We need to reject the xxxb opcodes that we accepted above. |
| 748 | Note that pa->sym for WLX opcodes is the 'w' token, |
| 749 | to get the 'b' token subtract one. */ |
| 750 | if (((opcode - pa->sym + 1) % NBWLX) == 0) |
| 751 | continue; |
| 752 | s++; |
| 753 | } |
| 754 | } else if (it == OPC_SHIFT) { |
| 755 | if (!(opcode >= pa->sym && opcode < pa->sym + 7*NBWLX)) |
| 756 | continue; |
| 757 | s = (opcode - pa->sym) % NBWLX; |
| 758 | } else if (it == OPC_TEST) { |
| 759 | if (!(opcode >= pa->sym && opcode < pa->sym + NB_TEST_OPCODES)) |
| 760 | continue; |
| 761 | /* cmovxx is a test opcode but accepts multiple sizes. |
| 762 | The suffixes aren't encoded in the table, instead we |
| 763 | simply force size autodetection always and deal with suffixed |
| 764 | variants below when we don't find e.g. "cmovzl". */ |
| 765 | if (pa->instr_type & OPC_WLX) |
| 766 | s = NBWLX - 1; |
| 767 | } else if (pa->instr_type & OPC_B) { |
| 768 | #ifdef TCC_TARGET_X86_64 |
| 769 | /* Some instructions don't have the full size but only |
| 770 | bwl form. insb e.g. */ |
| 771 | if ((pa->instr_type & OPC_WLQ) != OPC_WLQ |
| 772 | && !(opcode >= pa->sym && opcode < pa->sym + NBWLX-1)) |
| 773 | continue; |
| 774 | #endif |
| 775 | if (!(opcode >= pa->sym && opcode < pa->sym + NBWLX)) |
| 776 | continue; |
| 777 | s = opcode - pa->sym; |
| 778 | } else if (pa->instr_type & OPC_WLX) { |
| 779 | if (!(opcode >= pa->sym && opcode < pa->sym + NBWLX-1)) |
| 780 | continue; |
| 781 | s = opcode - pa->sym + 1; |
| 782 | } else { |
| 783 | if (pa->sym != opcode) |
| 784 | continue; |
| 785 | } |
| 786 | if (pa->nb_ops != nb_ops) |
| 787 | continue; |
| 788 | #ifdef TCC_TARGET_X86_64 |
| 789 | /* Special case for moves. Selecting the IM64->REG64 form |
| 790 | should only be done if we really have an >32bit imm64, and that |
| 791 | is hardcoded. Ignore it here. */ |
| 792 | if (pa->opcode == 0xb0 && ops[0].type != OP_IM64 |
| 793 | && (ops[1].type & OP_REG) == OP_REG64 |
| 794 | && !(pa->instr_type & OPC_0F)) |
| 795 | continue; |
| 796 | #endif |
| 797 | /* now decode and check each operand */ |
| 798 | alltypes = 0; |
| 799 | for(i = 0; i < nb_ops; i++) { |
| 800 | int op1, op2; |
| 801 | op1 = pa->op_type[i]; |
| 802 | op2 = op1 & 0x1f; |
| 803 | switch(op2) { |
| 804 | case OPT_IM: |
| 805 | v = OP_IM8 | OP_IM16 | OP_IM32; |
| 806 | break; |
| 807 | case OPT_REG: |
| 808 | v = OP_REG8 | OP_REG16 | OP_REG32 | OP_REG64; |
| 809 | break; |
| 810 | case OPT_REGW: |
| 811 | v = OP_REG16 | OP_REG32 | OP_REG64; |
| 812 | break; |
| 813 | case OPT_IMW: |
| 814 | v = OP_IM16 | OP_IM32; |
| 815 | break; |
| 816 | case OPT_MMXSSE: |
| 817 | v = OP_MMX | OP_SSE; |
| 818 | break; |
| 819 | case OPT_DISP: |
| 820 | case OPT_DISP8: |
| 821 | v = OP_ADDR; |
| 822 | break; |
| 823 | default: |
| 824 | v = 1 << op2; |
| 825 | break; |
| 826 | } |
| 827 | if (op1 & OPT_EA) |
| 828 | v |= OP_EA; |
| 829 | op_type[i] = v; |
| 830 | if ((ops[i].type & v) == 0) |
| 831 | goto next; |
| 832 | alltypes |= ops[i].type; |
| 833 | } |
| 834 | /* all is matching ! */ |
| 835 | break; |
| 836 | next: ; |
| 837 | } |
| 838 | if (pa->sym == 0) { |
| 839 | if (opcode >= TOK_ASM_first && opcode <= TOK_ASM_last) { |
| 840 | int b; |
| 841 | b = op0_codes[opcode - TOK_ASM_first]; |
| 842 | if (b & 0xff00) |
| 843 | g(b >> 8); |
| 844 | g(b); |
| 845 | return; |
| 846 | } else if (opcode <= TOK_ASM_alllast) { |
| 847 | tcc_error("bad operand with opcode '%s'" , |
| 848 | get_tok_str(opcode, NULL)); |
| 849 | } else { |
| 850 | /* Special case for cmovcc, we accept size suffixes but ignore |
| 851 | them, but we don't want them to blow up our tables. */ |
| 852 | TokenSym *ts = table_ident[opcode - TOK_IDENT]; |
| 853 | if (ts->len >= 6 |
| 854 | && strchr("wlq" , ts->str[ts->len-1]) |
| 855 | && !memcmp(ts->str, "cmov" , 4)) { |
| 856 | opcode = tok_alloc(ts->str, ts->len-1)->tok; |
| 857 | goto again; |
| 858 | } |
| 859 | tcc_error("unknown opcode '%s'" , ts->str); |
| 860 | } |
| 861 | } |
| 862 | /* if the size is unknown, then evaluate it (OPC_B or OPC_WL case) */ |
