1 | /* |
2 | * PCG Random Number Generation for C++ |
3 | * |
4 | * Copyright 2014-2019 Melissa O'Neill <oneill@pcg-random.org>, |
5 | * and the PCG Project contributors. |
6 | * |
7 | * SPDX-License-Identifier: (Apache-2.0 OR MIT) |
8 | * |
9 | * Licensed under the Apache License, Version 2.0 (provided in |
10 | * LICENSE-APACHE.txt and at http://www.apache.org/licenses/LICENSE-2.0) |
11 | * or under the MIT license (provided in LICENSE-MIT.txt and at |
12 | * http://opensource.org/licenses/MIT), at your option. This file may not |
13 | * be copied, modified, or distributed except according to those terms. |
14 | * |
15 | * Distributed on an "AS IS" BASIS, WITHOUT WARRANTY OF ANY KIND, either |
16 | * express or implied. See your chosen license for details. |
17 | * |
18 | * For additional information about the PCG random number generation scheme, |
19 | * visit http://www.pcg-random.org/. |
20 | */ |
21 | |
22 | /* |
23 | * This code provides the reference implementation of the PCG family of |
24 | * random number generators. The code is complex because it implements |
25 | * |
26 | * - several members of the PCG family, specifically members corresponding |
27 | * to the output functions: |
28 | * - XSH RR (good for 64-bit state, 32-bit output) |
29 | * - XSH RS (good for 64-bit state, 32-bit output) |
30 | * - XSL RR (good for 128-bit state, 64-bit output) |
31 | * - RXS M XS (statistically most powerful generator) |
32 | * - XSL RR RR (good for 128-bit state, 128-bit output) |
33 | * - and RXS, RXS M, XSH, XSL (mostly for testing) |
34 | * - at potentially *arbitrary* bit sizes |
35 | * - with four different techniques for random streams (MCG, one-stream |
36 | * LCG, settable-stream LCG, unique-stream LCG) |
37 | * - and the extended generation schemes allowing arbitrary periods |
38 | * - with all features of C++11 random number generation (and more), |
39 | * some of which are somewhat painful, including |
40 | * - initializing with a SeedSequence which writes 32-bit values |
41 | * to memory, even though the state of the generator may not |
42 | * use 32-bit values (it might use smaller or larger integers) |
43 | * - I/O for RNGs and a prescribed format, which needs to handle |
44 | * the issue that 8-bit and 128-bit integers don't have working |
45 | * I/O routines (e.g., normally 8-bit = char, not integer) |
46 | * - equality and inequality for RNGs |
47 | * - and a number of convenience typedefs to mask all the complexity |
48 | * |
49 | * The code employes a fairly heavy level of abstraction, and has to deal |
50 | * with various C++ minutia. If you're looking to learn about how the PCG |
51 | * scheme works, you're probably best of starting with one of the other |
52 | * codebases (see www.pcg-random.org). But if you're curious about the |
53 | * constants for the various output functions used in those other, simpler, |
54 | * codebases, this code shows how they are calculated. |
55 | * |
56 | * On the positive side, at least there are convenience typedefs so that you |
57 | * can say |
58 | * |
59 | * pcg32 myRNG; |
60 | * |
61 | * rather than: |
62 | * |
63 | * pcg_detail::engine< |
64 | * uint32_t, // Output Type |
65 | * uint64_t, // State Type |
66 | * pcg_detail::xsh_rr_mixin<uint32_t, uint64_t>, true, // Output Func |
67 | * pcg_detail::specific_stream<uint64_t>, // Stream Kind |
68 | * pcg_detail::default_multiplier<uint64_t> // LCG Mult |
69 | * > myRNG; |
70 | * |
71 | */ |
72 | |
73 | #ifndef PCG_RAND_HPP_INCLUDED |
74 | #define PCG_RAND_HPP_INCLUDED 1 |
75 | |
76 | #include <algorithm> |
77 | #include <cinttypes> |
78 | #include <cstddef> |
79 | #include <cstdlib> |
80 | #include <cstring> |
81 | #include <cassert> |
82 | #include <limits> |
83 | #include <iostream> |
84 | #include <iterator> |
85 | #include <type_traits> |
86 | #include <utility> |
87 | #include <locale> |
88 | #include <new> |
89 | #include <stdexcept> |
90 | |
91 | #ifdef _MSC_VER |
92 | #pragma warning(disable:4146) |
93 | #endif |
94 | |
95 | #ifdef _MSC_VER |
96 | #define PCG_ALWAYS_INLINE __forceinline |
97 | #elif __GNUC__ |
98 | #define PCG_ALWAYS_INLINE __attribute__((always_inline)) |
99 | #else |
100 | #define PCG_ALWAYS_INLINE inline |
101 | #endif |
102 | |
103 | #ifdef min |
104 | #undef min |
105 | #endif |
106 | |
107 | #ifdef max |
108 | #undef max |
109 | #endif |
110 | |
111 | /* |
112 | * The pcg_extras namespace contains some support code that is likley to |
113 | * be useful for a variety of RNGs, including: |
114 | * - 128-bit int support for platforms where it isn't available natively |
115 | * - bit twiddling operations |
116 | * - I/O of 128-bit and 8-bit integers |
117 | * - Handling the evilness of SeedSeq |
118 | * - Support for efficiently producing random numbers less than a given |
119 | * bound |
120 | */ |
121 | |
122 | #include "pcg_extras.hpp" |
123 | |
124 | namespace pcg_detail { |
125 | |
126 | using namespace pcg_extras; |
127 | |
128 | /* |
129 | * The LCG generators need some constants to function. This code lets you |
130 | * look up the constant by *type*. For example |
131 | * |
132 | * default_multiplier<uint32_t>::multiplier() |
133 | * |
134 | * gives you the default multipler for 32-bit integers. We use the name |
135 | * of the constant and not a generic word like value to allow these classes |
136 | * to be used as mixins. |
137 | */ |
138 | |
139 | template <typename T> |
140 | struct default_multiplier { |
141 | // Not defined for an arbitrary type |
142 | }; |
143 | |
144 | template <typename T> |
145 | struct default_increment { |
146 | // Not defined for an arbitrary type |
147 | }; |
148 | |
149 | #define PCG_DEFINE_CONSTANT(type, what, kind, constant) \ |
150 | template <> \ |
151 | struct what ## _ ## kind<type> { \ |
152 | static constexpr type kind() { \ |
153 | return constant; \ |
154 | } \ |
155 | }; |
156 | |
157 | PCG_DEFINE_CONSTANT(uint8_t, default, multiplier, 141U) |
158 | PCG_DEFINE_CONSTANT(uint8_t, default, increment, 77U) |
159 | |
160 | PCG_DEFINE_CONSTANT(uint16_t, default, multiplier, 12829U) |
161 | PCG_DEFINE_CONSTANT(uint16_t, default, increment, 47989U) |
162 | |
163 | PCG_DEFINE_CONSTANT(uint32_t, default, multiplier, 747796405U) |
164 | PCG_DEFINE_CONSTANT(uint32_t, default, increment, 2891336453U) |
165 | |
166 | PCG_DEFINE_CONSTANT(uint64_t, default, multiplier, 6364136223846793005ULL) |
167 | PCG_DEFINE_CONSTANT(uint64_t, default, increment, 1442695040888963407ULL) |
168 | |
169 | PCG_DEFINE_CONSTANT(pcg128_t, default, multiplier, |
170 | PCG_128BIT_CONSTANT(2549297995355413924ULL,4865540595714422341ULL)) |
171 | PCG_DEFINE_CONSTANT(pcg128_t, default, increment, |
172 | PCG_128BIT_CONSTANT(6364136223846793005ULL,1442695040888963407ULL)) |
173 | |
174 | /* Alternative (cheaper) multipliers for 128-bit */ |
175 | |
176 | template <typename T> |
177 | struct cheap_multiplier : public default_multiplier<T> { |
178 | // For most types just use the default. |
179 | }; |
180 | |
181 | template <> |
182 | struct cheap_multiplier<pcg128_t> { |
183 | static constexpr uint64_t multiplier() { |
184 | return 0xda942042e4dd58b5ULL; |
185 | } |
186 | }; |
187 | |
188 | |
189 | /* |
190 | * Each PCG generator is available in four variants, based on how it applies |
191 | * the additive constant for its underlying LCG; the variations are: |
192 | * |
193 | * single stream - all instances use the same fixed constant, thus |
194 | * the RNG always somewhere in same sequence |
195 | * mcg - adds zero, resulting in a single stream and reduced |
196 | * period |
197 | * specific stream - the constant can be changed at any time, selecting |
198 | * a different random sequence |
199 | * unique stream - the constant is based on the memory address of the |
200 | * object, thus every RNG has its own unique sequence |
201 | * |
202 | * This variation is provided though mixin classes which define a function |
203 | * value called increment() that returns the nesessary additive constant. |
204 | */ |
205 | |
206 | |
207 | |
208 | /* |
209 | * unique stream |
210 | */ |
211 | |
212 | |
213 | template <typename itype> |
214 | class unique_stream { |
215 | protected: |
216 | static constexpr bool is_mcg = false; |
217 | |
218 | // Is never called, but is provided for symmetry with specific_stream |
219 | void set_stream(...) |
220 | { |
221 | abort(); |
222 | } |
223 | |
224 | public: |
225 | typedef itype state_type; |
