| 1 | #include "duckdb/execution/operator/aggregate/physical_window.hpp" | 
| 2 |  | 
| 3 | #include "duckdb/common/operator/add.hpp" | 
| 4 | #include "duckdb/common/operator/cast_operators.hpp" | 
| 5 | #include "duckdb/common/operator/comparison_operators.hpp" | 
| 6 | #include "duckdb/common/operator/subtract.hpp" | 
| 7 | #include "duckdb/common/optional_ptr.hpp" | 
| 8 | #include "duckdb/common/radix_partitioning.hpp" | 
| 9 | #include "duckdb/common/row_operations/row_operations.hpp" | 
| 10 | #include "duckdb/common/sort/partition_state.hpp" | 
| 11 | #include "duckdb/common/types/chunk_collection.hpp" | 
| 12 | #include "duckdb/common/types/column/column_data_consumer.hpp" | 
| 13 | #include "duckdb/common/types/row/row_data_collection_scanner.hpp" | 
| 14 | #include "duckdb/common/vector_operations/vector_operations.hpp" | 
| 15 | #include "duckdb/common/windows_undefs.hpp" | 
| 16 | #include "duckdb/execution/expression_executor.hpp" | 
| 17 | #include "duckdb/execution/partitionable_hashtable.hpp" | 
| 18 | #include "duckdb/execution/window_segment_tree.hpp" | 
| 19 | #include "duckdb/main/client_config.hpp" | 
| 20 | #include "duckdb/main/config.hpp" | 
| 21 | #include "duckdb/parallel/base_pipeline_event.hpp" | 
| 22 | #include "duckdb/planner/expression/bound_reference_expression.hpp" | 
| 23 | #include "duckdb/planner/expression/bound_window_expression.hpp" | 
| 24 |  | 
| 25 | #include <algorithm> | 
| 26 | #include <cmath> | 
| 27 | #include <numeric> | 
| 28 |  | 
| 29 | namespace duckdb { | 
| 30 |  | 
| 31 | //	Global sink state | 
| 32 | class WindowGlobalSinkState : public GlobalSinkState { | 
| 33 | public: | 
| 34 | 	WindowGlobalSinkState(const PhysicalWindow &op, ClientContext &context) | 
| 35 | 	    : mode(DBConfig::GetConfig(context).options.window_mode) { | 
| 36 |  | 
| 37 | 		D_ASSERT(op.select_list[0]->GetExpressionClass() == ExpressionClass::BOUND_WINDOW); | 
| 38 | 		auto &wexpr = op.select_list[0]->Cast<BoundWindowExpression>(); | 
| 39 |  | 
| 40 | 		global_partition = | 
| 41 | 		    make_uniq<PartitionGlobalSinkState>(args&: context, args&: wexpr.partitions, args&: wexpr.orders, args&: op.children[0]->types, | 
| 42 | 		                                        args&: wexpr.partitions_stats, args: op.estimated_cardinality); | 
| 43 | 	} | 
| 44 |  | 
| 45 | 	unique_ptr<PartitionGlobalSinkState> global_partition; | 
| 46 | 	WindowAggregationMode mode; | 
| 47 | }; | 
| 48 |  | 
| 49 | //	Per-thread sink state | 
| 50 | class WindowLocalSinkState : public LocalSinkState { | 
| 51 | public: | 
| 52 | 	WindowLocalSinkState(ClientContext &context, const WindowGlobalSinkState &gstate) | 
| 53 | 	    : local_partition(context, *gstate.global_partition) { | 
| 54 | 	} | 
| 55 |  | 
| 56 | 	void Sink(DataChunk &input_chunk) { | 
| 57 | 		local_partition.Sink(input_chunk); | 
| 58 | 	} | 
| 59 |  | 
| 60 | 	void Combine() { | 
| 61 | 		local_partition.Combine(); | 
| 62 | 	} | 
| 63 |  | 
| 64 | 	PartitionLocalSinkState local_partition; | 
| 65 | }; | 
| 66 |  | 
| 67 | // this implements a sorted window functions variant | 
| 68 | PhysicalWindow::PhysicalWindow(vector<LogicalType> types, vector<unique_ptr<Expression>> select_list_p, | 
| 69 |                                idx_t estimated_cardinality, PhysicalOperatorType type) | 
| 70 |     : PhysicalOperator(type, std::move(types), estimated_cardinality), select_list(std::move(select_list_p)) { | 
| 71 | 	is_order_dependent = false; | 
| 72 | 	for (auto &expr : select_list) { | 
| 73 | 		D_ASSERT(expr->expression_class == ExpressionClass::BOUND_WINDOW); | 
| 74 | 		auto &bound_window = expr->Cast<BoundWindowExpression>(); | 
| 75 | 		if (bound_window.partitions.empty() && bound_window.orders.empty()) { | 
| 76 | 			is_order_dependent = true; | 
| 77 | 		} | 
| 78 | 	} | 
| 79 | } | 
| 80 |  | 
| 81 | static idx_t FindNextStart(const ValidityMask &mask, idx_t l, const idx_t r, idx_t &n) { | 
| 82 | 	if (mask.AllValid()) { | 
| 83 | 		auto start = MinValue(a: l + n - 1, b: r); | 
| 84 | 		n -= MinValue(a: n, b: r - l); | 
| 85 | 		return start; | 
| 86 | 	} | 
| 87 |  | 
| 88 | 	while (l < r) { | 
| 89 | 		//	If l is aligned with the start of a block, and the block is blank, then skip forward one block. | 
| 90 | 		idx_t entry_idx; | 
| 91 | 		idx_t shift; | 
| 92 | 		mask.GetEntryIndex(row_idx: l, entry_idx, idx_in_entry&: shift); | 
| 93 |  | 
| 94 | 		const auto block = mask.GetValidityEntry(entry_idx); | 
| 95 | 		if (mask.NoneValid(entry: block) && !shift) { | 
| 96 | 			l += ValidityMask::BITS_PER_VALUE; | 
| 97 | 			continue; | 
| 98 | 		} | 
| 99 |  | 
| 100 | 		// Loop over the block | 
| 101 | 		for (; shift < ValidityMask::BITS_PER_VALUE && l < r; ++shift, ++l) { | 
| 102 | 			if (mask.RowIsValid(entry: block, idx_in_entry: shift) && --n == 0) { | 
| 103 | 				return MinValue(a: l, b: r); | 
| 104 | 			} | 
| 105 | 		} | 
| 106 | 	} | 
| 107 |  | 
| 108 | 	//	Didn't find a start so return the end of the range | 
| 109 | 	return r; | 
| 110 | } | 
| 111 |  | 
| 112 | static idx_t FindPrevStart(const ValidityMask &mask, const idx_t l, idx_t r, idx_t &n) { | 
| 113 | 	if (mask.AllValid()) { | 
| 114 | 		auto start = (r <= l + n) ? l : r - n; | 
| 115 | 		n -= r - start; | 
| 116 | 		return start; | 
| 117 | 	} | 
| 118 |  | 
| 119 | 	while (l < r) { | 
| 120 | 		// If r is aligned with the start of a block, and the previous block is blank, | 
| 121 | 		// then skip backwards one block. | 
| 122 | 		idx_t entry_idx; | 
| 123 | 		idx_t shift; | 
| 124 | 		mask.GetEntryIndex(row_idx: r - 1, entry_idx, idx_in_entry&: shift); | 
| 125 |  | 
| 126 | 		const auto block = mask.GetValidityEntry(entry_idx); | 
| 127 | 		if (mask.NoneValid(entry: block) && (shift + 1 == ValidityMask::BITS_PER_VALUE)) { | 
| 128 | 			// r is nonzero (> l) and word aligned, so this will not underflow. | 
| 129 | 			r -= ValidityMask::BITS_PER_VALUE; | 
| 130 | 			continue; | 
| 131 | 		} | 
| 132 |  | 
| 133 | 		// Loop backwards over the block | 
| 134 | 		// shift is probing r-1 >= l >= 0 | 
| 135 | 		for (++shift; shift-- > 0; --r) { | 
| 136 | 			if (mask.RowIsValid(entry: block, idx_in_entry: shift) && --n == 0) { | 
| 137 | 				return MaxValue(a: l, b: r - 1); | 
| 138 | 			} | 
| 139 | 		} | 
| 140 | 	} | 
| 141 |  | 
| 142 | 	//	Didn't find a start so return the start of the range | 
| 143 | 	return l; | 
| 144 | } | 
| 145 |  | 
| 146 | static void PrepareInputExpressions(vector<unique_ptr<Expression>> &exprs, ExpressionExecutor &executor, | 
| 147 |                                     DataChunk &chunk) { | 
| 148 | 	if (exprs.empty()) { | 
| 149 | 		return; | 
| 150 | 	} | 
| 151 |  | 
| 152 | 	vector<LogicalType> types; | 
| 153 | 	for (idx_t expr_idx = 0; expr_idx < exprs.size(); ++expr_idx) { | 
| 154 | 		types.push_back(x: exprs[expr_idx]->return_type); | 
| 155 | 		executor.AddExpression(expr: *exprs[expr_idx]); | 
| 156 | 	} | 
| 157 |  | 
| 158 | 	if (!types.empty()) { | 
| 159 | 		auto &allocator = executor.GetAllocator(); | 
| 160 | 		chunk.Initialize(allocator, types); | 
| 161 | 	} | 
| 162 | } | 
| 163 |  | 
| 164 | static void PrepareInputExpression(Expression &expr, ExpressionExecutor &executor, DataChunk &chunk) { | 
| 165 | 	vector<LogicalType> types; | 
| 166 | 	types.push_back(x: expr.return_type); | 
| 167 | 	executor.AddExpression(expr); | 
| 168 |  | 
| 169 | 	auto &allocator = executor.GetAllocator(); | 
| 170 | 	chunk.Initialize(allocator, types); | 
| 171 | } | 
| 172 |  | 
| 173 | struct WindowInputExpression { | 
| 174 | 	WindowInputExpression(optional_ptr<Expression> expr_p, ClientContext &context) | 
| 175 | 	    : expr(expr_p), ptype(PhysicalType::INVALID), scalar(true), executor(context) { | 
| 176 | 		if (expr) { | 
| 177 | 			PrepareInputExpression(expr&: *expr, executor, chunk); | 
| 178 | 			ptype = expr->return_type.InternalType(); | 
| 179 | 			scalar = expr->IsScalar(); | 
| 180 | 		} | 
| 181 | 	} | 
| 182 |  | 
| 183 | 	void Execute(DataChunk &input_chunk) { | 
| 184 | 		if (expr) { | 
| 185 | 			chunk.Reset(); | 
| 186 | 			executor.Execute(input&: input_chunk, result&: chunk); | 
| 187 | 			chunk.Verify(); | 
| 188 | 		} | 
| 189 | 	} | 
| 190 |  | 
| 191 | 	template <typename T> | 