| 863 | autosize = NBWLX-1; |
| 864 | #ifdef TCC_TARGET_X86_64 |
| 865 | /* XXX the autosize should rather be zero, to not have to adjust this |
| 866 | all the time. */ |
| 867 | if ((pa->instr_type & OPC_BWLQ) == OPC_B) |
| 868 | autosize = NBWLX-2; |
| 869 | #endif |
| 870 | if (s == autosize) { |
| 871 | /* Check for register operands providing hints about the size. |
| 872 | Start from the end, i.e. destination operands. This matters |
| 873 | only for opcodes accepting different sized registers, lar and lsl |
| 874 | are such opcodes. */ |
| 875 | for(i = nb_ops - 1; s == autosize && i >= 0; i--) { |
| 876 | if ((ops[i].type & OP_REG) && !(op_type[i] & (OP_CL | OP_DX))) |
| 877 | s = reg_to_size[ops[i].type & OP_REG]; |
| 878 | } |
| 879 | if (s == autosize) { |
| 880 | if ((opcode == TOK_ASM_push || opcode == TOK_ASM_pop) && |
| 881 | (ops[0].type & (OP_SEG | OP_IM8S | OP_IM32))) |
| 882 | s = 2; |
| 883 | else if ((opcode == TOK_ASM_push || opcode == TOK_ASM_pop) && |
| 884 | (ops[0].type & OP_EA)) |
| 885 | s = NBWLX - 2; |
| 886 | else |
| 887 | tcc_error("cannot infer opcode suffix" ); |
| 888 | } |
| 889 | } |
| 890 | |
| 891 | #ifdef TCC_TARGET_X86_64 |
| 892 | /* Generate addr32 prefix if needed */ |
| 893 | for(i = 0; i < nb_ops; i++) { |
| 894 | if (ops[i].type & OP_EA32) { |
| 895 | g(0x67); |
| 896 | break; |
| 897 | } |
| 898 | } |
| 899 | #endif |
| 900 | /* generate data16 prefix if needed */ |
| 901 | p66 = 0; |
| 902 | if (s == 1) |
| 903 | p66 = 1; |
| 904 | else { |
| 905 | /* accepting mmx+sse in all operands --> needs 0x66 to |
| 906 | switch to sse mode. Accepting only sse in an operand --> is |
| 907 | already SSE insn and needs 0x66/f2/f3 handling. */ |
| 908 | for (i = 0; i < nb_ops; i++) |
| 909 | if ((op_type[i] & (OP_MMX | OP_SSE)) == (OP_MMX | OP_SSE) |
| 910 | && ops[i].type & OP_SSE) |
| 911 | p66 = 1; |
| 912 | } |
| 913 | if (p66) |
| 914 | g(0x66); |
| 915 | #ifdef TCC_TARGET_X86_64 |
| 916 | rex64 = 0; |
| 917 | if (pa->instr_type & OPC_48) |
| 918 | rex64 = 1; |
| 919 | else if (s == 3 || (alltypes & OP_REG64)) { |
| 920 | /* generate REX prefix */ |
| 921 | int default64 = 0; |
| 922 | for(i = 0; i < nb_ops; i++) { |
| 923 | if (op_type[i] == OP_REG64 && pa->opcode != 0xb8) { |
| 924 | /* If only 64bit regs are accepted in one operand |
| 925 | this is a default64 instruction without need for |
| 926 | REX prefixes, except for movabs(0xb8). */ |
| 927 | default64 = 1; |
| 928 | break; |
| 929 | } |
| 930 | } |
| 931 | /* XXX find better encoding for the default64 instructions. */ |
| 932 | if (((opcode != TOK_ASM_push && opcode != TOK_ASM_pop |
| 933 | && opcode != TOK_ASM_pushw && opcode != TOK_ASM_pushl |
| 934 | && opcode != TOK_ASM_pushq && opcode != TOK_ASM_popw |
| 935 | && opcode != TOK_ASM_popl && opcode != TOK_ASM_popq |
| 936 | && opcode != TOK_ASM_call && opcode != TOK_ASM_jmp)) |
| 937 | && !default64) |
| 938 | rex64 = 1; |
| 939 | } |
| 940 | #endif |
| 941 | |
| 942 | /* now generates the operation */ |
| 943 | if (OPCT_IS(pa->instr_type, OPC_FWAIT)) |
| 944 | g(0x9b); |
| 945 | if (seg_prefix) |
| 946 | g(seg_prefix); |
| 947 | |
| 948 | v = pa->opcode; |
| 949 | if (pa->instr_type & OPC_0F) |
| 950 | v = ((v & ~0xff) << 8) | 0x0f00 | (v & 0xff); |
| 951 | if ((v == 0x69 || v == 0x6b) && nb_ops == 2) { |
| 952 | /* kludge for imul $im, %reg */ |
| 953 | nb_ops = 3; |
| 954 | ops[2] = ops[1]; |
| 955 | op_type[2] = op_type[1]; |
| 956 | } else if (v == 0xcd && ops[0].e.v == 3 && !ops[0].e.sym) { |
| 957 | v--; /* int $3 case */ |
| 958 | nb_ops = 0; |
| 959 | } else if ((v == 0x06 || v == 0x07)) { |
| 960 | if (ops[0].reg >= 4) { |
| 961 | /* push/pop %fs or %gs */ |
| 962 | v = 0x0fa0 + (v - 0x06) + ((ops[0].reg - 4) << 3); |
| 963 | } else { |
| 964 | v += ops[0].reg << 3; |
| 965 | } |
| 966 | nb_ops = 0; |
| 967 | } else if (v <= 0x05) { |
| 968 | /* arith case */ |
| 969 | v += ((opcode - TOK_ASM_addb) / NBWLX) << 3; |
| 970 | } else if ((pa->instr_type & (OPCT_MASK | OPC_MODRM)) == OPC_FARITH) { |
| 971 | /* fpu arith case */ |
| 972 | v += ((opcode - pa->sym) / 6) << 3; |