226 | |
227 | constexpr itype increment() const { |
228 | return itype(reinterpret_cast<uintptr_t>(this) | 1); |
229 | } |
230 | |
231 | constexpr itype stream() const |
232 | { |
233 | return increment() >> 1; |
234 | } |
235 | |
236 | static constexpr bool can_specify_stream = false; |
237 | |
238 | static constexpr size_t streams_pow2() |
239 | { |
240 | return (sizeof(itype) < sizeof(size_t) ? sizeof(itype) |
241 | : sizeof(size_t))*8 - 1u; |
242 | } |
243 | |
244 | protected: |
245 | constexpr unique_stream() = default; |
246 | }; |
247 | |
248 | |
249 | /* |
250 | * no stream (mcg) |
251 | */ |
252 | |
253 | template <typename itype> |
254 | class no_stream { |
255 | protected: |
256 | static constexpr bool is_mcg = true; |
257 | |
258 | // Is never called, but is provided for symmetry with specific_stream |
259 | void set_stream(...) |
260 | { |
261 | abort(); |
262 | } |
263 | |
264 | public: |
265 | typedef itype state_type; |
266 | |
267 | static constexpr itype increment() { |
268 | return 0; |
269 | } |
270 | |
271 | static constexpr bool can_specify_stream = false; |
272 | |
273 | static constexpr size_t streams_pow2() |
274 | { |
275 | return 0u; |
276 | } |
277 | |
278 | protected: |
279 | constexpr no_stream() = default; |
280 | }; |
281 | |
282 | |
283 | /* |
284 | * single stream/sequence (oneseq) |
285 | */ |
286 | |
287 | template <typename itype> |
288 | class oneseq_stream : public default_increment<itype> { |
289 | protected: |
290 | static constexpr bool is_mcg = false; |
291 | |
292 | // Is never called, but is provided for symmetry with specific_stream |
293 | void set_stream(...) |
294 | { |
295 | abort(); |
296 | } |
297 | |
298 | public: |
299 | typedef itype state_type; |
300 | |
301 | static constexpr itype stream() |
302 | { |
303 | return default_increment<itype>::increment() >> 1; |
304 | } |
305 | |
306 | static constexpr bool can_specify_stream = false; |
307 | |
308 | static constexpr size_t streams_pow2() |
309 | { |
310 | return 0u; |
311 | } |
312 | |
313 | protected: |
314 | constexpr oneseq_stream() = default; |
315 | }; |
316 | |
317 | |
318 | /* |
319 | * specific stream |
320 | */ |
321 | |
322 | template <typename itype> |
323 | class specific_stream { |
324 | protected: |
325 | static constexpr bool is_mcg = false; |
326 | |
327 | itype inc_ = default_increment<itype>::increment(); |
328 | |
329 | public: |
330 | typedef itype state_type; |
331 | typedef itype stream_state; |
332 | |
333 | constexpr itype increment() const { |
334 | return inc_; |
335 | } |
336 | |
337 | itype stream() |
338 | { |
339 | return inc_ >> 1; |
340 | } |
341 | |
342 | void set_stream(itype specific_seq) |
343 | { |
344 | inc_ = (specific_seq << 1) | 1; |
345 | } |
346 | |
347 | static constexpr bool can_specify_stream = true; |
348 | |
349 | static constexpr size_t streams_pow2() |
350 | { |
351 | return (sizeof(itype)*8) - 1u; |
352 | } |
353 | |
354 | protected: |
355 | specific_stream() = default; |
356 | |
357 | specific_stream(itype specific_seq) |
358 | : inc_(itype(specific_seq << 1) | itype(1U)) |
359 | { |
360 | // Nothing (else) to do. |
361 | } |
362 | }; |
363 | |
364 | |
365 | /* |
366 | * This is where it all comes together. This function joins together three |
367 | * mixin classes which define |
368 | * - the LCG additive constant (the stream) |
369 | * - the LCG multiplier |
370 | * - the output function |
371 | * in addition, we specify the type of the LCG state, and the result type, |
372 | * and whether to use the pre-advance version of the state for the output |
373 | * (increasing instruction-level parallelism) or the post-advance version |
374 | * (reducing register pressure). |
375 | * |
376 | * Given the high level of parameterization, the code has to use some |
377 | * template-metaprogramming tricks to handle some of the suble variations |
378 | * involved. |
379 | */ |
380 | |
381 | template <typename xtype, typename itype, |
382 | typename output_mixin, |
383 | bool output_previous = true, |
384 | typename stream_mixin = oneseq_stream<itype>, |
385 | typename multiplier_mixin = default_multiplier<itype> > |
386 | class engine : protected output_mixin, |
387 | public stream_mixin, |
388 | protected multiplier_mixin { |
389 | protected: |
390 | itype state_; |
391 | |
392 | struct can_specify_stream_tag {}; |
393 | struct no_specifiable_stream_tag {}; |
394 | |
395 | using stream_mixin::increment; |
396 | using multiplier_mixin::multiplier; |
397 | |
398 | public: |
399 | typedef xtype result_type; |
400 | typedef itype state_type; |
401 | |
402 | static constexpr size_t period_pow2() |
403 | { |
404 | return sizeof(state_type)*8 - 2*stream_mixin::is_mcg; |
405 | } |
406 | |
407 | // It would be nice to use std::numeric_limits for these, but |
408 | // we can't be sure that it'd be defined for the 128-bit types. |
409 | |
410 | static constexpr result_type min() |
411 | { |
412 | return result_type(0UL); |
413 | } |
414 | |
415 | static constexpr result_type max() |
416 | { |
417 | return result_type(~result_type(0UL)); |
418 | } |
419 | |
420 | protected: |
421 | itype bump(itype state) |
422 | { |
423 | return state * multiplier() + increment(); |
424 | } |
425 | |
426 | itype base_generate() |
427 | { |
428 | return state_ = bump(state: state_); |
429 | } |
430 | |
431 | itype base_generate0() |
432 | { |
433 | itype old_state = state_; |
434 | state_ = bump(state: state_); |
435 | return old_state; |
436 | } |
437 | |
438 | public: |
439 | result_type operator()() |
440 | { |
441 | if (output_previous) |
442 | return this->output(base_generate0()); |
443 | else |
444 | return this->output(base_generate()); |
445 | } |
446 | |
447 | result_type operator()(result_type upper_bound) |
448 | { |
449 | return bounded_rand(*this, upper_bound); |
450 | } |
451 | |
452 | protected: |
453 | static itype advance(itype state, itype delta, |
454 | itype cur_mult, itype cur_plus); |
455 | |
456 | static itype distance(itype cur_state, itype newstate, itype cur_mult, |
457 | itype cur_plus, itype mask = ~itype(0U)); |
458 | |
459 | itype distance(itype newstate, itype mask = itype(~itype(0U))) const |
460 | { |
461 | return distance(state_, newstate, multiplier(), increment(), mask); |
462 | } |
463 | |
464 | public: |
465 | void advance(itype delta) |
466 | { |
467 | state_ = advance(state_, delta, this->multiplier(), this->increment()); |
468 | } |
469 | |
470 | void backstep(itype delta) |
471 | { |
472 | advance(-delta); |
473 | } |
474 | |
475 | void discard(itype delta) |
476 | { |
477 | advance(delta); |
478 | } |
479 | |
480 | bool wrapped() |
481 | { |
482 | if (stream_mixin::is_mcg) { |
483 | // For MCGs, the low order two bits never change. In this |
484 | // implementation, we keep them fixed at 3 to make this test |
485 | // easier. |
486 | return state_ == 3; |
487 | } else { |
488 | return state_ == 0; |
489 | } |
490 | } |
491 | |
492 | engine(itype state = itype(0xcafef00dd15ea5e5ULL)) |
493 | : state_(this->is_mcg ? state|state_type(3U) |
494 | : bump(state: state + this->increment())) |
495 | { |
496 | // Nothing else to do. |
497 | } |
498 | |
499 | // This function may or may not exist. It thus has to be a template |
500 | // to use SFINAE; users don't have to worry about its template-ness. |
501 | |
502 | template <typename sm = stream_mixin> |
503 | engine(itype state, typename sm::stream_state stream_seed) |
504 | : stream_mixin(stream_seed), |
505 | state_(this->is_mcg ? state|state_type(3U) |
506 | : bump(state: state + this->increment())) |
507 | { |
508 | // Nothing else to do. |
509 | } |
510 | |
511 | template<typename SeedSeq> |
512 | engine(SeedSeq&& seedSeq, typename std::enable_if< |
513 | !stream_mixin::can_specify_stream |
514 | && !std::is_convertible<SeedSeq, itype>::value |
515 | && !std::is_convertible<SeedSeq, engine>::value, |
516 | no_specifiable_stream_tag>::type = {}) |
517 | : engine(generate_one<itype>(std::forward<SeedSeq>(seedSeq))) |
518 | { |
519 | // Nothing else to do. |
520 | } |
521 | |
522 | template<typename SeedSeq> |
523 | engine(SeedSeq&& seedSeq, typename std::enable_if< |
524 | stream_mixin::can_specify_stream |
525 | && !std::is_convertible<SeedSeq, itype>::value |
526 | && !std::is_convertible<SeedSeq, engine>::value, |
527 | can_specify_stream_tag>::type = {}) |
528 | : engine(generate_one<itype,1,2>(seedSeq), |
529 | generate_one<itype,0,2>(seedSeq)) |