| 192 | 	inline T GetCell(idx_t i) const { | 
| 193 | 		D_ASSERT(!chunk.data.empty()); | 
| 194 | 		const auto data = FlatVector::GetData<T>(chunk.data[0]); | 
| 195 | 		return data[scalar ? 0 : i]; | 
| 196 | 	} | 
| 197 |  | 
| 198 | 	inline bool CellIsNull(idx_t i) const { | 
| 199 | 		D_ASSERT(!chunk.data.empty()); | 
| 200 | 		if (chunk.data[0].GetVectorType() == VectorType::CONSTANT_VECTOR) { | 
| 201 | 			return ConstantVector::IsNull(vector: chunk.data[0]); | 
| 202 | 		} | 
| 203 | 		return FlatVector::IsNull(vector: chunk.data[0], idx: i); | 
| 204 | 	} | 
| 205 |  | 
| 206 | 	inline void CopyCell(Vector &target, idx_t target_offset) const { | 
| 207 | 		D_ASSERT(!chunk.data.empty()); | 
| 208 | 		auto &source = chunk.data[0]; | 
| 209 | 		auto source_offset = scalar ? 0 : target_offset; | 
| 210 | 		VectorOperations::Copy(source, target, source_count: source_offset + 1, source_offset, target_offset); | 
| 211 | 	} | 
| 212 |  | 
| 213 | 	optional_ptr<Expression> expr; | 
| 214 | 	PhysicalType ptype; | 
| 215 | 	bool scalar; | 
| 216 | 	ExpressionExecutor executor; | 
| 217 | 	DataChunk chunk; | 
| 218 | }; | 
| 219 |  | 
| 220 | struct WindowInputColumn { | 
| 221 | 	WindowInputColumn(Expression *expr_p, ClientContext &context, idx_t capacity_p) | 
| 222 | 	    : input_expr(expr_p, context), count(0), capacity(capacity_p) { | 
| 223 | 		if (input_expr.expr) { | 
| 224 | 			target = make_uniq<Vector>(args: input_expr.chunk.data[0].GetType(), args&: capacity); | 
| 225 | 		} | 
| 226 | 	} | 
| 227 |  | 
| 228 | 	void Append(DataChunk &input_chunk) { | 
| 229 | 		if (input_expr.expr) { | 
| 230 | 			const auto source_count = input_chunk.size(); | 
| 231 | 			D_ASSERT(count + source_count <= capacity); | 
| 232 | 			if (!input_expr.scalar || !count) { | 
| 233 | 				input_expr.Execute(input_chunk); | 
| 234 | 				auto &source = input_expr.chunk.data[0]; | 
| 235 | 				VectorOperations::Copy(source, target&: *target, source_count, source_offset: 0, target_offset: count); | 
| 236 | 			} | 
| 237 | 			count += source_count; | 
| 238 | 		} | 
| 239 | 	} | 
| 240 |  | 
| 241 | 	inline bool CellIsNull(idx_t i) { | 
| 242 | 		D_ASSERT(target); | 
| 243 | 		D_ASSERT(i < count); | 
| 244 | 		return FlatVector::IsNull(vector: *target, idx: input_expr.scalar ? 0 : i); | 
| 245 | 	} | 
| 246 |  | 
| 247 | 	template <typename T> | 
| 248 | 	inline T GetCell(idx_t i) const { | 
| 249 | 		D_ASSERT(target); | 
| 250 | 		D_ASSERT(i < count); | 
| 251 | 		const auto data = FlatVector::GetData<T>(*target); | 
| 252 | 		return data[input_expr.scalar ? 0 : i]; | 
| 253 | 	} | 
| 254 |  | 
| 255 | 	WindowInputExpression input_expr; | 
| 256 |  | 
| 257 | private: | 
| 258 | 	unique_ptr<Vector> target; | 
| 259 | 	idx_t count; | 
| 260 | 	idx_t capacity; | 
| 261 | }; | 
| 262 |  | 
| 263 | static inline bool BoundaryNeedsPeer(const WindowBoundary &boundary) { | 
| 264 | 	switch (boundary) { | 
| 265 | 	case WindowBoundary::CURRENT_ROW_RANGE: | 
| 266 | 	case WindowBoundary::EXPR_PRECEDING_RANGE: | 
| 267 | 	case WindowBoundary::EXPR_FOLLOWING_RANGE: | 
| 268 | 		return true; | 
| 269 | 	default: | 
| 270 | 		return false; | 
| 271 | 	} | 
| 272 | } | 
| 273 |  | 
| 274 | struct WindowBoundariesState { | 
| 275 | 	static inline bool IsScalar(const unique_ptr<Expression> &expr) { | 
| 276 | 		return expr ? expr->IsScalar() : true; | 
| 277 | 	} | 
| 278 |  | 
| 279 | 	WindowBoundariesState(BoundWindowExpression &wexpr, const idx_t input_size) | 
| 280 | 	    : type(wexpr.type), input_size(input_size), start_boundary(wexpr.start), end_boundary(wexpr.end), | 
| 281 | 	      partition_count(wexpr.partitions.size()), order_count(wexpr.orders.size()), | 
| 282 | 	      range_sense(wexpr.orders.empty() ? OrderType::INVALID : wexpr.orders[0].type), | 
| 283 | 	      has_preceding_range(wexpr.start == WindowBoundary::EXPR_PRECEDING_RANGE || | 
| 284 | 	                          wexpr.end == WindowBoundary::EXPR_PRECEDING_RANGE), | 
| 285 | 	      has_following_range(wexpr.start == WindowBoundary::EXPR_FOLLOWING_RANGE || | 
| 286 | 	                          wexpr.end == WindowBoundary::EXPR_FOLLOWING_RANGE), | 
| 287 | 	      needs_peer(BoundaryNeedsPeer(boundary: wexpr.end) || wexpr.type == ExpressionType::WINDOW_CUME_DIST) { | 
| 288 | 	} | 
| 289 |  | 
| 290 | 	void Update(const idx_t row_idx, WindowInputColumn &range_collection, const idx_t source_offset, | 
| 291 | 	            WindowInputExpression &boundary_start, WindowInputExpression &boundary_end, | 
| 292 | 	            const ValidityMask &partition_mask, const ValidityMask &order_mask); | 
| 293 |  | 
| 294 | 	// Cached lookups | 
| 295 | 	const ExpressionType type; | 
| 296 | 	const idx_t input_size; | 
| 297 | 	const WindowBoundary start_boundary; | 
| 298 | 	const WindowBoundary end_boundary; | 
| 299 | 	const size_t partition_count; | 
| 300 | 	const size_t order_count; | 
| 301 | 	const OrderType range_sense; | 
| 302 | 	const bool has_preceding_range; | 
| 303 | 	const bool has_following_range; | 
| 304 | 	const bool needs_peer; | 
| 305 |  | 
| 306 | 	idx_t partition_start = 0; | 
| 307 | 	idx_t partition_end = 0; | 
| 308 | 	idx_t peer_start = 0; | 
| 309 | 	idx_t peer_end = 0; | 
| 310 | 	idx_t valid_start = 0; | 
| 311 | 	idx_t valid_end = 0; | 
| 312 | 	int64_t window_start = -1; | 
| 313 | 	int64_t window_end = -1; | 
| 314 | 	bool is_same_partition = false; | 
| 315 | 	bool is_peer = false; | 
| 316 | }; | 
| 317 |  | 
| 318 | static bool WindowNeedsRank(const BoundWindowExpression &wexpr) { | 
| 319 | 	return wexpr.type == ExpressionType::WINDOW_PERCENT_RANK || wexpr.type == ExpressionType::WINDOW_RANK || | 
| 320 | 	       wexpr.type == ExpressionType::WINDOW_RANK_DENSE || wexpr.type == ExpressionType::WINDOW_CUME_DIST; | 
| 321 | } | 
| 322 |  | 
| 323 | template <typename T> | 
| 324 | static T GetCell(DataChunk &chunk, idx_t column, idx_t index) { | 
| 325 | 	D_ASSERT(chunk.ColumnCount() > column); | 
| 326 | 	auto &source = chunk.data[column]; | 
| 327 | 	const auto data = FlatVector::GetData<T>(source); | 
| 328 | 	return data[index]; | 
| 329 | } | 
| 330 |  | 
| 331 | static bool CellIsNull(DataChunk &chunk, idx_t column, idx_t index) { | 
| 332 | 	D_ASSERT(chunk.ColumnCount() > column); | 
| 333 | 	auto &source = chunk.data[column]; | 
| 334 | 	return FlatVector::IsNull(vector: source, idx: index); | 
| 335 | } | 
| 336 |  | 
| 337 | static void CopyCell(DataChunk &chunk, idx_t column, idx_t index, Vector &target, idx_t target_offset) { | 
| 338 | 	D_ASSERT(chunk.ColumnCount() > column); | 
| 339 | 	auto &source = chunk.data[column]; | 
| 340 | 	VectorOperations::Copy(source, target, source_count: index + 1, source_offset: index, target_offset); | 
| 341 | } | 
| 342 |  | 
| 343 | template <typename T> | 
| 344 | struct WindowColumnIterator { | 
| 345 | 	using iterator = WindowColumnIterator<T>; | 
| 346 | 	using iterator_category = std::forward_iterator_tag; | 
| 347 | 	using difference_type = std::ptrdiff_t; | 
| 348 | 	using value_type = T; | 
| 349 | 	using reference = T; | 
| 350 | 	using pointer = idx_t; | 
| 351 |  | 
| 352 | 	explicit WindowColumnIterator(WindowInputColumn &coll_p, pointer pos_p = 0) : coll(&coll_p), pos(pos_p) { | 
| 353 | 	} | 
| 354 |  | 
| 355 | 	inline reference operator*() const { | 
| 356 | 		return coll->GetCell<T>(pos); | 
| 357 | 	} | 
| 358 | 	inline explicit operator pointer() const { | 
| 359 | 		return pos; | 
| 360 | 	} | 
| 361 |  | 
| 362 | 	inline iterator &operator++() { | 
| 363 | 		++pos; | 
| 364 | 		return *this; | 
| 365 | 	} | 
| 366 | 	inline iterator operator++(int) { | 
| 367 | 		auto result = *this; | 
| 368 | 		++(*this); | 
| 369 | 		return result; | 
| 370 | 	} | 
| 371 |  | 
| 372 | 	friend inline bool operator==(const iterator &a, const iterator &b) { | 
| 373 | 		return a.pos == b.pos; | 
| 374 | 	} | 
| 375 | 	friend inline bool operator!=(const iterator &a, const iterator &b) { | 
| 376 | 		return a.pos != b.pos; | 
| 377 | 	} | 
| 378 |  | 
| 379 | private: | 
| 380 | 	optional_ptr<WindowInputColumn> coll; | 
| 381 | 	pointer pos; | 
| 382 | }; | 
| 383 |  | 
| 384 | template <typename T, typename OP> | 
| 385 | struct OperationCompare : public std::function<bool(T, T)> { | 