| 973 | } |
| 974 | |
| 975 | /* search which operand will be used for modrm */ |
| 976 | modrm_index = -1; |
| 977 | modreg_index = -1; |
| 978 | if (pa->instr_type & OPC_MODRM) { |
| 979 | if (!nb_ops) { |
| 980 | /* A modrm opcode without operands is a special case (e.g. mfence). |
| 981 | It has a group and acts as if there's an register operand 0 |
| 982 | (ax). */ |
| 983 | i = 0; |
| 984 | ops[i].type = OP_REG; |
| 985 | ops[i].reg = 0; |
| 986 | goto modrm_found; |
| 987 | } |
| 988 | /* first look for an ea operand */ |
| 989 | for(i = 0;i < nb_ops; i++) { |
| 990 | if (op_type[i] & OP_EA) |
| 991 | goto modrm_found; |
| 992 | } |
| 993 | /* then if not found, a register or indirection (shift instructions) */ |
| 994 | for(i = 0;i < nb_ops; i++) { |
| 995 | if (op_type[i] & (OP_REG | OP_MMX | OP_SSE | OP_INDIR)) |
| 996 | goto modrm_found; |
| 997 | } |
| 998 | #ifdef ASM_DEBUG |
| 999 | tcc_error("bad op table" ); |
| 1000 | #endif |
| 1001 | modrm_found: |
| 1002 | modrm_index = i; |
| 1003 | /* if a register is used in another operand then it is |
| 1004 | used instead of group */ |
| 1005 | for(i = 0;i < nb_ops; i++) { |
| 1006 | int t = op_type[i]; |
| 1007 | if (i != modrm_index && |
| 1008 | (t & (OP_REG | OP_MMX | OP_SSE | OP_CR | OP_TR | OP_DB | OP_SEG))) { |
| 1009 | modreg_index = i; |
| 1010 | break; |
| 1011 | } |
| 1012 | } |
| 1013 | } |
| 1014 | #ifdef TCC_TARGET_X86_64 |
| 1015 | asm_rex (rex64, ops, nb_ops, op_type, modreg_index, modrm_index); |
| 1016 | #endif |
| 1017 | |
| 1018 | if (pa->instr_type & OPC_REG) { |
| 1019 | /* mov $im, %reg case */ |
| 1020 | if (v == 0xb0 && s >= 1) |
| 1021 | v += 7; |
| 1022 | for(i = 0; i < nb_ops; i++) { |
| 1023 | if (op_type[i] & (OP_REG | OP_ST)) { |
| 1024 | v += ops[i].reg; |
| 1025 | break; |
| 1026 | } |
| 1027 | } |
| 1028 | } |
| 1029 | if (pa->instr_type & OPC_B) |
| 1030 | v += s >= 1; |
| 1031 | if (nb_ops == 1 && pa->op_type[0] == OPT_DISP8) { |
| 1032 | ElfSym *esym; |
| 1033 | int jmp_disp; |
| 1034 | |
| 1035 | /* see if we can really generate the jump with a byte offset */ |
| 1036 | esym = elfsym(ops[0].e.sym); |
| 1037 | if (!esym || esym->st_shndx != cur_text_section->sh_num) |
| 1038 | goto no_short_jump; |
| 1039 | jmp_disp = ops[0].e.v + esym->st_value - ind - 2 - (v >= 0xff); |
| 1040 | if (jmp_disp == (int8_t)jmp_disp) { |
| 1041 | /* OK to generate jump */ |
| 1042 | ops[0].e.sym = 0; |
| 1043 | ops[0].e.v = jmp_disp; |
| 1044 | op_type[0] = OP_IM8S; |
| 1045 | } else { |
| 1046 | no_short_jump: |
| 1047 | /* long jump will be allowed. need to modify the |
| 1048 | opcode slightly */ |
| 1049 | if (v == 0xeb) /* jmp */ |
| 1050 | v = 0xe9; |
| 1051 | else if (v == 0x70) /* jcc */ |
| 1052 | v += 0x0f10; |
| 1053 | else |
| 1054 | tcc_error("invalid displacement" ); |
| 1055 | } |
| 1056 | } |
| 1057 | if (OPCT_IS(pa->instr_type, OPC_TEST)) |
| 1058 | v += test_bits[opcode - pa->sym]; |
| 1059 | op1 = v >> 16; |
| 1060 | if (op1) |
| 1061 | g(op1); |
| 1062 | op1 = (v >> 8) & 0xff; |
| 1063 | if (op1) |
| 1064 | g(op1); |
| 1065 | g(v); |
| 1066 | |
| 1067 | if (OPCT_IS(pa->instr_type, OPC_SHIFT)) { |
| 1068 | reg = (opcode - pa->sym) / NBWLX; |
| 1069 | if (reg == 6) |
| 1070 | reg = 7; |
| 1071 | } else if (OPCT_IS(pa->instr_type, OPC_ARITH)) { |
| 1072 | reg = (opcode - pa->sym) / NBWLX; |
| 1073 | } else if (OPCT_IS(pa->instr_type, OPC_FARITH)) { |
| 1074 | reg = (opcode - pa->sym) / 6; |
| 1075 | } else { |
| 1076 | reg = (pa->instr_type >> OPC_GROUP_SHIFT) & 7; |
| 1077 | } |
| 1078 | |
| 1079 | pc = 0; |
| 1080 | if (pa->instr_type & OPC_MODRM) { |
| 1081 | /* if a register is used in another operand then it is |
| 1082 | used instead of group */ |
| 1083 | if (modreg_index >= 0) |
| 1084 | reg = ops[modreg_index].reg; |
| 1085 | pc = asm_modrm(reg, &ops[modrm_index]); |
| 1086 | } |
| 1087 | |
| 1088 | /* emit constants */ |
| 1089 | #ifndef TCC_TARGET_X86_64 |
| 1090 | if (!(pa->instr_type & OPC_0F) |
| 1091 | && (pa->opcode == 0x9a || pa->opcode == 0xea)) { |
| 1092 | /* ljmp or lcall kludge */ |
| 1093 | gen_expr32(&ops[1].e); |