530 | { |
531 | // Nothing else to do. |
532 | } |
533 | |
534 | |
535 | template<typename... Args> |
536 | void seed(Args&&... args) |
537 | { |
538 | new (this) engine(std::forward<Args>(args)...); |
539 | } |
540 | |
541 | template <typename xtype1, typename itype1, |
542 | typename output_mixin1, bool output_previous1, |
543 | typename stream_mixin_lhs, typename multiplier_mixin_lhs, |
544 | typename stream_mixin_rhs, typename multiplier_mixin_rhs> |
545 | friend bool operator==(const engine<xtype1,itype1, |
546 | output_mixin1,output_previous1, |
547 | stream_mixin_lhs, multiplier_mixin_lhs>&, |
548 | const engine<xtype1,itype1, |
549 | output_mixin1,output_previous1, |
550 | stream_mixin_rhs, multiplier_mixin_rhs>&); |
551 | |
552 | template <typename xtype1, typename itype1, |
553 | typename output_mixin1, bool output_previous1, |
554 | typename stream_mixin_lhs, typename multiplier_mixin_lhs, |
555 | typename stream_mixin_rhs, typename multiplier_mixin_rhs> |
556 | friend itype1 operator-(const engine<xtype1,itype1, |
557 | output_mixin1,output_previous1, |
558 | stream_mixin_lhs, multiplier_mixin_lhs>&, |
559 | const engine<xtype1,itype1, |
560 | output_mixin1,output_previous1, |
561 | stream_mixin_rhs, multiplier_mixin_rhs>&); |
562 | |
563 | template <typename CharT, typename Traits, |
564 | typename xtype1, typename itype1, |
565 | typename output_mixin1, bool output_previous1, |
566 | typename stream_mixin1, typename multiplier_mixin1> |
567 | friend std::basic_ostream<CharT,Traits>& |
568 | operator<<(std::basic_ostream<CharT,Traits>& out, |
569 | const engine<xtype1,itype1, |
570 | output_mixin1,output_previous1, |
571 | stream_mixin1, multiplier_mixin1>&); |
572 | |
573 | template <typename CharT, typename Traits, |
574 | typename xtype1, typename itype1, |
575 | typename output_mixin1, bool output_previous1, |
576 | typename stream_mixin1, typename multiplier_mixin1> |
577 | friend std::basic_istream<CharT,Traits>& |
578 | operator>>(std::basic_istream<CharT,Traits>& in, |
579 | engine<xtype1, itype1, |
580 | output_mixin1, output_previous1, |
581 | stream_mixin1, multiplier_mixin1>& rng); |
582 | }; |
583 | |
584 | template <typename CharT, typename Traits, |
585 | typename xtype, typename itype, |
586 | typename output_mixin, bool output_previous, |
587 | typename stream_mixin, typename multiplier_mixin> |
588 | std::basic_ostream<CharT,Traits>& |
589 | operator<<(std::basic_ostream<CharT,Traits>& out, |
590 | const engine<xtype,itype, |
591 | output_mixin,output_previous, |
592 | stream_mixin, multiplier_mixin>& rng) |
593 | { |
594 | using pcg_extras::operator<<; |
595 | |
596 | auto orig_flags = out.flags(std::ios_base::dec | std::ios_base::left); |
597 | auto space = out.widen(' '); |
598 | auto orig_fill = out.fill(); |
599 | |
600 | out << rng.multiplier() << space |
601 | << rng.increment() << space |
602 | << rng.state_; |
603 | |
604 | out.flags(orig_flags); |
605 | out.fill(orig_fill); |
606 | return out; |
607 | } |
608 | |
609 | |
610 | template <typename CharT, typename Traits, |
611 | typename xtype, typename itype, |
612 | typename output_mixin, bool output_previous, |
613 | typename stream_mixin, typename multiplier_mixin> |
614 | std::basic_istream<CharT,Traits>& |
615 | operator>>(std::basic_istream<CharT,Traits>& in, |
616 | engine<xtype,itype, |
617 | output_mixin,output_previous, |
618 | stream_mixin, multiplier_mixin>& rng) |
619 | { |
620 | using pcg_extras::operator>>; |
621 | |
622 | auto orig_flags = in.flags(std::ios_base::dec | std::ios_base::skipws); |
623 | |
624 | itype multiplier, increment, state; |
625 | in >> multiplier >> increment >> state; |
626 | |
627 | if (!in.fail()) { |
628 | bool good = true; |
629 | if (multiplier != rng.multiplier()) { |
630 | good = false; |
631 | } else if (rng.can_specify_stream) { |
632 | rng.set_stream(increment >> 1); |
633 | } else if (increment != rng.increment()) { |
634 | good = false; |
635 | } |
636 | if (good) { |
637 | rng.state_ = state; |
638 | } else { |
639 | in.clear(std::ios::failbit); |
640 | } |
641 | } |
642 | |
643 | in.flags(orig_flags); |
644 | return in; |
645 | } |
646 | |
647 | |
648 | template <typename xtype, typename itype, |
649 | typename output_mixin, bool output_previous, |
650 | typename stream_mixin, typename multiplier_mixin> |
651 | itype engine<xtype,itype,output_mixin,output_previous,stream_mixin, |
652 | multiplier_mixin>::advance( |
653 | itype state, itype delta, itype cur_mult, itype cur_plus) |
654 | { |
655 | // The method used here is based on Brown, "Random Number Generation |
656 | // with Arbitrary Stride,", Transactions of the American Nuclear |
657 | // Society (Nov. 1994). The algorithm is very similar to fast |
658 | // exponentiation. |
659 | // |
660 | // Even though delta is an unsigned integer, we can pass a |
661 | // signed integer to go backwards, it just goes "the long way round". |
662 | |
663 | constexpr itype ZERO = 0u; // itype may be a non-trivial types, so |
664 | constexpr itype ONE = 1u; // we define some ugly constants. |
665 | itype acc_mult = 1; |
666 | itype acc_plus = 0; |
667 | while (delta > ZERO) { |
668 | if (delta & ONE) { |
669 | acc_mult *= cur_mult; |
670 | acc_plus = acc_plus*cur_mult + cur_plus; |
671 | } |
672 | cur_plus = (cur_mult+ONE)*cur_plus; |
673 | cur_mult *= cur_mult; |
674 | delta >>= 1; |
675 | } |
676 | return acc_mult * state + acc_plus; |
677 | } |
678 | |
679 | template <typename xtype, typename itype, |
680 | typename output_mixin, bool output_previous, |
681 | typename stream_mixin, typename multiplier_mixin> |
682 | itype engine<xtype,itype,output_mixin,output_previous,stream_mixin, |
683 | multiplier_mixin>::distance( |
684 | itype cur_state, itype newstate, itype cur_mult, itype cur_plus, itype mask) |
685 | { |
686 | constexpr itype ONE = 1u; // itype could be weird, so use constant |
687 | bool is_mcg = cur_plus == itype(0); |
688 | itype the_bit = is_mcg ? itype(4u) : itype(1u); |
689 | itype distance = 0u; |
690 | while ((cur_state & mask) != (newstate & mask)) { |
691 | if ((cur_state & the_bit) != (newstate & the_bit)) { |
692 | cur_state = cur_state * cur_mult + cur_plus; |
693 | distance |= the_bit; |
694 | } |
695 | assert((cur_state & the_bit) == (newstate & the_bit)); |
696 | the_bit <<= 1; |
697 | cur_plus = (cur_mult+ONE)*cur_plus; |
698 | cur_mult *= cur_mult; |
699 | } |
700 | return is_mcg ? distance >> 2 : distance; |
701 | } |
702 | |
703 | template <typename xtype, typename itype, |
704 | typename output_mixin, bool output_previous, |
705 | typename stream_mixin_lhs, typename multiplier_mixin_lhs, |
706 | typename stream_mixin_rhs, typename multiplier_mixin_rhs> |
707 | itype operator-(const engine<xtype,itype, |
708 | output_mixin,output_previous, |
709 | stream_mixin_lhs, multiplier_mixin_lhs>& lhs, |
710 | const engine<xtype,itype, |
711 | output_mixin,output_previous, |
712 | stream_mixin_rhs, multiplier_mixin_rhs>& rhs) |
713 | { |
714 | static_assert( |
715 | std::is_same<stream_mixin_lhs, stream_mixin_rhs>::value && |
716 | std::is_same<multiplier_mixin_lhs, multiplier_mixin_rhs>::value, |
717 | "Incomparable generators" ); |
718 | if (lhs.increment() == rhs.increment()) { |
719 | return rhs.distance(lhs.state_); |
720 | } else { |
721 | constexpr itype ONE = 1u; |
722 | itype lhs_diff = lhs.increment() + (lhs.multiplier()-ONE) * lhs.state_; |
723 | itype rhs_diff = rhs.increment() + (rhs.multiplier()-ONE) * rhs.state_; |
724 | if ((lhs_diff & itype(3u)) != (rhs_diff & itype(3u))) { |
725 | rhs_diff = -rhs_diff; |
726 | } |
727 | return rhs.distance(rhs_diff, lhs_diff, rhs.multiplier(), itype(0u)); |
728 | } |
729 | } |
730 | |
731 | |
732 | template <typename xtype, typename itype, |
733 | typename output_mixin, bool output_previous, |
734 | typename stream_mixin_lhs, typename multiplier_mixin_lhs, |
735 | typename stream_mixin_rhs, typename multiplier_mixin_rhs> |
736 | bool operator==(const engine<xtype,itype, |
737 | output_mixin,output_previous, |
738 | stream_mixin_lhs, multiplier_mixin_lhs>& lhs, |
739 | const engine<xtype,itype, |
740 | output_mixin,output_previous, |
741 | stream_mixin_rhs, multiplier_mixin_rhs>& rhs) |
742 | { |
743 | return (lhs.multiplier() == rhs.multiplier()) |
744 | && (lhs.increment() == rhs.increment()) |
745 | && (lhs.state_ == rhs.state_); |
746 | } |
747 | |
748 | template <typename xtype, typename itype, |