| 386 | 	inline bool operator()(const T &lhs, const T &val) const { | 
| 387 | 		return OP::template Operation(lhs, val); | 
| 388 | 	} | 
| 389 | }; | 
| 390 |  | 
| 391 | template <typename T, typename OP, bool FROM> | 
| 392 | static idx_t FindTypedRangeBound(WindowInputColumn &over, const idx_t order_begin, const idx_t order_end, | 
| 393 |                                  WindowInputExpression &boundary, const idx_t boundary_row) { | 
| 394 | 	D_ASSERT(!boundary.CellIsNull(boundary_row)); | 
| 395 | 	const auto val = boundary.GetCell<T>(boundary_row); | 
| 396 |  | 
| 397 | 	OperationCompare<T, OP> comp; | 
| 398 | 	WindowColumnIterator<T> begin(over, order_begin); | 
| 399 | 	WindowColumnIterator<T> end(over, order_end); | 
| 400 | 	if (FROM) { | 
| 401 | 		return idx_t(std::lower_bound(begin, end, val, comp)); | 
| 402 | 	} else { | 
| 403 | 		return idx_t(std::upper_bound(begin, end, val, comp)); | 
| 404 | 	} | 
| 405 | } | 
| 406 |  | 
| 407 | template <typename OP, bool FROM> | 
| 408 | static idx_t FindRangeBound(WindowInputColumn &over, const idx_t order_begin, const idx_t order_end, | 
| 409 |                             WindowInputExpression &boundary, const idx_t expr_idx) { | 
| 410 | 	D_ASSERT(boundary.chunk.ColumnCount() == 1); | 
| 411 | 	D_ASSERT(boundary.chunk.data[0].GetType().InternalType() == over.input_expr.ptype); | 
| 412 |  | 
| 413 | 	switch (over.input_expr.ptype) { | 
| 414 | 	case PhysicalType::INT8: | 
| 415 | 		return FindTypedRangeBound<int8_t, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); | 
| 416 | 	case PhysicalType::INT16: | 
| 417 | 		return FindTypedRangeBound<int16_t, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); | 
| 418 | 	case PhysicalType::INT32: | 
| 419 | 		return FindTypedRangeBound<int32_t, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); | 
| 420 | 	case PhysicalType::INT64: | 
| 421 | 		return FindTypedRangeBound<int64_t, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); | 
| 422 | 	case PhysicalType::UINT8: | 
| 423 | 		return FindTypedRangeBound<uint8_t, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); | 
| 424 | 	case PhysicalType::UINT16: | 
| 425 | 		return FindTypedRangeBound<uint16_t, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); | 
| 426 | 	case PhysicalType::UINT32: | 
| 427 | 		return FindTypedRangeBound<uint32_t, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); | 
| 428 | 	case PhysicalType::UINT64: | 
| 429 | 		return FindTypedRangeBound<uint64_t, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); | 
| 430 | 	case PhysicalType::INT128: | 
| 431 | 		return FindTypedRangeBound<hugeint_t, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); | 
| 432 | 	case PhysicalType::FLOAT: | 
| 433 | 		return FindTypedRangeBound<float, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); | 
| 434 | 	case PhysicalType::DOUBLE: | 
| 435 | 		return FindTypedRangeBound<double, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); | 
| 436 | 	case PhysicalType::INTERVAL: | 
| 437 | 		return FindTypedRangeBound<interval_t, OP, FROM>(over, order_begin, order_end, boundary, expr_idx); | 
| 438 | 	default: | 
| 439 | 		throw InternalException("Unsupported column type for RANGE" ); | 
| 440 | 	} | 
| 441 | } | 
| 442 |  | 
| 443 | template <bool FROM> | 
| 444 | static idx_t FindOrderedRangeBound(WindowInputColumn &over, const OrderType range_sense, const idx_t order_begin, | 
| 445 |                                    const idx_t order_end, WindowInputExpression &boundary, const idx_t expr_idx) { | 
| 446 | 	switch (range_sense) { | 
| 447 | 	case OrderType::ASCENDING: | 
| 448 | 		return FindRangeBound<LessThan, FROM>(over, order_begin, order_end, boundary, expr_idx); | 
| 449 | 	case OrderType::DESCENDING: | 
| 450 | 		return FindRangeBound<GreaterThan, FROM>(over, order_begin, order_end, boundary, expr_idx); | 
| 451 | 	default: | 
| 452 | 		throw InternalException("Unsupported ORDER BY sense for RANGE" ); | 
| 453 | 	} | 
| 454 | } | 
| 455 |  | 
| 456 | void WindowBoundariesState::Update(const idx_t row_idx, WindowInputColumn &range_collection, const idx_t expr_idx, | 
| 457 |                                    WindowInputExpression &boundary_start, WindowInputExpression &boundary_end, | 
| 458 |                                    const ValidityMask &partition_mask, const ValidityMask &order_mask) { | 
| 459 |  | 
| 460 | 	auto &bounds = *this; | 
| 461 | 	if (bounds.partition_count + bounds.order_count > 0) { | 
| 462 |  | 
| 463 | 		// determine partition and peer group boundaries to ultimately figure out window size | 
| 464 | 		bounds.is_same_partition = !partition_mask.RowIsValidUnsafe(row_idx); | 
| 465 | 		bounds.is_peer = !order_mask.RowIsValidUnsafe(row_idx); | 
| 466 |  | 
| 467 | 		// when the partition changes, recompute the boundaries | 
| 468 | 		if (!bounds.is_same_partition) { | 
| 469 | 			bounds.partition_start = row_idx; | 
| 470 | 			bounds.peer_start = row_idx; | 
| 471 |  | 
| 472 | 			// find end of partition | 
| 473 | 			bounds.partition_end = bounds.input_size; | 
| 474 | 			if (bounds.partition_count) { | 
| 475 | 				idx_t n = 1; | 
| 476 | 				bounds.partition_end = FindNextStart(mask: partition_mask, l: bounds.partition_start + 1, r: bounds.input_size, n); | 
| 477 | 			} | 
| 478 |  | 
| 479 | 			// Find valid ordering values for the new partition | 
| 480 | 			// so we can exclude NULLs from RANGE expression computations | 
| 481 | 			bounds.valid_start = bounds.partition_start; | 
| 482 | 			bounds.valid_end = bounds.partition_end; | 
| 483 |  | 
| 484 | 			if ((bounds.valid_start < bounds.valid_end) && bounds.has_preceding_range) { | 
| 485 | 				// Exclude any leading NULLs | 
| 486 | 				if (range_collection.CellIsNull(i: bounds.valid_start)) { | 
| 487 | 					idx_t n = 1; | 
| 488 | 					bounds.valid_start = FindNextStart(mask: order_mask, l: bounds.valid_start + 1, r: bounds.valid_end, n); | 
| 489 | 				} | 
| 490 | 			} | 
| 491 |  | 
| 492 | 			if ((bounds.valid_start < bounds.valid_end) && bounds.has_following_range) { | 
| 493 | 				// Exclude any trailing NULLs | 
| 494 | 				if (range_collection.CellIsNull(i: bounds.valid_end - 1)) { | 
| 495 | 					idx_t n = 1; | 
| 496 | 					bounds.valid_end = FindPrevStart(mask: order_mask, l: bounds.valid_start, r: bounds.valid_end, n); | 
| 497 | 				} | 
| 498 | 			} | 
| 499 |  | 
| 500 | 		} else if (!bounds.is_peer) { | 
| 501 | 			bounds.peer_start = row_idx; | 
| 502 | 		} | 
| 503 |  | 
| 504 | 		if (bounds.needs_peer) { | 
| 505 | 			bounds.peer_end = bounds.partition_end; | 
| 506 | 			if (bounds.order_count) { | 
| 507 | 				idx_t n = 1; | 
| 508 | 				bounds.peer_end = FindNextStart(mask: order_mask, l: bounds.peer_start + 1, r: bounds.partition_end, n); | 
| 509 | 			} | 
| 510 | 		} | 
| 511 |  | 
| 512 | 	} else { | 
| 513 | 		bounds.is_same_partition = false; | 
| 514 | 		bounds.is_peer = true; | 
| 515 | 		bounds.partition_end = bounds.input_size; | 
| 516 | 		bounds.peer_end = bounds.partition_end; | 
| 517 | 	} | 
| 518 |  | 
| 519 | 	// determine window boundaries depending on the type of expression | 
| 520 | 	bounds.window_start = -1; | 
| 521 | 	bounds.window_end = -1; | 
| 522 |  | 
| 523 | 	switch (bounds.start_boundary) { | 
| 524 | 	case WindowBoundary::UNBOUNDED_PRECEDING: | 
| 525 | 		bounds.window_start = bounds.partition_start; | 
| 526 | 		break; | 
| 527 | 	case WindowBoundary::CURRENT_ROW_ROWS: | 
| 528 | 		bounds.window_start = row_idx; | 
| 529 | 		break; | 
| 530 | 	case WindowBoundary::CURRENT_ROW_RANGE: | 
| 531 | 		bounds.window_start = bounds.peer_start; | 
| 532 | 		break; | 
| 533 | 	case WindowBoundary::EXPR_PRECEDING_ROWS: { | 
| 534 | 		if (!TrySubtractOperator::Operation(left: int64_t(row_idx), right: boundary_start.GetCell<int64_t>(i: expr_idx), | 
| 535 | 		                                    result&: bounds.window_start)) { | 
| 536 | 			throw OutOfRangeException("Overflow computing ROWS PRECEDING start" ); | 
| 537 | 		} | 
| 538 | 		break; | 
| 539 | 	} | 
| 540 | 	case WindowBoundary::EXPR_FOLLOWING_ROWS: { | 
| 541 | 		if (!TryAddOperator::Operation(left: int64_t(row_idx), right: boundary_start.GetCell<int64_t>(i: expr_idx), | 