| 1094 | if (ops[0].e.sym) |
| 1095 | tcc_error("cannot relocate" ); |
| 1096 | gen_le16(ops[0].e.v); |
| 1097 | return; |
| 1098 | } |
| 1099 | #endif |
| 1100 | for(i = 0;i < nb_ops; i++) { |
| 1101 | v = op_type[i]; |
| 1102 | if (v & (OP_IM8 | OP_IM16 | OP_IM32 | OP_IM64 | OP_IM8S | OP_ADDR)) { |
| 1103 | /* if multiple sizes are given it means we must look |
| 1104 | at the op size */ |
| 1105 | if ((v | OP_IM8 | OP_IM64) == (OP_IM8 | OP_IM16 | OP_IM32 | OP_IM64)) { |
| 1106 | if (s == 0) |
| 1107 | v = OP_IM8; |
| 1108 | else if (s == 1) |
| 1109 | v = OP_IM16; |
| 1110 | else if (s == 2 || (v & OP_IM64) == 0) |
| 1111 | v = OP_IM32; |
| 1112 | else |
| 1113 | v = OP_IM64; |
| 1114 | } |
| 1115 | |
| 1116 | if ((v & (OP_IM8 | OP_IM8S | OP_IM16)) && ops[i].e.sym) |
| 1117 | tcc_error("cannot relocate" ); |
| 1118 | |
| 1119 | if (v & (OP_IM8 | OP_IM8S)) { |
| 1120 | g(ops[i].e.v); |
| 1121 | } else if (v & OP_IM16) { |
| 1122 | gen_le16(ops[i].e.v); |
| 1123 | #ifdef TCC_TARGET_X86_64 |
| 1124 | } else if (v & OP_IM64) { |
| 1125 | gen_expr64(&ops[i].e); |
| 1126 | #endif |
| 1127 | } else if (pa->op_type[i] == OPT_DISP || pa->op_type[i] == OPT_DISP8) { |
| 1128 | gen_disp32(&ops[i].e); |
| 1129 | } else { |
| 1130 | gen_expr32(&ops[i].e); |
| 1131 | } |
| 1132 | } |
| 1133 | } |
| 1134 | |
| 1135 | /* after immediate operands, adjust pc-relative address */ |
| 1136 | if (pc) |
| 1137 | add32le(cur_text_section->data + pc - 4, pc - ind); |
| 1138 | } |
| 1139 | |
| 1140 | /* return the constraint priority (we allocate first the lowest |
| 1141 | numbered constraints) */ |
| 1142 | static inline int constraint_priority(const char *str) |
| 1143 | { |
| 1144 | int priority, c, pr; |
| 1145 | |
| 1146 | /* we take the lowest priority */ |
| 1147 | priority = 0; |
| 1148 | for(;;) { |
| 1149 | c = *str; |
| 1150 | if (c == '\0') |
| 1151 | break; |
| 1152 | str++; |
| 1153 | switch(c) { |
| 1154 | case 'A': |
| 1155 | pr = 0; |
| 1156 | break; |
| 1157 | case 'a': |
| 1158 | case 'b': |
| 1159 | case 'c': |
| 1160 | case 'd': |
| 1161 | case 'S': |
| 1162 | case 'D': |
| 1163 | pr = 1; |
| 1164 | break; |
| 1165 | case 'q': |
| 1166 | pr = 2; |
| 1167 | break; |
| 1168 | case 'r': |
| 1169 | case 'R': |
| 1170 | case 'p': |
| 1171 | pr = 3; |
| 1172 | break; |
| 1173 | case 'N': |
| 1174 | case 'M': |
| 1175 | case 'I': |
| 1176 | case 'e': |
| 1177 | case 'i': |
| 1178 | case 'm': |
| 1179 | case 'g': |
| 1180 | pr = 4; |
| 1181 | break; |
| 1182 | default: |
| 1183 | tcc_error("unknown constraint '%c'" , c); |
| 1184 | pr = 0; |
| 1185 | } |
| 1186 | if (pr > priority) |
| 1187 | priority = pr; |
| 1188 | } |
| 1189 | return priority; |
| 1190 | } |
| 1191 | |
| 1192 | static const char *skip_constraint_modifiers(const char *p) |
| 1193 | { |
| 1194 | while (*p == '=' || *p == '&' || *p == '+' || *p == '%') |
| 1195 | p++; |
| 1196 | return p; |
| 1197 | } |
| 1198 | |
| 1199 | /* If T (a token) is of the form "%reg" returns the register |
| 1200 | number and type, otherwise return -1. */ |
| 1201 | ST_FUNC int asm_parse_regvar (int t) |
| 1202 | { |
| 1203 | const char *s; |
| 1204 | Operand op; |
| 1205 | if (t < TOK_IDENT || (t & SYM_FIELD)) |
| 1206 | return -1; |
| 1207 | s = table_ident[t - TOK_IDENT]->str; |
| 1208 | if (s[0] != '%') |
| 1209 | return -1; |
| 1210 | t = tok_alloc(s+1, strlen(s)-1)->tok; |
| 1211 | unget_tok(t); |
| 1212 | unget_tok('%'); |
| 1213 | parse_operand(tcc_state, &op); |
| 1214 | /* Accept only integer regs for now. */ |
| 1215 | if (op.type & OP_REG) |
| 1216 | return op.reg; |
| 1217 | else |
| 1218 | return -1; |
| 1219 | } |
| 1220 | |
| 1221 | #define REG_OUT_MASK 0x01 |
| 1222 | #define REG_IN_MASK 0x02 |
| 1223 | |
| 1224 | #define is_reg_allocated(reg) (regs_allocated[reg] & reg_mask) |
| 1225 | |
| 1226 | ST_FUNC void asm_compute_constraints(ASMOperand *operands, |
| 1227 | int nb_operands, int nb_outputs, |
| 1228 | const uint8_t *clobber_regs, |
| 1229 | int *pout_reg) |
| 1230 | { |
| 1231 | ASMOperand *op; |
| 1232 | int sorted_op[MAX_ASM_OPERANDS]; |
| 1233 | int i, j, k, p1, p2, tmp, reg, c, reg_mask; |