749 | typename output_mixin, bool output_previous, |
750 | typename stream_mixin_lhs, typename multiplier_mixin_lhs, |
751 | typename stream_mixin_rhs, typename multiplier_mixin_rhs> |
752 | inline bool operator!=(const engine<xtype,itype, |
753 | output_mixin,output_previous, |
754 | stream_mixin_lhs, multiplier_mixin_lhs>& lhs, |
755 | const engine<xtype,itype, |
756 | output_mixin,output_previous, |
757 | stream_mixin_rhs, multiplier_mixin_rhs>& rhs) |
758 | { |
759 | return !operator==(lhs,rhs); |
760 | } |
761 | |
762 | |
763 | template <typename xtype, typename itype, |
764 | template<typename XT,typename IT> class output_mixin, |
765 | bool output_previous = (sizeof(itype) <= 8), |
766 | template<typename IT> class multiplier_mixin = default_multiplier> |
767 | using oneseq_base = engine<xtype, itype, |
768 | output_mixin<xtype, itype>, output_previous, |
769 | oneseq_stream<itype>, |
770 | multiplier_mixin<itype> >; |
771 | |
772 | template <typename xtype, typename itype, |
773 | template<typename XT,typename IT> class output_mixin, |
774 | bool output_previous = (sizeof(itype) <= 8), |
775 | template<typename IT> class multiplier_mixin = default_multiplier> |
776 | using unique_base = engine<xtype, itype, |
777 | output_mixin<xtype, itype>, output_previous, |
778 | unique_stream<itype>, |
779 | multiplier_mixin<itype> >; |
780 | |
781 | template <typename xtype, typename itype, |
782 | template<typename XT,typename IT> class output_mixin, |
783 | bool output_previous = (sizeof(itype) <= 8), |
784 | template<typename IT> class multiplier_mixin = default_multiplier> |
785 | using setseq_base = engine<xtype, itype, |
786 | output_mixin<xtype, itype>, output_previous, |
787 | specific_stream<itype>, |
788 | multiplier_mixin<itype> >; |
789 | |
790 | template <typename xtype, typename itype, |
791 | template<typename XT,typename IT> class output_mixin, |
792 | bool output_previous = (sizeof(itype) <= 8), |
793 | template<typename IT> class multiplier_mixin = default_multiplier> |
794 | using mcg_base = engine<xtype, itype, |
795 | output_mixin<xtype, itype>, output_previous, |
796 | no_stream<itype>, |
797 | multiplier_mixin<itype> >; |
798 | |
799 | /* |
800 | * OUTPUT FUNCTIONS. |
801 | * |
802 | * These are the core of the PCG generation scheme. They specify how to |
803 | * turn the base LCG's internal state into the output value of the final |
804 | * generator. |
805 | * |
806 | * They're implemented as mixin classes. |
807 | * |
808 | * All of the classes have code that is written to allow it to be applied |
809 | * at *arbitrary* bit sizes, although in practice they'll only be used at |
810 | * standard sizes supported by C++. |
811 | */ |
812 | |
813 | /* |
814 | * XSH RS -- high xorshift, followed by a random shift |
815 | * |
816 | * Fast. A good performer. |
817 | */ |
818 | |
819 | template <typename xtype, typename itype> |
820 | struct xsh_rs_mixin { |
821 | static xtype output(itype internal) |
822 | { |
823 | constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8); |
824 | constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8); |
825 | constexpr bitcount_t sparebits = bits - xtypebits; |
826 | constexpr bitcount_t opbits = |
827 | sparebits-5 >= 64 ? 5 |
828 | : sparebits-4 >= 32 ? 4 |
829 | : sparebits-3 >= 16 ? 3 |
830 | : sparebits-2 >= 4 ? 2 |
831 | : sparebits-1 >= 1 ? 1 |
832 | : 0; |
833 | constexpr bitcount_t mask = (1 << opbits) - 1; |
834 | constexpr bitcount_t maxrandshift = mask; |
835 | constexpr bitcount_t topspare = opbits; |
836 | constexpr bitcount_t bottomspare = sparebits - topspare; |
837 | constexpr bitcount_t xshift = topspare + (xtypebits+maxrandshift)/2; |
838 | bitcount_t rshift = |
839 | opbits ? bitcount_t(internal >> (bits - opbits)) & mask : 0; |
840 | internal ^= internal >> xshift; |
841 | xtype result = xtype(internal >> (bottomspare - maxrandshift + rshift)); |
842 | return result; |
843 | } |
844 | }; |
845 | |
846 | /* |
847 | * XSH RR -- high xorshift, followed by a random rotate |
848 | * |
849 | * Fast. A good performer. Slightly better statistically than XSH RS. |
850 | */ |
851 | |
852 | template <typename xtype, typename itype> |
853 | struct xsh_rr_mixin { |
854 | static xtype output(itype internal) |
855 | { |
856 | constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8); |
857 | constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype)*8); |
858 | constexpr bitcount_t sparebits = bits - xtypebits; |
859 | constexpr bitcount_t wantedopbits = |
860 | xtypebits >= 128 ? 7 |
861 | : xtypebits >= 64 ? 6 |
862 | : xtypebits >= 32 ? 5 |
863 | : xtypebits >= 16 ? 4 |
864 | : 3; |
865 | constexpr bitcount_t opbits = |
866 | sparebits >= wantedopbits ? wantedopbits |
867 | : sparebits; |
868 | constexpr bitcount_t amplifier = wantedopbits - opbits; |
869 | constexpr bitcount_t mask = (1 << opbits) - 1; |
870 | constexpr bitcount_t topspare = opbits; |
871 | constexpr bitcount_t bottomspare = sparebits - topspare; |
872 | constexpr bitcount_t xshift = (topspare + xtypebits)/2; |
873 | bitcount_t rot = opbits ? bitcount_t(internal >> (bits - opbits)) & mask |
874 | : 0; |
875 | bitcount_t amprot = (rot << amplifier) & mask; |
876 | internal ^= internal >> xshift; |
877 | xtype result = xtype(internal >> bottomspare); |
878 | result = rotr(result, amprot); |
879 | return result; |
880 | } |
881 | }; |
882 | |
883 | /* |
884 | * RXS -- random xorshift |
885 | */ |
886 | |
887 | template <typename xtype, typename itype> |
888 | struct rxs_mixin { |
889 | static xtype output_rxs(itype internal) |
890 | { |
891 | constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8); |
892 | constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype)*8); |
893 | constexpr bitcount_t shift = bits - xtypebits; |
894 | constexpr bitcount_t = (xtypebits - shift)/2; |
895 | bitcount_t rshift = shift > 64+8 ? (internal >> (bits - 6)) & 63 |
896 | : shift > 32+4 ? (internal >> (bits - 5)) & 31 |
897 | : shift > 16+2 ? (internal >> (bits - 4)) & 15 |
898 | : shift > 8+1 ? (internal >> (bits - 3)) & 7 |
899 | : shift > 4+1 ? (internal >> (bits - 2)) & 3 |
900 | : shift > 2+1 ? (internal >> (bits - 1)) & 1 |
901 | : 0; |
902 | internal ^= internal >> (shift + extrashift - rshift); |
903 | xtype result = internal >> rshift; |
904 | return result; |
905 | } |
906 | }; |
907 | |
908 | /* |
909 | * RXS M XS -- random xorshift, mcg multiply, fixed xorshift |
910 | * |
911 | * The most statistically powerful generator, but all those steps |
912 | * make it slower than some of the others. We give it the rottenest jobs. |
913 | * |
914 | * Because it's usually used in contexts where the state type and the |
915 | * result type are the same, it is a permutation and is thus invertable. |
916 | * We thus provide a function to invert it. This function is used to |
917 | * for the "inside out" generator used by the extended generator. |
918 | */ |
919 | |
920 | /* Defined type-based concepts for the multiplication step. They're actually |
921 | * all derived by truncating the 128-bit, which was computed to be a good |
922 | * "universal" constant. |
923 | */ |
924 | |
925 | template <typename T> |
926 | struct mcg_multiplier { |
927 | // Not defined for an arbitrary type |
928 | }; |
929 | |
930 | template <typename T> |
931 | struct mcg_unmultiplier { |
932 | // Not defined for an arbitrary type |
933 | }; |
934 | |
935 | PCG_DEFINE_CONSTANT(uint8_t, mcg, multiplier, 217U) |
936 | PCG_DEFINE_CONSTANT(uint8_t, mcg, unmultiplier, 105U) |
937 | |
938 | PCG_DEFINE_CONSTANT(uint16_t, mcg, multiplier, 62169U) |
939 | PCG_DEFINE_CONSTANT(uint16_t, mcg, unmultiplier, 28009U) |
940 | |
941 | PCG_DEFINE_CONSTANT(uint32_t, mcg, multiplier, 277803737U) |
942 | PCG_DEFINE_CONSTANT(uint32_t, mcg, unmultiplier, 2897767785U) |
943 | |
944 | PCG_DEFINE_CONSTANT(uint64_t, mcg, multiplier, 12605985483714917081ULL) |
945 | PCG_DEFINE_CONSTANT(uint64_t, mcg, unmultiplier, 15009553638781119849ULL) |
946 | |
947 | PCG_DEFINE_CONSTANT(pcg128_t, mcg, multiplier, |
948 | PCG_128BIT_CONSTANT(17766728186571221404ULL, 12605985483714917081ULL)) |
949 | PCG_DEFINE_CONSTANT(pcg128_t, mcg, unmultiplier, |
950 | PCG_128BIT_CONSTANT(14422606686972528997ULL, 15009553638781119849ULL)) |
951 | |
952 | |
953 | template <typename xtype, typename itype> |
954 | struct rxs_m_xs_mixin { |
955 | static xtype output(itype internal) |
956 | { |