| 542 | 		                               result&: bounds.window_start)) { | 
| 543 | 			throw OutOfRangeException("Overflow computing ROWS FOLLOWING start" ); | 
| 544 | 		} | 
| 545 | 		break; | 
| 546 | 	} | 
| 547 | 	case WindowBoundary::EXPR_PRECEDING_RANGE: { | 
| 548 | 		if (boundary_start.CellIsNull(i: expr_idx)) { | 
| 549 | 			bounds.window_start = bounds.peer_start; | 
| 550 | 		} else { | 
| 551 | 			bounds.window_start = FindOrderedRangeBound<true>(over&: range_collection, range_sense: bounds.range_sense, order_begin: bounds.valid_start, | 
| 552 | 			                                                  order_end: row_idx, boundary&: boundary_start, expr_idx); | 
| 553 | 		} | 
| 554 | 		break; | 
| 555 | 	} | 
| 556 | 	case WindowBoundary::EXPR_FOLLOWING_RANGE: { | 
| 557 | 		if (boundary_start.CellIsNull(i: expr_idx)) { | 
| 558 | 			bounds.window_start = bounds.peer_start; | 
| 559 | 		} else { | 
| 560 | 			bounds.window_start = FindOrderedRangeBound<true>(over&: range_collection, range_sense: bounds.range_sense, order_begin: row_idx, | 
| 561 | 			                                                  order_end: bounds.valid_end, boundary&: boundary_start, expr_idx); | 
| 562 | 		} | 
| 563 | 		break; | 
| 564 | 	} | 
| 565 | 	default: | 
| 566 | 		throw InternalException("Unsupported window start boundary" ); | 
| 567 | 	} | 
| 568 |  | 
| 569 | 	switch (bounds.end_boundary) { | 
| 570 | 	case WindowBoundary::CURRENT_ROW_ROWS: | 
| 571 | 		bounds.window_end = row_idx + 1; | 
| 572 | 		break; | 
| 573 | 	case WindowBoundary::CURRENT_ROW_RANGE: | 
| 574 | 		bounds.window_end = bounds.peer_end; | 
| 575 | 		break; | 
| 576 | 	case WindowBoundary::UNBOUNDED_FOLLOWING: | 
| 577 | 		bounds.window_end = bounds.partition_end; | 
| 578 | 		break; | 
| 579 | 	case WindowBoundary::EXPR_PRECEDING_ROWS: | 
| 580 | 		if (!TrySubtractOperator::Operation(left: int64_t(row_idx + 1), right: boundary_end.GetCell<int64_t>(i: expr_idx), | 
| 581 | 		                                    result&: bounds.window_end)) { | 
| 582 | 			throw OutOfRangeException("Overflow computing ROWS PRECEDING end" ); | 
| 583 | 		} | 
| 584 | 		break; | 
| 585 | 	case WindowBoundary::EXPR_FOLLOWING_ROWS: | 
| 586 | 		if (!TryAddOperator::Operation(left: int64_t(row_idx + 1), right: boundary_end.GetCell<int64_t>(i: expr_idx), | 
| 587 | 		                               result&: bounds.window_end)) { | 
| 588 | 			throw OutOfRangeException("Overflow computing ROWS FOLLOWING end" ); | 
| 589 | 		} | 
| 590 | 		break; | 
| 591 | 	case WindowBoundary::EXPR_PRECEDING_RANGE: { | 
| 592 | 		if (boundary_end.CellIsNull(i: expr_idx)) { | 
| 593 | 			bounds.window_end = bounds.peer_end; | 
| 594 | 		} else { | 
| 595 | 			bounds.window_end = FindOrderedRangeBound<false>(over&: range_collection, range_sense: bounds.range_sense, order_begin: bounds.valid_start, | 
| 596 | 			                                                 order_end: row_idx, boundary&: boundary_end, expr_idx); | 
| 597 | 		} | 
| 598 | 		break; | 
| 599 | 	} | 
| 600 | 	case WindowBoundary::EXPR_FOLLOWING_RANGE: { | 
| 601 | 		if (boundary_end.CellIsNull(i: expr_idx)) { | 
| 602 | 			bounds.window_end = bounds.peer_end; | 
| 603 | 		} else { | 
| 604 | 			bounds.window_end = FindOrderedRangeBound<false>(over&: range_collection, range_sense: bounds.range_sense, order_begin: row_idx, | 
| 605 | 			                                                 order_end: bounds.valid_end, boundary&: boundary_end, expr_idx); | 
| 606 | 		} | 
| 607 | 		break; | 
| 608 | 	} | 
| 609 | 	default: | 
| 610 | 		throw InternalException("Unsupported window end boundary" ); | 
| 611 | 	} | 
| 612 |  | 
| 613 | 	// clamp windows to partitions if they should exceed | 
| 614 | 	if (bounds.window_start < (int64_t)bounds.partition_start) { | 
| 615 | 		bounds.window_start = bounds.partition_start; | 
| 616 | 	} | 
| 617 | 	if (bounds.window_start > (int64_t)bounds.partition_end) { | 
| 618 | 		bounds.window_start = bounds.partition_end; | 
| 619 | 	} | 
| 620 | 	if (bounds.window_end < (int64_t)bounds.partition_start) { | 
| 621 | 		bounds.window_end = bounds.partition_start; | 
| 622 | 	} | 
| 623 | 	if (bounds.window_end > (int64_t)bounds.partition_end) { | 
| 624 | 		bounds.window_end = bounds.partition_end; | 
| 625 | 	} | 
| 626 |  | 
| 627 | 	if (bounds.window_start < 0 || bounds.window_end < 0) { | 
| 628 | 		throw InternalException("Failed to compute window boundaries" ); | 
| 629 | 	} | 
| 630 | } | 
| 631 |  | 
| 632 | struct WindowExecutor { | 
| 633 | 	static bool IsConstantAggregate(const BoundWindowExpression &wexpr); | 
| 634 |  | 
| 635 | 	WindowExecutor(BoundWindowExpression &wexpr, ClientContext &context, const ValidityMask &partition_mask, | 
| 636 | 	               const idx_t count); | 
| 637 |  | 
| 638 | 	void Sink(DataChunk &input_chunk, const idx_t input_idx, const idx_t total_count); | 
| 639 | 	void Finalize(WindowAggregationMode mode); | 
| 640 |  | 
| 641 | 	void Evaluate(idx_t row_idx, DataChunk &input_chunk, Vector &result, const ValidityMask &partition_mask, | 
| 642 | 	              const ValidityMask &order_mask); | 
| 643 |  | 
| 644 | 	// The function | 
| 645 | 	BoundWindowExpression &wexpr; | 
| 646 |  | 
| 647 | 	// Frame management | 
| 648 | 	WindowBoundariesState bounds; | 
| 649 | 	uint64_t dense_rank = 1; | 
| 650 | 	uint64_t rank_equal = 0; | 
| 651 | 	uint64_t rank = 1; | 
| 652 |  | 
| 653 | 	// Expression collections | 
| 654 | 	DataChunk payload_collection; | 
| 655 | 	ExpressionExecutor payload_executor; | 
| 656 | 	DataChunk payload_chunk; | 
| 657 |  | 
| 658 | 	ExpressionExecutor filter_executor; | 
| 659 | 	ValidityMask filter_mask; | 
| 660 | 	vector<validity_t> filter_bits; | 
| 661 | 	SelectionVector filter_sel; | 
| 662 |  | 
| 663 | 	// LEAD/LAG Evaluation | 
| 664 | 	WindowInputExpression leadlag_offset; | 
| 665 | 	WindowInputExpression leadlag_default; | 
| 666 |  | 
| 667 | 	// evaluate boundaries if present. Parser has checked boundary types. | 
| 668 | 	WindowInputExpression boundary_start; | 
| 669 | 	WindowInputExpression boundary_end; | 
| 670 |  | 
| 671 | 	// evaluate RANGE expressions, if needed | 
| 672 | 	WindowInputColumn range; | 
| 673 |  | 
| 674 | 	// IGNORE NULLS | 
| 675 | 	ValidityMask ignore_nulls; | 
| 676 |  | 
| 677 | 	// build a segment tree for frame-adhering aggregates | 
| 678 | 	// see http://www.vldb.org/pvldb/vol8/p1058-leis.pdf | 
| 679 | 	unique_ptr<WindowSegmentTree> segment_tree = nullptr; | 
| 680 |  | 
| 681 | 	// all aggregate values are the same for each partition | 
| 682 | 	unique_ptr<WindowConstantAggregate> constant_aggregate = nullptr; | 
| 683 | }; | 
| 684 |  | 
| 685 | bool WindowExecutor::IsConstantAggregate(const BoundWindowExpression &wexpr) { | 
| 686 | 	if (!wexpr.aggregate) { | 
| 687 | 		return false; | 
| 688 | 	} | 
| 689 |  | 
| 690 | 	//	COUNT(*) is already handled efficiently by segment trees. | 
| 691 | 	if (wexpr.children.empty()) { | 
| 692 | 		return false; | 
| 693 | 	} | 
| 694 |  | 
| 695 | 	/* | 
| 696 | 	    The default framing option is RANGE UNBOUNDED PRECEDING, which | 
| 697 | 	    is the same as RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT | 
| 698 | 	    ROW; it sets the frame to be all rows from the partition start | 
| 699 | 	    up through the current row's last peer (a row that the window's | 
| 700 | 	    ORDER BY clause considers equivalent to the current row; all | 
| 701 | 	    rows are peers if there is no ORDER BY). In general, UNBOUNDED | 
| 702 | 	    PRECEDING means that the frame starts with the first row of the | 
| 703 | 	    partition, and similarly UNBOUNDED FOLLOWING means that the | 
| 704 | 	    frame ends with the last row of the partition, regardless of | 
| 705 | 	    RANGE, ROWS or GROUPS mode. In ROWS mode, CURRENT ROW means that | 
| 706 | 	    the frame starts or ends with the current row; but in RANGE or | 
| 707 | 	    GROUPS mode it means that the frame starts or ends with the | 
| 708 | 	    current row's first or last peer in the ORDER BY ordering. The | 
| 709 | 	    offset PRECEDING and offset FOLLOWING options vary in meaning | 
| 710 | 	    depending on the frame mode. | 
| 711 | 	*/ | 
| 712 | 	switch (wexpr.start) { | 