| 1234 | const char *str; |
| 1235 | uint8_t regs_allocated[NB_ASM_REGS]; |
| 1236 | |
| 1237 | /* init fields */ |
| 1238 | for(i=0;i<nb_operands;i++) { |
| 1239 | op = &operands[i]; |
| 1240 | op->input_index = -1; |
| 1241 | op->ref_index = -1; |
| 1242 | op->reg = -1; |
| 1243 | op->is_memory = 0; |
| 1244 | op->is_rw = 0; |
| 1245 | } |
| 1246 | /* compute constraint priority and evaluate references to output |
| 1247 | constraints if input constraints */ |
| 1248 | for(i=0;i<nb_operands;i++) { |
| 1249 | op = &operands[i]; |
| 1250 | str = op->constraint; |
| 1251 | str = skip_constraint_modifiers(str); |
| 1252 | if (isnum(*str) || *str == '[') { |
| 1253 | /* this is a reference to another constraint */ |
| 1254 | k = find_constraint(operands, nb_operands, str, NULL); |
| 1255 | if ((unsigned)k >= i || i < nb_outputs) |
| 1256 | tcc_error("invalid reference in constraint %d ('%s')" , |
| 1257 | i, str); |
| 1258 | op->ref_index = k; |
| 1259 | if (operands[k].input_index >= 0) |
| 1260 | tcc_error("cannot reference twice the same operand" ); |
| 1261 | operands[k].input_index = i; |
| 1262 | op->priority = 5; |
| 1263 | } else if ((op->vt->r & VT_VALMASK) == VT_LOCAL |
| 1264 | && op->vt->sym |
| 1265 | && (reg = op->vt->sym->r & VT_VALMASK) < VT_CONST) { |
| 1266 | op->priority = 1; |
| 1267 | op->reg = reg; |
| 1268 | } else { |
| 1269 | op->priority = constraint_priority(str); |
| 1270 | } |
| 1271 | } |
| 1272 | |
| 1273 | /* sort operands according to their priority */ |
| 1274 | for(i=0;i<nb_operands;i++) |
| 1275 | sorted_op[i] = i; |
| 1276 | for(i=0;i<nb_operands - 1;i++) { |
| 1277 | for(j=i+1;j<nb_operands;j++) { |
| 1278 | p1 = operands[sorted_op[i]].priority; |
| 1279 | p2 = operands[sorted_op[j]].priority; |
| 1280 | if (p2 < p1) { |
| 1281 | tmp = sorted_op[i]; |
| 1282 | sorted_op[i] = sorted_op[j]; |
| 1283 | sorted_op[j] = tmp; |
| 1284 | } |
| 1285 | } |
| 1286 | } |
| 1287 | |
| 1288 | for(i = 0;i < NB_ASM_REGS; i++) { |
| 1289 | if (clobber_regs[i]) |
| 1290 | regs_allocated[i] = REG_IN_MASK | REG_OUT_MASK; |
| 1291 | else |
| 1292 | regs_allocated[i] = 0; |
| 1293 | } |
| 1294 | /* esp cannot be used */ |
| 1295 | regs_allocated[4] = REG_IN_MASK | REG_OUT_MASK; |
| 1296 | /* ebp cannot be used yet */ |
| 1297 | regs_allocated[5] = REG_IN_MASK | REG_OUT_MASK; |
| 1298 | |
| 1299 | /* allocate registers and generate corresponding asm moves */ |
| 1300 | for(i=0;i<nb_operands;i++) { |
| 1301 | j = sorted_op[i]; |
| 1302 | op = &operands[j]; |
| 1303 | str = op->constraint; |
| 1304 | /* no need to allocate references */ |
| 1305 | if (op->ref_index >= 0) |
| 1306 | continue; |
| 1307 | /* select if register is used for output, input or both */ |
| 1308 | if (op->input_index >= 0) { |
| 1309 | reg_mask = REG_IN_MASK | REG_OUT_MASK; |
| 1310 | } else if (j < nb_outputs) { |
| 1311 | reg_mask = REG_OUT_MASK; |
| 1312 | } else { |
| 1313 | reg_mask = REG_IN_MASK; |
| 1314 | } |
| 1315 | if (op->reg >= 0) { |
| 1316 | if (is_reg_allocated(op->reg)) |
| 1317 | tcc_error("asm regvar requests register that's taken already" ); |
| 1318 | reg = op->reg; |
| 1319 | goto reg_found; |
| 1320 | } |
| 1321 | try_next: |
| 1322 | c = *str++; |
| 1323 | switch(c) { |
| 1324 | case '=': |
| 1325 | goto try_next; |
| 1326 | case '+': |
| 1327 | op->is_rw = 1; |
| 1328 | /* FALL THRU */ |
| 1329 | case '&': |
| 1330 | if (j >= nb_outputs) |
| 1331 | tcc_error("'%c' modifier can only be applied to outputs" , c); |
| 1332 | reg_mask = REG_IN_MASK | REG_OUT_MASK; |
| 1333 | goto try_next; |
| 1334 | case 'A': |
| 1335 | /* allocate both eax and edx */ |
| 1336 | if (is_reg_allocated(TREG_XAX) || |
| 1337 | is_reg_allocated(TREG_XDX)) |
| 1338 | goto try_next; |
| 1339 | op->is_llong = 1; |
| 1340 | op->reg = TREG_XAX; |
| 1341 | regs_allocated[TREG_XAX] |= reg_mask; |
| 1342 | regs_allocated[TREG_XDX] |= reg_mask; |
| 1343 | break; |
| 1344 | case 'a': |
| 1345 | reg = TREG_XAX; |
| 1346 | goto alloc_reg; |
| 1347 | case 'b': |
| 1348 | reg = 3; |
| 1349 | goto alloc_reg; |
| 1350 | case 'c': |