957 | constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8); |
958 | constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8); |
959 | constexpr bitcount_t opbits = xtypebits >= 128 ? 6 |
960 | : xtypebits >= 64 ? 5 |
961 | : xtypebits >= 32 ? 4 |
962 | : xtypebits >= 16 ? 3 |
963 | : 2; |
964 | constexpr bitcount_t shift = bits - xtypebits; |
965 | constexpr bitcount_t mask = (1 << opbits) - 1; |
966 | bitcount_t rshift = |
967 | opbits ? bitcount_t(internal >> (bits - opbits)) & mask : 0; |
968 | internal ^= internal >> (opbits + rshift); |
969 | internal *= mcg_multiplier<itype>::multiplier(); |
970 | xtype result = internal >> shift; |
971 | result ^= result >> ((2U*xtypebits+2U)/3U); |
972 | return result; |
973 | } |
974 | |
975 | static itype unoutput(itype internal) |
976 | { |
977 | constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8); |
978 | constexpr bitcount_t opbits = bits >= 128 ? 6 |
979 | : bits >= 64 ? 5 |
980 | : bits >= 32 ? 4 |
981 | : bits >= 16 ? 3 |
982 | : 2; |
983 | constexpr bitcount_t mask = (1 << opbits) - 1; |
984 | |
985 | internal = unxorshift(internal, bits, (2U*bits+2U)/3U); |
986 | |
987 | internal *= mcg_unmultiplier<itype>::unmultiplier(); |
988 | |
989 | bitcount_t rshift = opbits ? (internal >> (bits - opbits)) & mask : 0; |
990 | internal = unxorshift(internal, bits, opbits + rshift); |
991 | |
992 | return internal; |
993 | } |
994 | }; |
995 | |
996 | |
997 | /* |
998 | * RXS M -- random xorshift, mcg multiply |
999 | */ |
1000 | |
1001 | template <typename xtype, typename itype> |
1002 | struct rxs_m_mixin { |
1003 | static xtype output(itype internal) |
1004 | { |
1005 | constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8); |
1006 | constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8); |
1007 | constexpr bitcount_t opbits = xtypebits >= 128 ? 6 |
1008 | : xtypebits >= 64 ? 5 |
1009 | : xtypebits >= 32 ? 4 |
1010 | : xtypebits >= 16 ? 3 |
1011 | : 2; |
1012 | constexpr bitcount_t shift = bits - xtypebits; |
1013 | constexpr bitcount_t mask = (1 << opbits) - 1; |
1014 | bitcount_t rshift = opbits ? (internal >> (bits - opbits)) & mask : 0; |
1015 | internal ^= internal >> (opbits + rshift); |
1016 | internal *= mcg_multiplier<itype>::multiplier(); |
1017 | xtype result = internal >> shift; |
1018 | return result; |
1019 | } |
1020 | }; |
1021 | |
1022 | |
1023 | /* |
1024 | * DXSM -- double xorshift multiply |
1025 | * |
1026 | * This is a new, more powerful output permutation (added in 2019). It's |
1027 | * a more comprehensive scrambling than RXS M, but runs faster on 128-bit |
1028 | * types. Although primarily intended for use at large sizes, also works |
1029 | * at smaller sizes as well. |
1030 | * |
1031 | * This permutation is similar to xorshift multiply hash functions, except |
1032 | * that one of the multipliers is the LCG multiplier (to avoid needing to |
1033 | * have a second constant) and the other is based on the low-order bits. |
1034 | * This latter aspect means that the scrambling applied to the high bits |
1035 | * depends on the low bits, and makes it (to my eye) impractical to back |
1036 | * out the permutation without having the low-order bits. |
1037 | */ |
1038 | |
1039 | template <typename xtype, typename itype> |
1040 | struct dxsm_mixin { |
1041 | inline xtype output(itype internal) |
1042 | { |
1043 | constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8); |
1044 | constexpr bitcount_t itypebits = bitcount_t(sizeof(itype) * 8); |
1045 | static_assert(xtypebits <= itypebits/2, |
1046 | "Output type must be half the size of the state type." ); |
1047 | |
1048 | xtype hi = xtype(internal >> (itypebits - xtypebits)); |
1049 | xtype lo = xtype(internal); |
1050 | |
1051 | lo |= 1; |
1052 | hi ^= hi >> (xtypebits/2); |
1053 | hi *= xtype(cheap_multiplier<itype>::multiplier()); |
1054 | hi ^= hi >> (3*(xtypebits/4)); |
1055 | hi *= lo; |
1056 | return hi; |
1057 | } |
1058 | }; |
1059 | |
1060 | |
1061 | /* |
1062 | * XSL RR -- fixed xorshift (to low bits), random rotate |
1063 | * |
1064 | * Useful for 128-bit types that are split across two CPU registers. |
1065 | */ |
1066 | |
1067 | template <typename xtype, typename itype> |
1068 | struct xsl_rr_mixin { |
1069 | static xtype output(itype internal) |
1070 | { |
1071 | constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8); |
1072 | constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8); |
1073 | constexpr bitcount_t sparebits = bits - xtypebits; |
1074 | constexpr bitcount_t wantedopbits = xtypebits >= 128 ? 7 |
1075 | : xtypebits >= 64 ? 6 |
1076 | : xtypebits >= 32 ? 5 |
1077 | : xtypebits >= 16 ? 4 |
1078 | : 3; |
1079 | constexpr bitcount_t opbits = sparebits >= wantedopbits ? wantedopbits |
1080 | : sparebits; |
1081 | constexpr bitcount_t amplifier = wantedopbits - opbits; |
1082 | constexpr bitcount_t mask = (1 << opbits) - 1; |
1083 | constexpr bitcount_t topspare = sparebits; |
1084 | constexpr bitcount_t bottomspare = sparebits - topspare; |
1085 | constexpr bitcount_t xshift = (topspare + xtypebits) / 2; |
1086 | |
1087 | bitcount_t rot = |
1088 | opbits ? bitcount_t(internal >> (bits - opbits)) & mask : 0; |
1089 | bitcount_t amprot = (rot << amplifier) & mask; |
1090 | internal ^= internal >> xshift; |
1091 | xtype result = xtype(internal >> bottomspare); |
1092 | result = rotr(result, amprot); |
1093 | return result; |
1094 | } |
1095 | }; |
1096 | |
1097 | |
1098 | /* |
1099 | * XSL RR RR -- fixed xorshift (to low bits), random rotate (both parts) |
1100 | * |
1101 | * Useful for 128-bit types that are split across two CPU registers. |
1102 | * If you really want an invertable 128-bit RNG, I guess this is the one. |
1103 | */ |
1104 | |
1105 | template <typename T> struct halfsize_trait {}; |
1106 | template <> struct halfsize_trait<pcg128_t> { typedef uint64_t type; }; |
1107 | template <> struct halfsize_trait<uint64_t> { typedef uint32_t type; }; |
1108 | template <> struct halfsize_trait<uint32_t> { typedef uint16_t type; }; |
1109 | template <> struct halfsize_trait<uint16_t> { typedef uint8_t type; }; |
1110 | |
1111 | template <typename xtype, typename itype> |
1112 | struct xsl_rr_rr_mixin { |
1113 | typedef typename halfsize_trait<itype>::type htype; |
1114 | |
1115 | static itype output(itype internal) |
1116 | { |
1117 | constexpr bitcount_t htypebits = bitcount_t(sizeof(htype) * 8); |
1118 | constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8); |
1119 | constexpr bitcount_t sparebits = bits - htypebits; |
1120 | constexpr bitcount_t wantedopbits = htypebits >= 128 ? 7 |
1121 | : htypebits >= 64 ? 6 |
1122 | : htypebits >= 32 ? 5 |
1123 | : htypebits >= 16 ? 4 |
1124 | : 3; |
1125 | constexpr bitcount_t opbits = sparebits >= wantedopbits ? wantedopbits |
1126 | : sparebits; |
1127 | constexpr bitcount_t amplifier = wantedopbits - opbits; |
1128 | constexpr bitcount_t mask = (1 << opbits) - 1; |
1129 | constexpr bitcount_t topspare = sparebits; |
1130 | constexpr bitcount_t xshift = (topspare + htypebits) / 2; |
1131 | |
1132 | bitcount_t rot = |
1133 | opbits ? bitcount_t(internal >> (bits - opbits)) & mask : 0; |
1134 | bitcount_t amprot = (rot << amplifier) & mask; |
1135 | internal ^= internal >> xshift; |
1136 | htype lowbits = htype(internal); |
1137 | lowbits = rotr(lowbits, amprot); |
1138 | htype highbits = htype(internal >> topspare); |
1139 | bitcount_t rot2 = lowbits & mask; |
1140 | bitcount_t amprot2 = (rot2 << amplifier) & mask; |
1141 | highbits = rotr(highbits, amprot2); |
1142 | return (itype(highbits) << topspare) ^ itype(lowbits); |
1143 | } |
1144 | }; |
1145 | |
1146 | |
1147 | /* |
1148 | * XSH -- fixed xorshift (to high bits) |
1149 | * |
1150 | * You shouldn't use this at 64-bits or less. |
1151 | */ |
1152 | |
1153 | template <typename xtype, typename itype> |
1154 | struct xsh_mixin { |
1155 | static xtype output(itype internal) |
1156 | { |
1157 | constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8); |
1158 | constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8); |
1159 | constexpr bitcount_t sparebits = bits - xtypebits; |
1160 | constexpr bitcount_t topspare = 0; |
1161 | constexpr bitcount_t bottomspare = sparebits - topspare; |
1162 | constexpr bitcount_t xshift = (topspare + xtypebits) / 2; |
1163 | |
1164 | internal ^= internal >> xshift; |
1165 | xtype result = internal >> bottomspare; |
1166 | return result; |
1167 | } |
1168 | }; |