| 713 | 	case WindowBoundary::UNBOUNDED_PRECEDING: | 
| 714 | 		break; | 
| 715 | 	case WindowBoundary::CURRENT_ROW_RANGE: | 
| 716 | 		if (!wexpr.orders.empty()) { | 
| 717 | 			return false; | 
| 718 | 		} | 
| 719 | 		break; | 
| 720 | 	default: | 
| 721 | 		return false; | 
| 722 | 	} | 
| 723 |  | 
| 724 | 	switch (wexpr.end) { | 
| 725 | 	case WindowBoundary::UNBOUNDED_FOLLOWING: | 
| 726 | 		break; | 
| 727 | 	case WindowBoundary::CURRENT_ROW_RANGE: | 
| 728 | 		if (!wexpr.orders.empty()) { | 
| 729 | 			return false; | 
| 730 | 		} | 
| 731 | 		break; | 
| 732 | 	default: | 
| 733 | 		return false; | 
| 734 | 	} | 
| 735 |  | 
| 736 | 	return true; | 
| 737 | } | 
| 738 |  | 
| 739 | WindowExecutor::WindowExecutor(BoundWindowExpression &wexpr, ClientContext &context, const ValidityMask &partition_mask, | 
| 740 |                                const idx_t count) | 
| 741 |     : wexpr(wexpr), bounds(wexpr, count), payload_collection(), payload_executor(context), filter_executor(context), | 
| 742 |       leadlag_offset(wexpr.offset_expr.get(), context), leadlag_default(wexpr.default_expr.get(), context), | 
| 743 |       boundary_start(wexpr.start_expr.get(), context), boundary_end(wexpr.end_expr.get(), context), | 
| 744 |       range((bounds.has_preceding_range || bounds.has_following_range) ? wexpr.orders[0].expression.get() : nullptr, | 
| 745 |             context, count) | 
| 746 |  | 
| 747 | { | 
| 748 | 	// TODO we could evaluate those expressions in parallel | 
| 749 |  | 
| 750 | 	//	Check for constant aggregate | 
| 751 | 	if (IsConstantAggregate(wexpr)) { | 
| 752 | 		constant_aggregate = | 
| 753 | 		    make_uniq<WindowConstantAggregate>(args: AggregateObject(wexpr), args&: wexpr.return_type, args: partition_mask, args: count); | 
| 754 | 	} | 
| 755 |  | 
| 756 | 	// evaluate the FILTER clause and stuff it into a large mask for compactness and reuse | 
| 757 | 	if (wexpr.filter_expr) { | 
| 758 | 		// 	Start with all invalid and set the ones that pass | 
| 759 | 		filter_bits.resize(new_size: ValidityMask::ValidityMaskSize(count), x: 0); | 
| 760 | 		filter_mask.Initialize(validity: filter_bits.data()); | 
| 761 | 		filter_executor.AddExpression(expr: *wexpr.filter_expr); | 
| 762 | 		filter_sel.Initialize(STANDARD_VECTOR_SIZE); | 
| 763 | 	} | 
| 764 |  | 
| 765 | 	// TODO: child may be a scalar, don't need to materialize the whole collection then | 
| 766 |  | 
| 767 | 	// evaluate inner expressions of window functions, could be more complex | 
| 768 | 	PrepareInputExpressions(exprs&: wexpr.children, executor&: payload_executor, chunk&: payload_chunk); | 
| 769 |  | 
| 770 | 	auto types = payload_chunk.GetTypes(); | 
| 771 | 	if (!types.empty()) { | 
| 772 | 		payload_collection.Initialize(allocator&: Allocator::Get(context), types); | 
| 773 | 	} | 
| 774 | } | 
| 775 |  | 
| 776 | void WindowExecutor::Sink(DataChunk &input_chunk, const idx_t input_idx, const idx_t total_count) { | 
| 777 | 	// Single pass over the input to produce the global data. | 
| 778 | 	// Vectorisation for the win... | 
| 779 |  | 
| 780 | 	// Set up a validity mask for IGNORE NULLS | 
| 781 | 	bool check_nulls = false; | 
| 782 | 	if (wexpr.ignore_nulls) { | 
| 783 | 		switch (wexpr.type) { | 
| 784 | 		case ExpressionType::WINDOW_LEAD: | 
| 785 | 		case ExpressionType::WINDOW_LAG: | 
| 786 | 		case ExpressionType::WINDOW_FIRST_VALUE: | 
| 787 | 		case ExpressionType::WINDOW_LAST_VALUE: | 
| 788 | 		case ExpressionType::WINDOW_NTH_VALUE: | 
| 789 | 			check_nulls = true; | 
| 790 | 			break; | 
| 791 | 		default: | 
| 792 | 			break; | 
| 793 | 		} | 
| 794 | 	} | 
| 795 |  | 
| 796 | 	const auto count = input_chunk.size(); | 
| 797 |  | 
| 798 | 	idx_t filtered = 0; | 
| 799 | 	SelectionVector *filtering = nullptr; | 
| 800 | 	if (wexpr.filter_expr) { | 
| 801 | 		filtering = &filter_sel; | 
| 802 | 		filtered = filter_executor.SelectExpression(input&: input_chunk, sel&: filter_sel); | 
| 803 | 		for (idx_t f = 0; f < filtered; ++f) { | 
| 804 | 			filter_mask.SetValid(input_idx + filter_sel[f]); | 
| 805 | 		} | 
| 806 | 	} | 
| 807 |  | 
| 808 | 	if (!wexpr.children.empty()) { | 
| 809 | 		payload_chunk.Reset(); | 
| 810 | 		payload_executor.Execute(input&: input_chunk, result&: payload_chunk); | 
| 811 | 		payload_chunk.Verify(); | 
| 812 | 		if (constant_aggregate) { | 
| 813 | 			constant_aggregate->Sink(payload_chunk, filter_sel: filtering, filtered); | 
| 814 | 		} else { | 
| 815 | 			payload_collection.Append(other: payload_chunk, resize: true); | 
| 816 | 		} | 
| 817 |  | 
| 818 | 		// process payload chunks while they are still piping hot | 
| 819 | 		if (check_nulls) { | 
| 820 | 			UnifiedVectorFormat vdata; | 
| 821 | 			payload_chunk.data[0].ToUnifiedFormat(count, data&: vdata); | 
| 822 | 			if (!vdata.validity.AllValid()) { | 
| 823 | 				//	Lazily materialise the contents when we find the first NULL | 
| 824 | 				if (ignore_nulls.AllValid()) { | 
| 825 | 					ignore_nulls.Initialize(count: total_count); | 
| 826 | 				} | 
| 827 | 				// Write to the current position | 
| 828 | 				if (input_idx % ValidityMask::BITS_PER_VALUE == 0) { | 
| 829 | 					// If we are at the edge of an output entry, just copy the entries | 
| 830 | 					auto dst = ignore_nulls.GetData() + ignore_nulls.EntryCount(count: input_idx); | 
| 831 | 					auto src = vdata.validity.GetData(); | 
| 832 | 					for (auto entry_count = vdata.validity.EntryCount(count); entry_count-- > 0;) { | 
| 833 | 						*dst++ = *src++; | 
| 834 | 					} | 
| 835 | 				} else { | 
| 836 | 					// If not, we have ragged data and need to copy one bit at a time. | 
| 837 | 					for (idx_t i = 0; i < count; ++i) { | 
| 838 | 						ignore_nulls.Set(row_idx: input_idx + i, valid: vdata.validity.RowIsValid(row_idx: i)); | 
| 839 | 					} | 
| 840 | 				} | 
| 841 | 			} | 
| 842 | 		} | 
| 843 | 	} | 
| 844 |  | 
| 845 | 	range.Append(input_chunk); | 
| 846 | } | 
| 847 |  | 
| 848 | void WindowExecutor::Finalize(WindowAggregationMode mode) { | 
| 849 | 	// build a segment tree for frame-adhering aggregates | 
| 850 | 	// see http://www.vldb.org/pvldb/vol8/p1058-leis.pdf | 
| 851 | 	if (constant_aggregate) { | 
| 852 | 		constant_aggregate->Finalize(); | 
| 853 | 	} else if (wexpr.aggregate) { | 
| 854 | 		segment_tree = make_uniq<WindowSegmentTree>(args: AggregateObject(wexpr), args&: wexpr.return_type, args: &payload_collection, | 
| 855 | 		                                            args&: filter_mask, args&: mode); | 
| 856 | 	} | 
| 857 | } | 
| 858 |  | 
| 859 | void WindowExecutor::Evaluate(idx_t row_idx, DataChunk &input_chunk, Vector &result, const ValidityMask &partition_mask, | 
| 860 |                               const ValidityMask &order_mask) { | 
| 861 | 	// Evaluate the row-level arguments | 
| 862 | 	boundary_start.Execute(input_chunk); | 
| 863 | 	boundary_end.Execute(input_chunk); | 
| 864 |  | 
| 865 | 	leadlag_offset.Execute(input_chunk); | 
| 866 | 	leadlag_default.Execute(input_chunk); | 
| 867 |  | 
| 868 | 	// this is the main loop, go through all sorted rows and compute window function result | 
| 869 | 	for (idx_t output_offset = 0; output_offset < input_chunk.size(); ++output_offset, ++row_idx) { | 
| 870 | 		// special case, OVER (), aggregate over everything | 
| 871 | 		bounds.Update(row_idx, range_collection&: range, expr_idx: output_offset, boundary_start, boundary_end, partition_mask, order_mask); | 
| 872 | 		if (WindowNeedsRank(wexpr)) { | 
| 873 | 			if (!bounds.is_same_partition || row_idx == 0) { // special case for first row, need to init | 
| 874 | 				dense_rank = 1; | 
| 875 | 				rank = 1; | 
| 876 | 				rank_equal = 0; | 
| 877 | 			} else if (!bounds.is_peer) { | 
| 878 | 				dense_rank++; | 
| 879 | 				rank += rank_equal; | 
| 880 | 				rank_equal = 0; | 
| 881 | 			} | 
| 882 | 			rank_equal++; | 
| 883 | 		} | 
| 884 |  | 
| 885 | 		// if no values are read for window, result is NULL | 
| 886 | 		if (bounds.window_start >= bounds.window_end) { | 
| 887 | 			FlatVector::SetNull(vector&: result, idx: output_offset, is_null: true); | 
| 888 | 			continue; | 
| 889 | 		} | 
| 890 |  | 
| 891 | 		switch (wexpr.type) { | 
| 892 | 		case ExpressionType::WINDOW_AGGREGATE: { | 
| 893 | 			if (constant_aggregate) { | 