| 1351 | reg = TREG_XCX; |
| 1352 | goto alloc_reg; |
| 1353 | case 'd': |
| 1354 | reg = TREG_XDX; |
| 1355 | goto alloc_reg; |
| 1356 | case 'S': |
| 1357 | reg = 6; |
| 1358 | goto alloc_reg; |
| 1359 | case 'D': |
| 1360 | reg = 7; |
| 1361 | alloc_reg: |
| 1362 | if (is_reg_allocated(reg)) |
| 1363 | goto try_next; |
| 1364 | goto reg_found; |
| 1365 | case 'q': |
| 1366 | /* eax, ebx, ecx or edx */ |
| 1367 | for(reg = 0; reg < 4; reg++) { |
| 1368 | if (!is_reg_allocated(reg)) |
| 1369 | goto reg_found; |
| 1370 | } |
| 1371 | goto try_next; |
| 1372 | case 'r': |
| 1373 | case 'R': |
| 1374 | case 'p': /* A general address, for x86(64) any register is acceptable*/ |
| 1375 | /* any general register */ |
| 1376 | for(reg = 0; reg < 8; reg++) { |
| 1377 | if (!is_reg_allocated(reg)) |
| 1378 | goto reg_found; |
| 1379 | } |
| 1380 | goto try_next; |
| 1381 | reg_found: |
| 1382 | /* now we can reload in the register */ |
| 1383 | op->is_llong = 0; |
| 1384 | op->reg = reg; |
| 1385 | regs_allocated[reg] |= reg_mask; |
| 1386 | break; |
| 1387 | case 'e': |
| 1388 | case 'i': |
| 1389 | if (!((op->vt->r & (VT_VALMASK | VT_LVAL)) == VT_CONST)) |
| 1390 | goto try_next; |
| 1391 | break; |
| 1392 | case 'I': |
| 1393 | case 'N': |
| 1394 | case 'M': |
| 1395 | if (!((op->vt->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST)) |
| 1396 | goto try_next; |
| 1397 | break; |
| 1398 | case 'm': |
| 1399 | case 'g': |
| 1400 | /* nothing special to do because the operand is already in |
| 1401 | memory, except if the pointer itself is stored in a |
| 1402 | memory variable (VT_LLOCAL case) */ |
| 1403 | /* XXX: fix constant case */ |
| 1404 | /* if it is a reference to a memory zone, it must lie |
| 1405 | in a register, so we reserve the register in the |
| 1406 | input registers and a load will be generated |
| 1407 | later */ |
| 1408 | if (j < nb_outputs || c == 'm') { |
| 1409 | if ((op->vt->r & VT_VALMASK) == VT_LLOCAL) { |
| 1410 | /* any general register */ |
| 1411 | for(reg = 0; reg < 8; reg++) { |
| 1412 | if (!(regs_allocated[reg] & REG_IN_MASK)) |
| 1413 | goto reg_found1; |
| 1414 | } |
| 1415 | goto try_next; |
| 1416 | reg_found1: |
| 1417 | /* now we can reload in the register */ |
| 1418 | regs_allocated[reg] |= REG_IN_MASK; |
| 1419 | op->reg = reg; |
| 1420 | op->is_memory = 1; |
| 1421 | } |
| 1422 | } |
| 1423 | break; |
| 1424 | default: |
| 1425 | tcc_error("asm constraint %d ('%s') could not be satisfied" , |
| 1426 | j, op->constraint); |
| 1427 | break; |
| 1428 | } |
| 1429 | /* if a reference is present for that operand, we assign it too */ |
| 1430 | if (op->input_index >= 0) { |
| 1431 | operands[op->input_index].reg = op->reg; |
| 1432 | operands[op->input_index].is_llong = op->is_llong; |
| 1433 | } |
| 1434 | } |
| 1435 | |
| 1436 | /* compute out_reg. It is used to store outputs registers to memory |
| 1437 | locations references by pointers (VT_LLOCAL case) */ |
| 1438 | *pout_reg = -1; |
| 1439 | for(i=0;i<nb_operands;i++) { |
| 1440 | op = &operands[i]; |
| 1441 | if (op->reg >= 0 && |
| 1442 | (op->vt->r & VT_VALMASK) == VT_LLOCAL && |
| 1443 | !op->is_memory) { |
| 1444 | for(reg = 0; reg < 8; reg++) { |
| 1445 | if (!(regs_allocated[reg] & REG_OUT_MASK)) |
| 1446 | goto reg_found2; |
| 1447 | } |
| 1448 | tcc_error("could not find free output register for reloading" ); |
| 1449 | reg_found2: |
| 1450 | *pout_reg = reg; |
| 1451 | break; |
| 1452 | } |
| 1453 | } |
| 1454 | |
| 1455 | /* print sorted constraints */ |
| 1456 | #ifdef ASM_DEBUG |
| 1457 | for(i=0;i<nb_operands;i++) { |
| 1458 | j = sorted_op[i]; |
| 1459 | op = &operands[j]; |
| 1460 | printf("%%%d [%s]: \"%s\" r=0x%04x reg=%d\n" , |
| 1461 | j, |
| 1462 | op->id ? get_tok_str(op->id, NULL) : "" , |
| 1463 | op->constraint, |
| 1464 | op->vt->r, |
| 1465 | op->reg); |
| 1466 | } |
| 1467 | if (*pout_reg >= 0) |
| 1468 | printf("out_reg=%d\n" , *pout_reg); |
| 1469 | #endif |
| 1470 | } |
| 1471 | |
| 1472 | ST_FUNC void subst_asm_operand(CString *add_str, |
| 1473 | SValue *sv, int modifier) |
| 1474 | { |
| 1475 | int r, reg, size, val; |