1169 | |
1170 | /* |
1171 | * XSL -- fixed xorshift (to low bits) |
1172 | * |
1173 | * You shouldn't use this at 64-bits or less. |
1174 | */ |
1175 | |
1176 | template <typename xtype, typename itype> |
1177 | struct xsl_mixin { |
1178 | inline xtype output(itype internal) |
1179 | { |
1180 | constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8); |
1181 | constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8); |
1182 | constexpr bitcount_t sparebits = bits - xtypebits; |
1183 | constexpr bitcount_t topspare = sparebits; |
1184 | constexpr bitcount_t bottomspare = sparebits - topspare; |
1185 | constexpr bitcount_t xshift = (topspare + xtypebits) / 2; |
1186 | |
1187 | internal ^= internal >> xshift; |
1188 | xtype result = internal >> bottomspare; |
1189 | return result; |
1190 | } |
1191 | }; |
1192 | |
1193 | |
1194 | /* ---- End of Output Functions ---- */ |
1195 | |
1196 | |
1197 | template <typename baseclass> |
1198 | struct inside_out : private baseclass { |
1199 | inside_out() = delete; |
1200 | |
1201 | typedef typename baseclass::result_type result_type; |
1202 | typedef typename baseclass::state_type state_type; |
1203 | static_assert(sizeof(result_type) == sizeof(state_type), |
1204 | "Require a RNG whose output function is a permutation" ); |
1205 | |
1206 | static bool external_step(result_type& randval, size_t i) |
1207 | { |
1208 | state_type state = baseclass::unoutput(randval); |
1209 | state = state * baseclass::multiplier() + baseclass::increment() |
1210 | + state_type(i*2); |
1211 | result_type result = baseclass::output(state); |
1212 | randval = result; |
1213 | state_type zero = |
1214 | baseclass::is_mcg ? state & state_type(3U) : state_type(0U); |
1215 | return result == zero; |
1216 | } |
1217 | |
1218 | static bool external_advance(result_type& randval, size_t i, |
1219 | result_type delta, bool forwards = true) |
1220 | { |
1221 | state_type state = baseclass::unoutput(randval); |
1222 | state_type mult = baseclass::multiplier(); |
1223 | state_type inc = baseclass::increment() + state_type(i*2); |
1224 | state_type zero = |
1225 | baseclass::is_mcg ? state & state_type(3U) : state_type(0U); |
1226 | state_type dist_to_zero = baseclass::distance(state, zero, mult, inc); |
1227 | bool crosses_zero = |
1228 | forwards ? dist_to_zero <= delta |
1229 | : (-dist_to_zero) <= delta; |
1230 | if (!forwards) |
1231 | delta = -delta; |
1232 | state = baseclass::advance(state, delta, mult, inc); |
1233 | randval = baseclass::output(state); |
1234 | return crosses_zero; |
1235 | } |
1236 | }; |
1237 | |
1238 | |
1239 | template <bitcount_t table_pow2, bitcount_t advance_pow2, typename baseclass, typename extvalclass, bool kdd = true> |
1240 | class pcg_extended : public baseclass { |
1241 | public: |
1242 | typedef typename baseclass::state_type state_type; |
1243 | typedef typename baseclass::result_type result_type; |
1244 | typedef inside_out<extvalclass> insideout; |
1245 | |
1246 | private: |
1247 | static constexpr bitcount_t rtypebits = sizeof(result_type)*8; |
1248 | static constexpr bitcount_t stypebits = sizeof(state_type)*8; |
1249 | |
1250 | static constexpr bitcount_t tick_limit_pow2 = 64U; |
1251 | |
1252 | static constexpr size_t table_size = 1UL << table_pow2; |
1253 | static constexpr size_t table_shift = stypebits - table_pow2; |
1254 | static constexpr state_type table_mask = |
1255 | (state_type(1U) << table_pow2) - state_type(1U); |
1256 | |
1257 | static constexpr bool may_tick = |
1258 | (advance_pow2 < stypebits) && (advance_pow2 < tick_limit_pow2); |
1259 | static constexpr size_t tick_shift = stypebits - advance_pow2; |
1260 | static constexpr state_type tick_mask = |
1261 | may_tick ? state_type( |
1262 | (uint64_t(1) << (advance_pow2*may_tick)) - 1) |
1263 | // ^-- stupidity to appease GCC warnings |
1264 | : ~state_type(0U); |
1265 | |
1266 | static constexpr bool may_tock = stypebits < tick_limit_pow2; |
1267 | |
1268 | result_type data_[table_size]; |
1269 | |
1270 | PCG_NOINLINE void advance_table(); |
1271 | |
1272 | PCG_NOINLINE void advance_table(state_type delta, bool isForwards = true); |
1273 | |
1274 | result_type& get_extended_value() |
1275 | { |
1276 | state_type state = this->state_; |
1277 | if (kdd && baseclass::is_mcg) { |
1278 | // The low order bits of an MCG are constant, so drop them. |
1279 | state >>= 2; |
1280 | } |
1281 | size_t index = kdd ? state & table_mask |
1282 | : state >> table_shift; |
1283 | |
1284 | if (may_tick) { |
1285 | bool tick = kdd ? (state & tick_mask) == state_type(0u) |
1286 | : (state >> tick_shift) == state_type(0u); |
1287 | if (tick) |
1288 | advance_table(); |
1289 | } |
1290 | if (may_tock) { |
1291 | bool tock = state == state_type(0u); |
1292 | if (tock) |
1293 | advance_table(); |
1294 | } |
1295 | return data_[index]; |
1296 | } |
1297 | |
1298 | public: |
1299 | static constexpr size_t period_pow2() |
1300 | { |
1301 | return baseclass::period_pow2() + table_size*extvalclass::period_pow2(); |
1302 | } |
1303 | |
1304 | PCG_ALWAYS_INLINE result_type operator()() |
1305 | { |
1306 | result_type rhs = get_extended_value(); |
1307 | result_type lhs = this->baseclass::operator()(); |
1308 | return lhs ^ rhs; |
1309 | } |
1310 | |
1311 | result_type operator()(result_type upper_bound) |
1312 | { |
1313 | return bounded_rand(*this, upper_bound); |
1314 | } |
1315 | |
1316 | void set(result_type wanted) |
1317 | { |
1318 | result_type& rhs = get_extended_value(); |
1319 | result_type lhs = this->baseclass::operator()(); |
1320 | rhs = lhs ^ wanted; |
1321 | } |
1322 | |
1323 | void advance(state_type distance, bool forwards = true); |
1324 | |
1325 | void backstep(state_type distance) |
1326 | { |
1327 | advance(distance, forwards: false); |
1328 | } |
1329 | |
1330 | pcg_extended(const result_type* data) |
1331 | : baseclass() |
1332 | { |
1333 | datainit(data); |
1334 | } |
1335 | |
1336 | pcg_extended(const result_type* data, state_type seed) |
1337 | : baseclass(seed) |
1338 | { |
1339 | datainit(data); |
1340 | } |
1341 | |
1342 | // This function may or may not exist. It thus has to be a template |
1343 | // to use SFINAE; users don't have to worry about its template-ness. |
1344 | |
1345 | template <typename bc = baseclass> |
1346 | pcg_extended(const result_type* data, state_type seed, |
1347 | typename bc::stream_state stream_seed) |
1348 | : baseclass(seed, stream_seed) |
1349 | { |
1350 | datainit(data); |
1351 | } |
1352 | |
1353 | pcg_extended() |
1354 | : baseclass() |
1355 | { |
1356 | selfinit(); |
1357 | } |
1358 | |
1359 | pcg_extended(state_type seed) |
1360 | : baseclass(seed) |
1361 | { |
1362 | selfinit(); |
1363 | } |
1364 | |
1365 | // This function may or may not exist. It thus has to be a template |
1366 | // to use SFINAE; users don't have to worry about its template-ness. |
1367 | |
1368 | template <typename bc = baseclass> |
1369 | pcg_extended(state_type seed, typename bc::stream_state stream_seed) |
1370 | : baseclass(seed, stream_seed) |
1371 | { |
1372 | selfinit(); |
1373 | } |
1374 | |
1375 | private: |
1376 | void selfinit(); |
1377 | void datainit(const result_type* data); |
1378 | |
1379 | public: |
1380 | |
1381 | template<typename SeedSeq, typename = typename std::enable_if< |
1382 | !std::is_convertible<SeedSeq, result_type>::value |
1383 | && !std::is_convertible<SeedSeq, pcg_extended>::value>::type> |
1384 | pcg_extended(SeedSeq&& seedSeq) |
1385 | : baseclass(seedSeq) |
1386 | { |
1387 | generate_to<table_size>(seedSeq, data_); |
1388 | } |
1389 | |
1390 | template<typename... Args> |
1391 | void seed(Args&&... args) |
1392 | { |
1393 | new (this) pcg_extended(std::forward<Args>(args)...); |
1394 | } |
1395 | |
1396 | template <bitcount_t table_pow2_, bitcount_t advance_pow2_, |
1397 | typename baseclass_, typename extvalclass_, bool kdd_> |
1398 | friend bool operator==(const pcg_extended<table_pow2_, advance_pow2_, |
1399 | baseclass_, extvalclass_, kdd_>&, |
1400 | const pcg_extended<table_pow2_, advance_pow2_, |
1401 | baseclass_, extvalclass_, kdd_>&); |
1402 | |
1403 | template <typename CharT, typename Traits, |
1404 | bitcount_t table_pow2_, bitcount_t advance_pow2_, |
1405 | typename baseclass_, typename extvalclass_, bool kdd_> |
1406 | friend std::basic_ostream<CharT,Traits>& |
1407 | operator<<(std::basic_ostream<CharT,Traits>& out, |
1408 | const pcg_extended<table_pow2_, advance_pow2_, |