| 894 | 				constant_aggregate->Compute(result, rid: output_offset, start: bounds.window_start, end: bounds.window_end); | 
| 895 | 			} else { | 
| 896 | 				segment_tree->Compute(result, rid: output_offset, start: bounds.window_start, end: bounds.window_end); | 
| 897 | 			} | 
| 898 | 			break; | 
| 899 | 		} | 
| 900 | 		case ExpressionType::WINDOW_ROW_NUMBER: { | 
| 901 | 			auto rdata = FlatVector::GetData<int64_t>(vector&: result); | 
| 902 | 			rdata[output_offset] = row_idx - bounds.partition_start + 1; | 
| 903 | 			break; | 
| 904 | 		} | 
| 905 | 		case ExpressionType::WINDOW_RANK_DENSE: { | 
| 906 | 			auto rdata = FlatVector::GetData<int64_t>(vector&: result); | 
| 907 | 			rdata[output_offset] = dense_rank; | 
| 908 | 			break; | 
| 909 | 		} | 
| 910 | 		case ExpressionType::WINDOW_RANK: { | 
| 911 | 			auto rdata = FlatVector::GetData<int64_t>(vector&: result); | 
| 912 | 			rdata[output_offset] = rank; | 
| 913 | 			break; | 
| 914 | 		} | 
| 915 | 		case ExpressionType::WINDOW_PERCENT_RANK: { | 
| 916 | 			int64_t denom = (int64_t)bounds.partition_end - bounds.partition_start - 1; | 
| 917 | 			double percent_rank = denom > 0 ? ((double)rank - 1) / denom : 0; | 
| 918 | 			auto rdata = FlatVector::GetData<double>(vector&: result); | 
| 919 | 			rdata[output_offset] = percent_rank; | 
| 920 | 			break; | 
| 921 | 		} | 
| 922 | 		case ExpressionType::WINDOW_CUME_DIST: { | 
| 923 | 			int64_t denom = (int64_t)bounds.partition_end - bounds.partition_start; | 
| 924 | 			double cume_dist = denom > 0 ? ((double)(bounds.peer_end - bounds.partition_start)) / denom : 0; | 
| 925 | 			auto rdata = FlatVector::GetData<double>(vector&: result); | 
| 926 | 			rdata[output_offset] = cume_dist; | 
| 927 | 			break; | 
| 928 | 		} | 
| 929 | 		case ExpressionType::WINDOW_NTILE: { | 
| 930 | 			D_ASSERT(payload_collection.ColumnCount() == 1); | 
| 931 | 			if (CellIsNull(chunk&: payload_collection, column: 0, index: row_idx)) { | 
| 932 | 				FlatVector::SetNull(vector&: result, idx: output_offset, is_null: true); | 
| 933 | 			} else { | 
| 934 | 				auto n_param = GetCell<int64_t>(chunk&: payload_collection, column: 0, index: row_idx); | 
| 935 | 				if (n_param < 1) { | 
| 936 | 					throw InvalidInputException("Argument for ntile must be greater than zero" ); | 
| 937 | 				} | 
| 938 | 				// With thanks from SQLite's ntileValueFunc() | 
| 939 | 				int64_t n_total = bounds.partition_end - bounds.partition_start; | 
| 940 | 				if (n_param > n_total) { | 
| 941 | 					// more groups allowed than we have values | 
| 942 | 					// map every entry to a unique group | 
| 943 | 					n_param = n_total; | 
| 944 | 				} | 
| 945 | 				int64_t n_size = (n_total / n_param); | 
| 946 | 				// find the row idx within the group | 
| 947 | 				D_ASSERT(row_idx >= bounds.partition_start); | 
| 948 | 				int64_t adjusted_row_idx = row_idx - bounds.partition_start; | 
| 949 | 				// now compute the ntile | 
| 950 | 				int64_t n_large = n_total - n_param * n_size; | 
| 951 | 				int64_t i_small = n_large * (n_size + 1); | 
| 952 | 				int64_t result_ntile; | 
| 953 |  | 
| 954 | 				D_ASSERT((n_large * (n_size + 1) + (n_param - n_large) * n_size) == n_total); | 
| 955 |  | 
| 956 | 				if (adjusted_row_idx < i_small) { | 
| 957 | 					result_ntile = 1 + adjusted_row_idx / (n_size + 1); | 
| 958 | 				} else { | 
| 959 | 					result_ntile = 1 + n_large + (adjusted_row_idx - i_small) / n_size; | 
| 960 | 				} | 
| 961 | 				// result has to be between [1, NTILE] | 
| 962 | 				D_ASSERT(result_ntile >= 1 && result_ntile <= n_param); | 
| 963 | 				auto rdata = FlatVector::GetData<int64_t>(vector&: result); | 
| 964 | 				rdata[output_offset] = result_ntile; | 
| 965 | 			} | 
| 966 | 			break; | 
| 967 | 		} | 
| 968 | 		case ExpressionType::WINDOW_LEAD: | 
| 969 | 		case ExpressionType::WINDOW_LAG: { | 
| 970 | 			int64_t offset = 1; | 
| 971 | 			if (wexpr.offset_expr) { | 
| 972 | 				offset = leadlag_offset.GetCell<int64_t>(i: output_offset); | 
| 973 | 			} | 
| 974 | 			int64_t val_idx = (int64_t)row_idx; | 
| 975 | 			if (wexpr.type == ExpressionType::WINDOW_LEAD) { | 
| 976 | 				val_idx += offset; | 
| 977 | 			} else { | 
| 978 | 				val_idx -= offset; | 
| 979 | 			} | 
| 980 |  | 
| 981 | 			idx_t delta = 0; | 
| 982 | 			if (val_idx < (int64_t)row_idx) { | 
| 983 | 				// Count backwards | 
| 984 | 				delta = idx_t(row_idx - val_idx); | 
| 985 | 				val_idx = FindPrevStart(mask: ignore_nulls, l: bounds.partition_start, r: row_idx, n&: delta); | 
| 986 | 			} else if (val_idx > (int64_t)row_idx) { | 
| 987 | 				delta = idx_t(val_idx - row_idx); | 
| 988 | 				val_idx = FindNextStart(mask: ignore_nulls, l: row_idx + 1, r: bounds.partition_end, n&: delta); | 
| 989 | 			} | 
| 990 | 			// else offset is zero, so don't move. | 
| 991 |  | 
| 992 | 			if (!delta) { | 
| 993 | 				CopyCell(chunk&: payload_collection, column: 0, index: val_idx, target&: result, target_offset: output_offset); | 
| 994 | 			} else if (wexpr.default_expr) { | 
| 995 | 				leadlag_default.CopyCell(target&: result, target_offset: output_offset); | 
| 996 | 			} else { | 
| 997 | 				FlatVector::SetNull(vector&: result, idx: output_offset, is_null: true); | 
| 998 | 			} | 
| 999 | 			break; | 
| 1000 | 		} | 
| 1001 | 		case ExpressionType::WINDOW_FIRST_VALUE: { | 
| 1002 | 			//	Same as NTH_VALUE(..., 1) | 
| 1003 | 			idx_t n = 1; | 
| 1004 | 			const auto first_idx = FindNextStart(mask: ignore_nulls, l: bounds.window_start, r: bounds.window_end, n); | 
| 1005 | 			if (!n) { | 
| 1006 | 				CopyCell(chunk&: payload_collection, column: 0, index: first_idx, target&: result, target_offset: output_offset); | 
| 1007 | 			} else { | 
| 1008 | 				FlatVector::SetNull(vector&: result, idx: output_offset, is_null: true); | 
| 1009 | 			} | 
| 1010 | 			break; | 
| 1011 | 		} | 
| 1012 | 		case ExpressionType::WINDOW_LAST_VALUE: { | 
| 1013 | 			idx_t n = 1; | 
| 1014 | 			const auto last_idx = FindPrevStart(mask: ignore_nulls, l: bounds.window_start, r: bounds.window_end, n); | 
| 1015 | 			if (!n) { | 
| 1016 | 				CopyCell(chunk&: payload_collection, column: 0, index: last_idx, target&: result, target_offset: output_offset); | 
| 1017 | 			} else { | 
| 1018 | 				FlatVector::SetNull(vector&: result, idx: output_offset, is_null: true); | 
| 1019 | 			} | 
| 1020 | 			break; | 
| 1021 | 		} | 
| 1022 | 		case ExpressionType::WINDOW_NTH_VALUE: { | 
| 1023 | 			D_ASSERT(payload_collection.ColumnCount() == 2); | 
| 1024 | 			// Returns value evaluated at the row that is the n'th row of the window frame (counting from 1); | 
| 1025 | 			// returns NULL if there is no such row. | 
| 1026 | 			if (CellIsNull(chunk&: payload_collection, column: 1, index: row_idx)) { | 
| 1027 | 				FlatVector::SetNull(vector&: result, idx: output_offset, is_null: true); | 
| 1028 | 			} else { | 
| 1029 | 				auto n_param = GetCell<int64_t>(chunk&: payload_collection, column: 1, index: row_idx); | 
| 1030 | 				if (n_param < 1) { | 
| 1031 | 					FlatVector::SetNull(vector&: result, idx: output_offset, is_null: true); | 
| 1032 | 				} else { | 
| 1033 | 					auto n = idx_t(n_param); | 
| 1034 | 					const auto nth_index = FindNextStart(mask: ignore_nulls, l: bounds.window_start, r: bounds.window_end, n); | 
| 1035 | 					if (!n) { | 
| 1036 | 						CopyCell(chunk&: payload_collection, column: 0, index: nth_index, target&: result, target_offset: output_offset); | 
| 1037 | 					} else { | 
| 1038 | 						FlatVector::SetNull(vector&: result, idx: output_offset, is_null: true); | 
| 1039 | 					} | 
| 1040 | 				} | 
| 1041 | 			} | 
| 1042 | 			break; | 
| 1043 | 		} | 
| 1044 | 		default: | 
| 1045 | 			throw InternalException("Window aggregate type %s" , ExpressionTypeToString(type: wexpr.type)); | 
| 1046 | 		} | 
| 1047 | 	} | 
| 1048 |  | 
| 1049 | 	result.Verify(count: input_chunk.size()); | 
| 1050 | } | 
| 1051 |  | 
| 1052 | //===--------------------------------------------------------------------===// | 
| 1053 | // Sink | 
| 1054 | //===--------------------------------------------------------------------===// | 
| 1055 | SinkResultType PhysicalWindow::Sink(ExecutionContext &context, DataChunk &chunk, OperatorSinkInput &input) const { | 