| 1476 | char buf[64]; |
| 1477 | |
| 1478 | r = sv->r; |
| 1479 | if ((r & VT_VALMASK) == VT_CONST) { |
| 1480 | if (!(r & VT_LVAL) && modifier != 'c' && modifier != 'n' && |
| 1481 | modifier != 'P') |
| 1482 | cstr_ccat(add_str, '$'); |
| 1483 | if (r & VT_SYM) { |
| 1484 | const char *name = get_tok_str(sv->sym->v, NULL); |
| 1485 | if (sv->sym->v >= SYM_FIRST_ANOM) { |
| 1486 | /* In case of anonymous symbols ("L.42", used |
| 1487 | for static data labels) we can't find them |
| 1488 | in the C symbol table when later looking up |
| 1489 | this name. So enter them now into the asm label |
| 1490 | list when we still know the symbol. */ |
| 1491 | get_asm_sym(tok_alloc(name, strlen(name))->tok, sv->sym); |
| 1492 | } |
| 1493 | if (tcc_state->leading_underscore) |
| 1494 | cstr_ccat(add_str, '_'); |
| 1495 | cstr_cat(add_str, name, -1); |
| 1496 | if ((uint32_t)sv->c.i == 0) |
| 1497 | goto no_offset; |
| 1498 | cstr_ccat(add_str, '+'); |
| 1499 | } |
| 1500 | val = sv->c.i; |
| 1501 | if (modifier == 'n') |
| 1502 | val = -val; |
| 1503 | snprintf(buf, sizeof(buf), "%d" , (int)sv->c.i); |
| 1504 | cstr_cat(add_str, buf, -1); |
| 1505 | no_offset:; |
| 1506 | #ifdef TCC_TARGET_X86_64 |
| 1507 | if (r & VT_LVAL) |
| 1508 | cstr_cat(add_str, "(%rip)" , -1); |
| 1509 | #endif |
| 1510 | } else if ((r & VT_VALMASK) == VT_LOCAL) { |
| 1511 | #ifdef TCC_TARGET_X86_64 |
| 1512 | snprintf(buf, sizeof(buf), "%d(%%rbp)" , (int)sv->c.i); |
| 1513 | #else |
| 1514 | snprintf(buf, sizeof(buf), "%d(%%ebp)" , (int)sv->c.i); |
| 1515 | #endif |
| 1516 | cstr_cat(add_str, buf, -1); |
| 1517 | } else if (r & VT_LVAL) { |
| 1518 | reg = r & VT_VALMASK; |
| 1519 | if (reg >= VT_CONST) |
| 1520 | tcc_internal_error("" ); |
| 1521 | snprintf(buf, sizeof(buf), "(%%%s)" , |
| 1522 | #ifdef TCC_TARGET_X86_64 |
| 1523 | get_tok_str(TOK_ASM_rax + reg, NULL) |
| 1524 | #else |
| 1525 | get_tok_str(TOK_ASM_eax + reg, NULL) |
| 1526 | #endif |
| 1527 | ); |
| 1528 | cstr_cat(add_str, buf, -1); |
| 1529 | } else { |
| 1530 | /* register case */ |
| 1531 | reg = r & VT_VALMASK; |
| 1532 | if (reg >= VT_CONST) |
| 1533 | tcc_internal_error("" ); |
| 1534 | |
| 1535 | /* choose register operand size */ |
| 1536 | if ((sv->type.t & VT_BTYPE) == VT_BYTE || |
| 1537 | (sv->type.t & VT_BTYPE) == VT_BOOL) |
| 1538 | size = 1; |
| 1539 | else if ((sv->type.t & VT_BTYPE) == VT_SHORT) |
| 1540 | size = 2; |
| 1541 | #ifdef TCC_TARGET_X86_64 |
| 1542 | else if ((sv->type.t & VT_BTYPE) == VT_LLONG || |
| 1543 | (sv->type.t & VT_BTYPE) == VT_PTR) |
| 1544 | size = 8; |
| 1545 | #endif |
| 1546 | else |
| 1547 | size = 4; |
| 1548 | if (size == 1 && reg >= 4) |
| 1549 | size = 4; |
| 1550 | |
| 1551 | if (modifier == 'b') { |
| 1552 | if (reg >= 4) |
| 1553 | tcc_error("cannot use byte register" ); |
| 1554 | size = 1; |
| 1555 | } else if (modifier == 'h') { |
| 1556 | if (reg >= 4) |
| 1557 | tcc_error("cannot use byte register" ); |
| 1558 | size = -1; |
| 1559 | } else if (modifier == 'w') { |
| 1560 | size = 2; |
| 1561 | } else if (modifier == 'k') { |
| 1562 | size = 4; |
| 1563 | #ifdef TCC_TARGET_X86_64 |
| 1564 | } else if (modifier == 'q') { |
| 1565 | size = 8; |
| 1566 | #endif |
| 1567 | } |
| 1568 | |
| 1569 | switch(size) { |
| 1570 | case -1: |
| 1571 | reg = TOK_ASM_ah + reg; |
| 1572 | break; |
| 1573 | case 1: |
| 1574 | reg = TOK_ASM_al + reg; |
| 1575 | break; |
| 1576 | case 2: |
| 1577 | reg = TOK_ASM_ax + reg; |
| 1578 | break; |
| 1579 | default: |
| 1580 | reg = TOK_ASM_eax + reg; |
| 1581 | break; |
| 1582 | #ifdef TCC_TARGET_X86_64 |
| 1583 | case 8: |
| 1584 | reg = TOK_ASM_rax + reg; |
| 1585 | break; |
| 1586 | #endif |
| 1587 | } |
| 1588 | snprintf(buf, sizeof(buf), "%%%s" , get_tok_str(reg, NULL)); |
| 1589 | cstr_cat(add_str, buf, -1); |
| 1590 | } |
| 1591 | } |
| 1592 | |
| 1593 | /* generate prolog and epilog code for asm statement */ |
| 1594 | ST_FUNC void asm_gen_code(ASMOperand *operands, int nb_operands, |
| 1595 | int nb_outputs, int is_output, |
| 1596 | uint8_t *clobber_regs, |
| 1597 | int out_reg) |
| 1598 | { |