1409 | baseclass_, extvalclass_, kdd_>&); |
1410 | |
1411 | template <typename CharT, typename Traits, |
1412 | bitcount_t table_pow2_, bitcount_t advance_pow2_, |
1413 | typename baseclass_, typename extvalclass_, bool kdd_> |
1414 | friend std::basic_istream<CharT,Traits>& |
1415 | operator>>(std::basic_istream<CharT,Traits>& in, |
1416 | pcg_extended<table_pow2_, advance_pow2_, |
1417 | baseclass_, extvalclass_, kdd_>&); |
1418 | |
1419 | }; |
1420 | |
1421 | |
1422 | template <bitcount_t table_pow2, bitcount_t advance_pow2, |
1423 | typename baseclass, typename extvalclass, bool kdd> |
1424 | void pcg_extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd>::datainit( |
1425 | const result_type* data) |
1426 | { |
1427 | for (size_t i = 0; i < table_size; ++i) |
1428 | data_[i] = data[i]; |
1429 | } |
1430 | |
1431 | template <bitcount_t table_pow2, bitcount_t advance_pow2, |
1432 | typename baseclass, typename extvalclass, bool kdd> |
1433 | void pcg_extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd>::selfinit() |
1434 | { |
1435 | // We need to fill the extended table with something, and we have |
1436 | // very little provided data, so we use the base generator to |
1437 | // produce values. Although not ideal (use a seed sequence, folks!), |
1438 | // unexpected correlations are mitigated by |
1439 | // - using XOR differences rather than the number directly |
1440 | // - the way the table is accessed, its values *won't* be accessed |
1441 | // in the same order the were written. |
1442 | // - any strange correlations would only be apparent if we |
1443 | // were to backstep the generator so that the base generator |
1444 | // was generating the same values again |
1445 | result_type lhs = baseclass::operator()(); |
1446 | result_type rhs = baseclass::operator()(); |
1447 | result_type xdiff = lhs - rhs; |
1448 | for (size_t i = 0; i < table_size; ++i) { |
1449 | data_[i] = baseclass::operator()() ^ xdiff; |
1450 | } |
1451 | } |
1452 | |
1453 | template <bitcount_t table_pow2, bitcount_t advance_pow2, |
1454 | typename baseclass, typename extvalclass, bool kdd> |
1455 | bool operator==(const pcg_extended<table_pow2, advance_pow2, |
1456 | baseclass, extvalclass, kdd>& lhs, |
1457 | const pcg_extended<table_pow2, advance_pow2, |
1458 | baseclass, extvalclass, kdd>& rhs) |
1459 | { |
1460 | auto& base_lhs = static_cast<const baseclass&>(lhs); |
1461 | auto& base_rhs = static_cast<const baseclass&>(rhs); |
1462 | return base_lhs == base_rhs |
1463 | && std::equal( |
1464 | std::begin(lhs.data_), std::end(lhs.data_), |
1465 | std::begin(rhs.data_) |
1466 | ); |
1467 | } |
1468 | |
1469 | template <bitcount_t table_pow2, bitcount_t advance_pow2, |
1470 | typename baseclass, typename extvalclass, bool kdd> |
1471 | inline bool operator!=(const pcg_extended<table_pow2, advance_pow2, |
1472 | baseclass, extvalclass, kdd>& lhs, |
1473 | const pcg_extended<table_pow2, advance_pow2, |
1474 | baseclass, extvalclass, kdd>& rhs) |
1475 | { |
1476 | return !operator==(lhs, rhs); |
1477 | } |
1478 | |
1479 | template <typename CharT, typename Traits, |
1480 | bitcount_t table_pow2, bitcount_t advance_pow2, |
1481 | typename baseclass, typename extvalclass, bool kdd> |
1482 | std::basic_ostream<CharT,Traits>& |
1483 | operator<<(std::basic_ostream<CharT,Traits>& out, |
1484 | const pcg_extended<table_pow2, advance_pow2, |
1485 | baseclass, extvalclass, kdd>& rng) |
1486 | { |
1487 | auto orig_flags = out.flags(std::ios_base::dec | std::ios_base::left); |
1488 | auto space = out.widen(' '); |
1489 | auto orig_fill = out.fill(); |
1490 | |
1491 | out << rng.multiplier() << space |
1492 | << rng.increment() << space |
1493 | << rng.state_; |
1494 | |
1495 | for (const auto& datum : rng.data_) |
1496 | out << space << datum; |
1497 | |
1498 | out.flags(orig_flags); |
1499 | out.fill(orig_fill); |
1500 | return out; |
1501 | } |
1502 | |
1503 | template <typename CharT, typename Traits, |
1504 | bitcount_t table_pow2, bitcount_t advance_pow2, |
1505 | typename baseclass, typename extvalclass, bool kdd> |
1506 | std::basic_istream<CharT,Traits>& |
1507 | operator>>(std::basic_istream<CharT,Traits>& in, |
1508 | pcg_extended<table_pow2, advance_pow2, |
1509 | baseclass, extvalclass, kdd>& rng) |
1510 | { |
1511 | pcg_extended<table_pow2, advance_pow2, baseclass, extvalclass> new_rng; |
1512 | auto& base_rng = static_cast<baseclass&>(new_rng); |
1513 | in >> base_rng; |
1514 | |
1515 | if (in.fail()) |
1516 | return in; |
1517 | |
1518 | auto orig_flags = in.flags(std::ios_base::dec | std::ios_base::skipws); |
1519 | |
1520 | for (auto& datum : new_rng.data_) { |
1521 | in >> datum; |
1522 | if (in.fail()) |
1523 | goto bail; |
1524 | } |
1525 | |
1526 | rng = new_rng; |
1527 | |
1528 | bail: |
1529 | in.flags(orig_flags); |
1530 | return in; |
1531 | } |
1532 | |
1533 | |
1534 | |
1535 | template <bitcount_t table_pow2, bitcount_t advance_pow2, |
1536 | typename baseclass, typename extvalclass, bool kdd> |
1537 | void |
1538 | pcg_extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd>::advance_table() |
1539 | { |
1540 | bool carry = false; |
1541 | for (size_t i = 0; i < table_size; ++i) { |
1542 | if (carry) { |
1543 | carry = insideout::external_step(data_[i],i+1); |
1544 | } |
1545 | bool carry2 = insideout::external_step(data_[i],i+1); |
1546 | carry = carry || carry2; |
1547 | } |
1548 | } |
1549 | |
1550 | template <bitcount_t table_pow2, bitcount_t advance_pow2, |
1551 | typename baseclass, typename extvalclass, bool kdd> |
1552 | void |
1553 | pcg_extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd>::advance_table( |
1554 | state_type delta, bool isForwards) |
1555 | { |
1556 | typedef typename baseclass::state_type base_state_t; |
1557 | typedef typename extvalclass::state_type ext_state_t; |
1558 | constexpr bitcount_t basebits = sizeof(base_state_t)*8; |
1559 | constexpr bitcount_t extbits = sizeof(ext_state_t)*8; |
1560 | static_assert(basebits <= extbits || advance_pow2 > 0, |
1561 | "Current implementation might overflow its carry" ); |
1562 | |
1563 | base_state_t carry = 0; |
1564 | for (size_t i = 0; i < table_size; ++i) { |
1565 | base_state_t total_delta = carry + delta; |
1566 | ext_state_t trunc_delta = ext_state_t(total_delta); |
1567 | if (basebits > extbits) { |
1568 | carry = total_delta >> extbits; |
1569 | } else { |
1570 | carry = 0; |
1571 | } |
1572 | carry += |
1573 | insideout::external_advance(data_[i],i+1, trunc_delta, isForwards); |
1574 | } |
1575 | } |
1576 | |
1577 | template <bitcount_t table_pow2, bitcount_t advance_pow2, |
1578 | typename baseclass, typename extvalclass, bool kdd> |
1579 | void pcg_extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd>::advance( |
1580 | state_type distance, bool forwards) |
1581 | { |
1582 | static_assert(kdd, |
1583 | "Efficient advance is too hard for non-kdd extension. " |
1584 | "For a weak advance, cast to base class" ); |
1585 | state_type zero = |
1586 | baseclass::is_mcg ? this->state_ & state_type(3U) : state_type(0U); |
1587 | if (may_tick) { |
1588 | state_type ticks = distance >> (advance_pow2*may_tick); |
1589 | // ^-- stupidity to appease GCC |
1590 | // warnings |
1591 | state_type adv_mask = |
1592 | baseclass::is_mcg ? tick_mask << 2 : tick_mask; |
1593 | state_type next_advance_distance = this->distance(zero, adv_mask); |
1594 | if (!forwards) |
1595 | next_advance_distance = (-next_advance_distance) & tick_mask; |
1596 | if (next_advance_distance < (distance & tick_mask)) { |
1597 | ++ticks; |
1598 | } |
1599 | if (ticks) |
1600 | advance_table(ticks, forwards); |
1601 | } |
1602 | if (forwards) { |
1603 | if (may_tock && this->distance(zero) <= distance) |
1604 | advance_table(); |
1605 | baseclass::advance(distance); |
1606 | } else { |
1607 | if (may_tock && -(this->distance(zero)) <= distance) |
1608 | advance_table(state_type(1U), false); |
1609 | baseclass::advance(-distance); |
1610 | } |
1611 | } |
1612 | |
1613 | } // namespace pcg_detail |
1614 | |
1615 | namespace pcg_engines { |
1616 | |
1617 | using namespace pcg_detail; |
1618 | |
1619 | /* Predefined types for XSH RS */ |
1620 | |
1621 | typedef oneseq_base<uint8_t, uint16_t, xsh_rs_mixin> oneseq_xsh_rs_16_8; |
1622 | typedef oneseq_base<uint16_t, uint32_t, xsh_rs_mixin> oneseq_xsh_rs_32_16; |
1623 | typedef oneseq_base<uint32_t, uint64_t, xsh_rs_mixin> oneseq_xsh_rs_64_32; |