| 1056 | 	auto &lstate = input.local_state.Cast<WindowLocalSinkState>(); | 
| 1057 |  | 
| 1058 | 	lstate.Sink(input_chunk&: chunk); | 
| 1059 |  | 
| 1060 | 	return SinkResultType::NEED_MORE_INPUT; | 
| 1061 | } | 
| 1062 |  | 
| 1063 | void PhysicalWindow::Combine(ExecutionContext &context, GlobalSinkState &gstate_p, LocalSinkState &lstate_p) const { | 
| 1064 | 	auto &lstate = lstate_p.Cast<WindowLocalSinkState>(); | 
| 1065 | 	lstate.Combine(); | 
| 1066 | } | 
| 1067 |  | 
| 1068 | unique_ptr<LocalSinkState> PhysicalWindow::GetLocalSinkState(ExecutionContext &context) const { | 
| 1069 | 	auto &gstate = sink_state->Cast<WindowGlobalSinkState>(); | 
| 1070 | 	return make_uniq<WindowLocalSinkState>(args&: context.client, args&: gstate); | 
| 1071 | } | 
| 1072 |  | 
| 1073 | unique_ptr<GlobalSinkState> PhysicalWindow::GetGlobalSinkState(ClientContext &context) const { | 
| 1074 | 	return make_uniq<WindowGlobalSinkState>(args: *this, args&: context); | 
| 1075 | } | 
| 1076 |  | 
| 1077 | SinkFinalizeType PhysicalWindow::Finalize(Pipeline &pipeline, Event &event, ClientContext &context, | 
| 1078 |                                           GlobalSinkState &gstate_p) const { | 
| 1079 | 	auto &state = gstate_p.Cast<WindowGlobalSinkState>(); | 
| 1080 |  | 
| 1081 | 	//	Did we get any data? | 
| 1082 | 	if (!state.global_partition->count) { | 
| 1083 | 		return SinkFinalizeType::NO_OUTPUT_POSSIBLE; | 
| 1084 | 	} | 
| 1085 |  | 
| 1086 | 	// Do we have any sorting to schedule? | 
| 1087 | 	if (state.global_partition->rows) { | 
| 1088 | 		D_ASSERT(!state.global_partition->grouping_data); | 
| 1089 | 		return state.global_partition->rows->count ? SinkFinalizeType::READY : SinkFinalizeType::NO_OUTPUT_POSSIBLE; | 
| 1090 | 	} | 
| 1091 |  | 
| 1092 | 	// Find the first group to sort | 
| 1093 | 	auto &groups = state.global_partition->grouping_data->GetPartitions(); | 
| 1094 | 	if (groups.empty()) { | 
| 1095 | 		// Empty input! | 
| 1096 | 		return SinkFinalizeType::NO_OUTPUT_POSSIBLE; | 
| 1097 | 	} | 
| 1098 |  | 
| 1099 | 	// Schedule all the sorts for maximum thread utilisation | 
| 1100 | 	auto new_event = make_shared<PartitionMergeEvent>(args&: *state.global_partition, args&: pipeline); | 
| 1101 | 	event.InsertEvent(replacement_event: std::move(new_event)); | 
| 1102 |  | 
| 1103 | 	return SinkFinalizeType::READY; | 
| 1104 | } | 
| 1105 |  | 
| 1106 | //===--------------------------------------------------------------------===// | 
| 1107 | // Source | 
| 1108 | //===--------------------------------------------------------------------===// | 
| 1109 | class WindowGlobalSourceState : public GlobalSourceState { | 
| 1110 | public: | 
| 1111 | 	explicit WindowGlobalSourceState(WindowGlobalSinkState &gsink) : gsink(*gsink.global_partition), next_bin(0) { | 
| 1112 | 	} | 
| 1113 |  | 
| 1114 | 	PartitionGlobalSinkState &gsink; | 
| 1115 | 	//! The output read position. | 
| 1116 | 	atomic<idx_t> next_bin; | 
| 1117 |  | 
| 1118 | public: | 
| 1119 | 	idx_t MaxThreads() override { | 
| 1120 | 		// If there is only one partition, we have to process it on one thread. | 
| 1121 | 		if (!gsink.grouping_data) { | 
| 1122 | 			return 1; | 
| 1123 | 		} | 
| 1124 |  | 
| 1125 | 		// If there is not a lot of data, process serially. | 
| 1126 | 		if (gsink.count < STANDARD_ROW_GROUPS_SIZE) { | 
| 1127 | 			return 1; | 
| 1128 | 		} | 
| 1129 |  | 
| 1130 | 		return gsink.hash_groups.size(); | 
| 1131 | 	} | 
| 1132 | }; | 
| 1133 |  | 
| 1134 | // Per-thread read state | 
| 1135 | class WindowLocalSourceState : public LocalSourceState { | 
| 1136 | public: | 
| 1137 | 	using HashGroupPtr = unique_ptr<PartitionGlobalHashGroup>; | 
| 1138 | 	using WindowExecutorPtr = unique_ptr<WindowExecutor>; | 
| 1139 | 	using WindowExecutors = vector<WindowExecutorPtr>; | 
| 1140 |  | 
| 1141 | 	WindowLocalSourceState(const PhysicalWindow &op_p, ExecutionContext &context, WindowGlobalSourceState &gsource) | 
| 1142 | 	    : context(context.client), op(op_p), gsink(gsource.gsink) { | 
| 1143 |  | 
| 1144 | 		vector<LogicalType> output_types; | 
| 1145 | 		for (idx_t expr_idx = 0; expr_idx < op.select_list.size(); ++expr_idx) { | 
| 1146 | 			D_ASSERT(op.select_list[expr_idx]->GetExpressionClass() == ExpressionClass::BOUND_WINDOW); | 
| 1147 | 			auto &wexpr = op.select_list[expr_idx]->Cast<BoundWindowExpression>(); | 
| 1148 | 			output_types.emplace_back(args&: wexpr.return_type); | 
| 1149 | 		} | 
| 1150 | 		output_chunk.Initialize(allocator&: Allocator::Get(context&: context.client), types: output_types); | 
| 1151 |  | 
| 1152 | 		const auto &input_types = gsink.payload_types; | 
| 1153 | 		layout.Initialize(types: input_types); | 
| 1154 | 		input_chunk.Initialize(allocator&: gsink.allocator, types: input_types); | 
| 1155 | 	} | 
| 1156 |  | 
| 1157 | 	void MaterializeSortedData(); | 
| 1158 | 	void GeneratePartition(WindowGlobalSinkState &gstate, const idx_t hash_bin); | 
| 1159 | 	void Scan(DataChunk &chunk); | 
| 1160 |  | 
| 1161 | 	HashGroupPtr hash_group; | 
| 1162 | 	ClientContext &context; | 
| 1163 | 	const PhysicalWindow &op; | 
| 1164 |  | 
| 1165 | 	PartitionGlobalSinkState &gsink; | 
| 1166 |  | 
| 1167 | 	//! The generated input chunks | 
| 1168 | 	unique_ptr<RowDataCollection> rows; | 
| 1169 | 	unique_ptr<RowDataCollection> heap; | 
| 1170 | 	RowLayout layout; | 
| 1171 | 	//! The partition boundary mask | 
| 1172 | 	vector<validity_t> partition_bits; | 
| 1173 | 	ValidityMask partition_mask; | 
| 1174 | 	//! The order boundary mask | 
| 1175 | 	vector<validity_t> order_bits; | 
| 1176 | 	ValidityMask order_mask; | 
| 1177 | 	//! The current execution functions | 
| 1178 | 	WindowExecutors window_execs; | 
| 1179 |  | 
| 1180 | 	//! The read partition | 
| 1181 | 	idx_t hash_bin; | 
| 1182 | 	//! The read cursor | 
| 1183 | 	unique_ptr<RowDataCollectionScanner> scanner; | 
| 1184 | 	//! Buffer for the inputs | 
| 1185 | 	DataChunk input_chunk; | 
| 1186 | 	//! Buffer for window results | 
| 1187 | 	DataChunk output_chunk; | 
| 1188 | }; | 
| 1189 |  | 
| 1190 | void WindowLocalSourceState::MaterializeSortedData() { | 
| 1191 | 	auto &global_sort_state = *hash_group->global_sort; | 
| 1192 | 	if (global_sort_state.sorted_blocks.empty()) { | 
| 1193 | 		return; | 
| 1194 | 	} | 
| 1195 |  | 
| 1196 | 	// scan the sorted row data | 
| 1197 | 	D_ASSERT(global_sort_state.sorted_blocks.size() == 1); | 
| 1198 | 	auto &sb = *global_sort_state.sorted_blocks[0]; | 
| 1199 |  | 
| 1200 | 	// Free up some memory before allocating more | 
| 1201 | 	sb.radix_sorting_data.clear(); | 
| 1202 | 	sb.blob_sorting_data = nullptr; | 
| 1203 |  | 
| 1204 | 	// Move the sorting row blocks into our RDCs | 
| 1205 | 	auto &buffer_manager = global_sort_state.buffer_manager; | 
| 1206 | 	auto &sd = *sb.payload_data; | 
| 1207 |  | 
| 1208 | 	// Data blocks are required | 
| 1209 | 	D_ASSERT(!sd.data_blocks.empty()); | 
| 1210 | 	auto &block = sd.data_blocks[0]; | 
| 1211 | 	rows = make_uniq<RowDataCollection>(args&: buffer_manager, args&: block->capacity, args: block->entry_size); | 
| 1212 | 	rows->blocks = std::move(sd.data_blocks); | 
| 1213 | 	rows->count = std::accumulate(first: rows->blocks.begin(), last: rows->blocks.end(), init: idx_t(0), | 
| 1214 | 	                              binary_op: [&](idx_t c, const unique_ptr<RowDataBlock> &b) { return c + b->count; }); | 
| 1215 |  | 
| 1216 | 	// Heap blocks are optional, but we want both for iteration. | 
| 1217 | 	if (!sd.heap_blocks.empty()) { | 
| 1218 | 		auto &block = sd.heap_blocks[0]; | 
| 1219 | 		heap = make_uniq<RowDataCollection>(args&: buffer_manager, args&: block->capacity, args: block->entry_size); | 
| 1220 | 		heap->blocks = std::move(sd.heap_blocks); | 
| 1221 | 		hash_group.reset(); | 
| 1222 | 	} else { | 
| 1223 | 		heap = make_uniq<RowDataCollection>(args&: buffer_manager, args: (idx_t)Storage::BLOCK_SIZE, args: 1, args: true); | 
| 1224 | 	} | 
| 1225 | 	heap->count = std::accumulate(first: heap->blocks.begin(), last: heap->blocks.end(), init: idx_t(0), | 
| 1226 | 	                              binary_op: [&](idx_t c, const unique_ptr<RowDataBlock> &b) { return c + b->count; }); | 
| 1227 | } | 
| 1228 |  | 