| 1599 | uint8_t regs_allocated[NB_ASM_REGS]; |
| 1600 | ASMOperand *op; |
| 1601 | int i, reg; |
| 1602 | |
| 1603 | /* Strictly speaking %Xbp and %Xsp should be included in the |
| 1604 | call-preserved registers, but currently it doesn't matter. */ |
| 1605 | #ifdef TCC_TARGET_X86_64 |
| 1606 | #ifdef TCC_TARGET_PE |
| 1607 | static uint8_t reg_saved[] = { 3, 6, 7, 12, 13, 14, 15 }; |
| 1608 | #else |
| 1609 | static uint8_t reg_saved[] = { 3, 12, 13, 14, 15 }; |
| 1610 | #endif |
| 1611 | #else |
| 1612 | static uint8_t reg_saved[] = { 3, 6, 7 }; |
| 1613 | #endif |
| 1614 | |
| 1615 | /* mark all used registers */ |
| 1616 | memcpy(regs_allocated, clobber_regs, sizeof(regs_allocated)); |
| 1617 | for(i = 0; i < nb_operands;i++) { |
| 1618 | op = &operands[i]; |
| 1619 | if (op->reg >= 0) |
| 1620 | regs_allocated[op->reg] = 1; |
| 1621 | } |
| 1622 | if (!is_output) { |
| 1623 | /* generate reg save code */ |
| 1624 | for(i = 0; i < sizeof(reg_saved)/sizeof(reg_saved[0]); i++) { |
| 1625 | reg = reg_saved[i]; |
| 1626 | if (regs_allocated[reg]) { |
| 1627 | if (reg >= 8) |
| 1628 | g(0x41), reg-=8; |
| 1629 | g(0x50 + reg); |
| 1630 | } |
| 1631 | } |
| 1632 | |
| 1633 | /* generate load code */ |
| 1634 | for(i = 0; i < nb_operands; i++) { |
| 1635 | op = &operands[i]; |
| 1636 | if (op->reg >= 0) { |
| 1637 | if ((op->vt->r & VT_VALMASK) == VT_LLOCAL && |
| 1638 | op->is_memory) { |
| 1639 | /* memory reference case (for both input and |
| 1640 | output cases) */ |
| 1641 | SValue sv; |
| 1642 | sv = *op->vt; |
| 1643 | sv.r = (sv.r & ~VT_VALMASK) | VT_LOCAL | VT_LVAL; |
| 1644 | sv.type.t = VT_PTR; |
| 1645 | load(op->reg, &sv); |
| 1646 | } else if (i >= nb_outputs || op->is_rw) { |
| 1647 | /* load value in register */ |
| 1648 | load(op->reg, op->vt); |
| 1649 | if (op->is_llong) { |
| 1650 | SValue sv; |
| 1651 | sv = *op->vt; |
| 1652 | sv.c.i += 4; |
| 1653 | load(TREG_XDX, &sv); |
| 1654 | } |
| 1655 | } |
| 1656 | } |
| 1657 | } |
| 1658 | } else { |
| 1659 | /* generate save code */ |
| 1660 | for(i = 0 ; i < nb_outputs; i++) { |
| 1661 | op = &operands[i]; |
| 1662 | if (op->reg >= 0) { |
| 1663 | if ((op->vt->r & VT_VALMASK) == VT_LLOCAL) { |
| 1664 | if (!op->is_memory) { |
| 1665 | SValue sv; |
| 1666 | sv = *op->vt; |
| 1667 | sv.r = (sv.r & ~VT_VALMASK) | VT_LOCAL; |
| 1668 | sv.type.t = VT_PTR; |
| 1669 | load(out_reg, &sv); |
| 1670 | |
| 1671 | sv = *op->vt; |
| 1672 | sv.r = (sv.r & ~VT_VALMASK) | out_reg; |
| 1673 | store(op->reg, &sv); |
| 1674 | } |
| 1675 | } else { |
| 1676 | store(op->reg, op->vt); |
| 1677 | if (op->is_llong) { |
| 1678 | SValue sv; |
| 1679 | sv = *op->vt; |
| 1680 | sv.c.i += 4; |
| 1681 | store(TREG_XDX, &sv); |
| 1682 | } |
| 1683 | } |
| 1684 | } |
| 1685 | } |
| 1686 | /* generate reg restore code */ |
| 1687 | for(i = sizeof(reg_saved)/sizeof(reg_saved[0]) - 1; i >= 0; i--) { |
| 1688 | reg = reg_saved[i]; |
| 1689 | if (regs_allocated[reg]) { |
| 1690 | if (reg >= 8) |
| 1691 | g(0x41), reg-=8; |
| 1692 | g(0x58 + reg); |
| 1693 | } |
| 1694 | } |
| 1695 | } |
| 1696 | } |
| 1697 | |
| 1698 | ST_FUNC void asm_clobber(uint8_t *clobber_regs, const char *str) |
| 1699 | { |
| 1700 | int reg; |
| 1701 | TokenSym *ts; |
| 1702 | #ifdef TCC_TARGET_X86_64 |
| 1703 | unsigned int type; |
| 1704 | #endif |
| 1705 | |
| 1706 | if (!strcmp(str, "memory" ) || |
| 1707 | !strcmp(str, "cc" ) || |
| 1708 | !strcmp(str, "flags" )) |
| 1709 | return; |
| 1710 | ts = tok_alloc(str, strlen(str)); |
| 1711 | reg = ts->tok; |
| 1712 | if (reg >= TOK_ASM_eax && reg <= TOK_ASM_edi) { |
| 1713 | reg -= TOK_ASM_eax; |
| 1714 | } else if (reg >= TOK_ASM_ax && reg <= TOK_ASM_di) { |
| 1715 | reg -= TOK_ASM_ax; |
| 1716 | #ifdef TCC_TARGET_X86_64 |
| 1717 | } else if (reg >= TOK_ASM_rax && reg <= TOK_ASM_rdi) { |
| 1718 | reg -= TOK_ASM_rax; |
| 1719 | } else if ((reg = asm_parse_numeric_reg(reg, &type)) >= 0) { |
| 1720 | ; |
| 1721 | #endif |
| 1722 | } else { |
| 1723 | tcc_error("invalid clobber register '%s'" , str); |
| 1724 | } |
| 1725 | clobber_regs[reg] = 1; |
| 1726 | } |
| 1727 | |