| 1229 | void WindowLocalSourceState::GeneratePartition(WindowGlobalSinkState &gstate, const idx_t hash_bin_p) { | 
| 1230 | 	//	Get rid of any stale data | 
| 1231 | 	hash_bin = hash_bin_p; | 
| 1232 |  | 
| 1233 | 	// There are three types of partitions: | 
| 1234 | 	// 1. No partition (no sorting) | 
| 1235 | 	// 2. One partition (sorting, but no hashing) | 
| 1236 | 	// 3. Multiple partitions (sorting and hashing) | 
| 1237 |  | 
| 1238 | 	//	How big is the partition? | 
| 1239 | 	idx_t count = 0; | 
| 1240 | 	if (hash_bin < gsink.hash_groups.size() && gsink.hash_groups[hash_bin]) { | 
| 1241 | 		count = gsink.hash_groups[hash_bin]->count; | 
| 1242 | 	} else if (gsink.rows && !hash_bin) { | 
| 1243 | 		count = gsink.count; | 
| 1244 | 	} else { | 
| 1245 | 		return; | 
| 1246 | 	} | 
| 1247 |  | 
| 1248 | 	//	Initialise masks to false | 
| 1249 | 	const auto bit_count = ValidityMask::ValidityMaskSize(count); | 
| 1250 | 	partition_bits.clear(); | 
| 1251 | 	partition_bits.resize(new_size: bit_count, x: 0); | 
| 1252 | 	partition_mask.Initialize(validity: partition_bits.data()); | 
| 1253 |  | 
| 1254 | 	order_bits.clear(); | 
| 1255 | 	order_bits.resize(new_size: bit_count, x: 0); | 
| 1256 | 	order_mask.Initialize(validity: order_bits.data()); | 
| 1257 |  | 
| 1258 | 	// Scan the sorted data into new Collections | 
| 1259 | 	auto external = gsink.external; | 
| 1260 | 	if (gsink.rows && !hash_bin) { | 
| 1261 | 		// Simple mask | 
| 1262 | 		partition_mask.SetValidUnsafe(0); | 
| 1263 | 		order_mask.SetValidUnsafe(0); | 
| 1264 | 		//	No partition - align the heap blocks with the row blocks | 
| 1265 | 		rows = gsink.rows->CloneEmpty(keep_pinned: gsink.rows->keep_pinned); | 
| 1266 | 		heap = gsink.strings->CloneEmpty(keep_pinned: gsink.strings->keep_pinned); | 
| 1267 | 		RowDataCollectionScanner::AlignHeapBlocks(dst_block_collection&: *rows, dst_string_heap&: *heap, src_block_collection&: *gsink.rows, src_string_heap&: *gsink.strings, layout); | 
| 1268 | 		external = true; | 
| 1269 | 	} else if (hash_bin < gsink.hash_groups.size() && gsink.hash_groups[hash_bin]) { | 
| 1270 | 		// Overwrite the collections with the sorted data | 
| 1271 | 		hash_group = std::move(gsink.hash_groups[hash_bin]); | 
| 1272 | 		hash_group->ComputeMasks(partition_mask, order_mask); | 
| 1273 | 		external = hash_group->global_sort->external; | 
| 1274 | 		MaterializeSortedData(); | 
| 1275 | 	} else { | 
| 1276 | 		return; | 
| 1277 | 	} | 
| 1278 |  | 
| 1279 | 	// Create the executors for each function | 
| 1280 | 	window_execs.clear(); | 
| 1281 | 	for (idx_t expr_idx = 0; expr_idx < op.select_list.size(); ++expr_idx) { | 
| 1282 | 		D_ASSERT(op.select_list[expr_idx]->GetExpressionClass() == ExpressionClass::BOUND_WINDOW); | 
| 1283 | 		auto &wexpr = op.select_list[expr_idx]->Cast<BoundWindowExpression>(); | 
| 1284 | 		auto wexec = make_uniq<WindowExecutor>(args&: wexpr, args&: context, args&: partition_mask, args&: count); | 
| 1285 | 		window_execs.emplace_back(args: std::move(wexec)); | 
| 1286 | 	} | 
| 1287 |  | 
| 1288 | 	//	First pass over the input without flushing | 
| 1289 | 	//	TODO: Factor out the constructor data as global state | 
| 1290 | 	scanner = make_uniq<RowDataCollectionScanner>(args&: *rows, args&: *heap, args&: layout, args&: external, args: false); | 
| 1291 | 	idx_t input_idx = 0; | 
| 1292 | 	while (true) { | 
| 1293 | 		input_chunk.Reset(); | 
| 1294 | 		scanner->Scan(chunk&: input_chunk); | 
| 1295 | 		if (input_chunk.size() == 0) { | 
| 1296 | 			break; | 
| 1297 | 		} | 
| 1298 |  | 
| 1299 | 		//	TODO: Parallelization opportunity | 
| 1300 | 		for (auto &wexec : window_execs) { | 
| 1301 | 			wexec->Sink(input_chunk, input_idx, total_count: scanner->Count()); | 
| 1302 | 		} | 
| 1303 | 		input_idx += input_chunk.size(); | 
| 1304 | 	} | 
| 1305 |  | 
| 1306 | 	//	TODO: Parallelization opportunity | 
| 1307 | 	for (auto &wexec : window_execs) { | 
| 1308 | 		wexec->Finalize(mode: gstate.mode); | 
| 1309 | 	} | 
| 1310 |  | 
| 1311 | 	// External scanning assumes all blocks are swizzled. | 
| 1312 | 	scanner->ReSwizzle(); | 
| 1313 |  | 
| 1314 | 	//	Second pass can flush | 
| 1315 | 	scanner->Reset(flush: true); | 
| 1316 | } | 
| 1317 |  | 
| 1318 | void WindowLocalSourceState::Scan(DataChunk &result) { | 
| 1319 | 	D_ASSERT(scanner); | 
| 1320 | 	if (!scanner->Remaining()) { | 
| 1321 | 		return; | 
| 1322 | 	} | 
| 1323 |  | 
| 1324 | 	const auto position = scanner->Scanned(); | 
| 1325 | 	input_chunk.Reset(); | 
| 1326 | 	scanner->Scan(chunk&: input_chunk); | 
| 1327 |  | 
| 1328 | 	output_chunk.Reset(); | 
| 1329 | 	for (idx_t expr_idx = 0; expr_idx < window_execs.size(); ++expr_idx) { | 
| 1330 | 		auto &executor = *window_execs[expr_idx]; | 
| 1331 | 		executor.Evaluate(row_idx: position, input_chunk, result&: output_chunk.data[expr_idx], partition_mask, order_mask); | 
| 1332 | 	} | 
| 1333 | 	output_chunk.SetCardinality(input_chunk); | 
| 1334 | 	output_chunk.Verify(); | 
| 1335 |  | 
| 1336 | 	idx_t out_idx = 0; | 
| 1337 | 	result.SetCardinality(input_chunk); | 
| 1338 | 	for (idx_t col_idx = 0; col_idx < input_chunk.ColumnCount(); col_idx++) { | 
| 1339 | 		result.data[out_idx++].Reference(other&: input_chunk.data[col_idx]); | 
| 1340 | 	} | 
| 1341 | 	for (idx_t col_idx = 0; col_idx < output_chunk.ColumnCount(); col_idx++) { | 
| 1342 | 		result.data[out_idx++].Reference(other&: output_chunk.data[col_idx]); | 
| 1343 | 	} | 
| 1344 | 	result.Verify(); | 
| 1345 | } | 
| 1346 |  | 
| 1347 | unique_ptr<LocalSourceState> PhysicalWindow::GetLocalSourceState(ExecutionContext &context, | 
| 1348 |                                                                  GlobalSourceState &gstate_p) const { | 
| 1349 | 	auto &gstate = gstate_p.Cast<WindowGlobalSourceState>(); | 
| 1350 | 	return make_uniq<WindowLocalSourceState>(args: *this, args&: context, args&: gstate); | 
| 1351 | } | 
| 1352 |  | 
| 1353 | unique_ptr<GlobalSourceState> PhysicalWindow::GetGlobalSourceState(ClientContext &context) const { | 
| 1354 | 	auto &gsink = sink_state->Cast<WindowGlobalSinkState>(); | 
| 1355 | 	return make_uniq<WindowGlobalSourceState>(args&: gsink); | 
| 1356 | } | 
| 1357 |  | 
| 1358 | SourceResultType PhysicalWindow::GetData(ExecutionContext &context, DataChunk &chunk, | 
| 1359 |                                          OperatorSourceInput &input) const { | 
| 1360 | 	auto &lsource = input.local_state.Cast<WindowLocalSourceState>(); | 
| 1361 | 	auto &gsource = input.global_state.Cast<WindowGlobalSourceState>(); | 
| 1362 | 	auto &gsink = sink_state->Cast<WindowGlobalSinkState>(); | 
| 1363 |  | 
| 1364 | 	auto &hash_groups = gsink.global_partition->hash_groups; | 
| 1365 | 	const auto bin_count = hash_groups.empty() ? 1 : hash_groups.size(); | 
| 1366 |  | 
| 1367 | 	while (chunk.size() == 0) { | 
| 1368 | 		//	Move to the next bin if we are done. | 
| 1369 | 		while (!lsource.scanner || !lsource.scanner->Remaining()) { | 
| 1370 | 			lsource.scanner.reset(); | 
| 1371 | 			lsource.rows.reset(); | 
| 1372 | 			lsource.heap.reset(); | 
| 1373 | 			lsource.hash_group.reset(); | 
| 1374 | 			auto hash_bin = gsource.next_bin++; | 
| 1375 | 			if (hash_bin >= bin_count) { | 
| 1376 | 				return chunk.size() > 0 ? SourceResultType::HAVE_MORE_OUTPUT : SourceResultType::FINISHED; | 
| 1377 | 			} | 
| 1378 |  | 
| 1379 | 			for (; hash_bin < hash_groups.size(); hash_bin = gsource.next_bin++) { | 
| 1380 | 				if (hash_groups[hash_bin]) { | 
| 1381 | 					break; | 
| 1382 | 				} | 
| 1383 | 			} | 
| 1384 | 			lsource.GeneratePartition(gstate&: gsink, hash_bin_p: hash_bin); | 
| 1385 | 		} | 
| 1386 |  | 
| 1387 | 		lsource.Scan(result&: chunk); | 
| 1388 | 	} | 
| 1389 |  | 
| 1390 | 	return chunk.size() == 0 ? SourceResultType::FINISHED : SourceResultType::HAVE_MORE_OUTPUT; | 
| 1391 | } | 
| 1392 |  | 
| 1393 | string PhysicalWindow::ParamsToString() const { | 
| 1394 | 	string result; | 
| 1395 | 	for (idx_t i = 0; i < select_list.size(); i++) { | 
| 1396 | 		if (i > 0) { | 
| 1397 | 			result += "\n" ; | 
| 1398 | 		} | 
| 1399 | 		result += select_list[i]->GetName(); | 
| 1400 | 	} | 
| 1401 | 	return result; | 
| 1402 | } | 
| 1403 |  | 
| 1404 | } // namespace duckdb | 
| 1405 |  |