1624 | typedef oneseq_base<uint64_t, pcg128_t, xsh_rs_mixin> oneseq_xsh_rs_128_64; |
1625 | typedef oneseq_base<uint64_t, pcg128_t, xsh_rs_mixin, true, cheap_multiplier> |
1626 | cm_oneseq_xsh_rs_128_64; |
1627 | |
1628 | typedef unique_base<uint8_t, uint16_t, xsh_rs_mixin> unique_xsh_rs_16_8; |
1629 | typedef unique_base<uint16_t, uint32_t, xsh_rs_mixin> unique_xsh_rs_32_16; |
1630 | typedef unique_base<uint32_t, uint64_t, xsh_rs_mixin> unique_xsh_rs_64_32; |
1631 | typedef unique_base<uint64_t, pcg128_t, xsh_rs_mixin> unique_xsh_rs_128_64; |
1632 | typedef unique_base<uint64_t, pcg128_t, xsh_rs_mixin, true, cheap_multiplier> |
1633 | cm_unique_xsh_rs_128_64; |
1634 | |
1635 | typedef setseq_base<uint8_t, uint16_t, xsh_rs_mixin> setseq_xsh_rs_16_8; |
1636 | typedef setseq_base<uint16_t, uint32_t, xsh_rs_mixin> setseq_xsh_rs_32_16; |
1637 | typedef setseq_base<uint32_t, uint64_t, xsh_rs_mixin> setseq_xsh_rs_64_32; |
1638 | typedef setseq_base<uint64_t, pcg128_t, xsh_rs_mixin> setseq_xsh_rs_128_64; |
1639 | typedef setseq_base<uint64_t, pcg128_t, xsh_rs_mixin, true, cheap_multiplier> |
1640 | cm_setseq_xsh_rs_128_64; |
1641 | |
1642 | typedef mcg_base<uint8_t, uint16_t, xsh_rs_mixin> mcg_xsh_rs_16_8; |
1643 | typedef mcg_base<uint16_t, uint32_t, xsh_rs_mixin> mcg_xsh_rs_32_16; |
1644 | typedef mcg_base<uint32_t, uint64_t, xsh_rs_mixin> mcg_xsh_rs_64_32; |
1645 | typedef mcg_base<uint64_t, pcg128_t, xsh_rs_mixin> mcg_xsh_rs_128_64; |
1646 | typedef mcg_base<uint64_t, pcg128_t, xsh_rs_mixin, true, cheap_multiplier> |
1647 | cm_mcg_xsh_rs_128_64; |
1648 | |
1649 | /* Predefined types for XSH RR */ |
1650 | |
1651 | typedef oneseq_base<uint8_t, uint16_t, xsh_rr_mixin> oneseq_xsh_rr_16_8; |
1652 | typedef oneseq_base<uint16_t, uint32_t, xsh_rr_mixin> oneseq_xsh_rr_32_16; |
1653 | typedef oneseq_base<uint32_t, uint64_t, xsh_rr_mixin> oneseq_xsh_rr_64_32; |
1654 | typedef oneseq_base<uint64_t, pcg128_t, xsh_rr_mixin> oneseq_xsh_rr_128_64; |
1655 | typedef oneseq_base<uint64_t, pcg128_t, xsh_rr_mixin, true, cheap_multiplier> |
1656 | cm_oneseq_xsh_rr_128_64; |
1657 | |
1658 | typedef unique_base<uint8_t, uint16_t, xsh_rr_mixin> unique_xsh_rr_16_8; |
1659 | typedef unique_base<uint16_t, uint32_t, xsh_rr_mixin> unique_xsh_rr_32_16; |
1660 | typedef unique_base<uint32_t, uint64_t, xsh_rr_mixin> unique_xsh_rr_64_32; |
1661 | typedef unique_base<uint64_t, pcg128_t, xsh_rr_mixin> unique_xsh_rr_128_64; |
1662 | typedef unique_base<uint64_t, pcg128_t, xsh_rr_mixin, true, cheap_multiplier> |
1663 | cm_unique_xsh_rr_128_64; |
1664 | |
1665 | typedef setseq_base<uint8_t, uint16_t, xsh_rr_mixin> setseq_xsh_rr_16_8; |
1666 | typedef setseq_base<uint16_t, uint32_t, xsh_rr_mixin> setseq_xsh_rr_32_16; |
1667 | typedef setseq_base<uint32_t, uint64_t, xsh_rr_mixin> setseq_xsh_rr_64_32; |
1668 | typedef setseq_base<uint64_t, pcg128_t, xsh_rr_mixin> setseq_xsh_rr_128_64; |
1669 | typedef setseq_base<uint64_t, pcg128_t, xsh_rr_mixin, true, cheap_multiplier> |
1670 | cm_setseq_xsh_rr_128_64; |
1671 | |
1672 | typedef mcg_base<uint8_t, uint16_t, xsh_rr_mixin> mcg_xsh_rr_16_8; |
1673 | typedef mcg_base<uint16_t, uint32_t, xsh_rr_mixin> mcg_xsh_rr_32_16; |
1674 | typedef mcg_base<uint32_t, uint64_t, xsh_rr_mixin> mcg_xsh_rr_64_32; |
1675 | typedef mcg_base<uint64_t, pcg128_t, xsh_rr_mixin> mcg_xsh_rr_128_64; |
1676 | typedef mcg_base<uint64_t, pcg128_t, xsh_rr_mixin, true, cheap_multiplier> |
1677 | cm_mcg_xsh_rr_128_64; |
1678 | |
1679 | |
1680 | /* Predefined types for RXS M XS */ |
1681 | |
1682 | typedef oneseq_base<uint8_t, uint8_t, rxs_m_xs_mixin> oneseq_rxs_m_xs_8_8; |
1683 | typedef oneseq_base<uint16_t, uint16_t, rxs_m_xs_mixin> oneseq_rxs_m_xs_16_16; |
1684 | typedef oneseq_base<uint32_t, uint32_t, rxs_m_xs_mixin> oneseq_rxs_m_xs_32_32; |
1685 | typedef oneseq_base<uint64_t, uint64_t, rxs_m_xs_mixin> oneseq_rxs_m_xs_64_64; |
1686 | typedef oneseq_base<pcg128_t, pcg128_t, rxs_m_xs_mixin> |
1687 | oneseq_rxs_m_xs_128_128; |
1688 | typedef oneseq_base<pcg128_t, pcg128_t, rxs_m_xs_mixin, true, cheap_multiplier> |
1689 | cm_oneseq_rxs_m_xs_128_128; |
1690 | |
1691 | typedef unique_base<uint8_t, uint8_t, rxs_m_xs_mixin> unique_rxs_m_xs_8_8; |
1692 | typedef unique_base<uint16_t, uint16_t, rxs_m_xs_mixin> unique_rxs_m_xs_16_16; |
1693 | typedef unique_base<uint32_t, uint32_t, rxs_m_xs_mixin> unique_rxs_m_xs_32_32; |
1694 | typedef unique_base<uint64_t, uint64_t, rxs_m_xs_mixin> unique_rxs_m_xs_64_64; |
1695 | typedef unique_base<pcg128_t, pcg128_t, rxs_m_xs_mixin> unique_rxs_m_xs_128_128; |
1696 | typedef unique_base<pcg128_t, pcg128_t, rxs_m_xs_mixin, true, cheap_multiplier> |
1697 | cm_unique_rxs_m_xs_128_128; |
1698 | |
1699 | typedef setseq_base<uint8_t, uint8_t, rxs_m_xs_mixin> setseq_rxs_m_xs_8_8; |
1700 | typedef setseq_base<uint16_t, uint16_t, rxs_m_xs_mixin> setseq_rxs_m_xs_16_16; |
1701 | typedef setseq_base<uint32_t, uint32_t, rxs_m_xs_mixin> setseq_rxs_m_xs_32_32; |
1702 | typedef setseq_base<uint64_t, uint64_t, rxs_m_xs_mixin> setseq_rxs_m_xs_64_64; |
1703 | typedef setseq_base<pcg128_t, pcg128_t, rxs_m_xs_mixin> setseq_rxs_m_xs_128_128; |
1704 | typedef setseq_base<pcg128_t, pcg128_t, rxs_m_xs_mixin, true, cheap_multiplier> |
1705 | cm_setseq_rxs_m_xs_128_128; |
1706 | |
1707 | // MCG versions don't make sense here, so aren't defined. |
1708 | |
1709 | /* Predefined types for RXS M */ |
1710 | |
1711 | typedef oneseq_base<uint8_t, uint16_t, rxs_m_mixin> oneseq_rxs_m_16_8; |
1712 | typedef oneseq_base<uint16_t, uint32_t, rxs_m_mixin> oneseq_rxs_m_32_16; |
1713 | typedef oneseq_base<uint32_t, uint64_t, rxs_m_mixin> oneseq_rxs_m_64_32; |
1714 | typedef oneseq_base<uint64_t, pcg128_t, rxs_m_mixin> oneseq_rxs_m_128_64; |
1715 | typedef oneseq_base<uint64_t, pcg128_t, rxs_m_mixin, true, cheap_multiplier> |
1716 | cm_oneseq_rxs_m_128_64; |
1717 | |
1718 | typedef unique_base<uint8_t, uint16_t, rxs_m_mixin> unique_rxs_m_16_8; |
1719 | typedef unique_base<uint16_t, uint32_t, rxs_m_mixin> unique_rxs_m_32_16; |
1720 | typedef unique_base<uint32_t, uint64_t, rxs_m_mixin> unique_rxs_m_64_32; |
1721 | typedef unique_base<uint64_t, pcg128_t, rxs_m_mixin> unique_rxs_m_128_64; |
1722 | typedef unique_base<uint64_t, pcg128_t, rxs_m_mixin, true, cheap_multiplier> |
1723 | cm_unique_rxs_m_128_64; |
1724 | |
1725 | typedef setseq_base<uint8_t, uint16_t, rxs_m_mixin> setseq_rxs_m_16_8; |
1726 | typedef setseq_base<uint16_t, uint32_t, rxs_m_mixin> setseq_rxs_m_32_16; |
1727 | typedef setseq_base<uint32_t, uint64_t, rxs_m_mixin> setseq_rxs_m_64_32; |
1728 | typedef setseq_base<uint64_t, pcg128_t, rxs_m_mixin> setseq_rxs_m_128_64; |
1729 | typedef setseq_base<uint64_t, pcg128_t, rxs_m_mixin, true, cheap_multiplier> |
1730 | cm_setseq_rxs_m_128_64; |
1731 | |
1732 | typedef mcg_base<uint8_t, uint16_t, rxs_m_mixin> mcg_rxs_m_16_8; |
1733 | typedef mcg_base<uint16_t, uint32_t, rxs_m_mixin> mcg_rxs_m_32_16; |
1734 | typedef mcg_base<uint32_t, uint64_t, rxs_m_mixin> mcg_rxs_m_64_32; |
1735 | typedef mcg_base<uint64_t, pcg128_t, rxs_m_mixin> mcg_rxs_m_128_64; |
1736 | typedef mcg_base<uint64_t, pcg128_t, rxs_m_mixin, true, cheap_multiplier> |
1737 | cm_mcg_rxs_m_128_64; |
1738 | |
1739 | /* Predefined types for DXSM */ |
1740 | |
1741 | typedef oneseq_base<uint8_t, uint16_t, dxsm_mixin> oneseq_dxsm_16_8; |
1742 | typedef oneseq_base<uint16_t, uint32_t, dxsm_mixin> oneseq_dxsm_32_16; |
1743 | typedef oneseq_base<uint32_t, uint64_t, dxsm_mixin> oneseq_dxsm_64_32; |
1744 | typedef oneseq_base<uint64_t, pcg128_t, dxsm_mixin> oneseq_dxsm_128_64; |
1745 | typedef oneseq_base<uint64_t, pcg128_t, dxsm_mixin, true, cheap_multiplier> |
1746 | cm_oneseq_dxsm_128_64; |
1747 | |
1748 | typedef unique_base<uint8_t, uint16_t, dxsm_mixin> unique_dxsm_16_8; |
1749 | typedef unique_base<uint16_t, uint32_t, dxsm_mixin> unique_dxsm_32_16; |
1750 | typedef unique_base<uint32_t, uint64_t, dxsm_mixin> unique_dxsm_64_32; |
1751 | typedef unique_base<uint64_t, pcg128_t, dxsm_mixin> unique_dxsm_128_64; |
1752 | typedef unique_base<uint64_t, pcg128_t, dxsm_mixin, true, cheap_multiplier> |
1753 | cm_unique_dxsm_128_64; |
1754 | |
1755 | typedef setseq_base<uint8_t, uint16_t, dxsm_mixin> setseq_dxsm_16_8; |
1756 | typedef setseq_base<uint16_t, uint32_t, dxsm_mixin> setseq_dxsm_32_16; |
1757 | typedef setseq_base<uint32_t, uint64_t, dxsm_mixin> setseq_dxsm_64_32; |
1758 | typedef setseq_base<uint64_t, pcg128_t, dxsm_mixin> setseq_dxsm_128_64; |
1759 | typedef setseq_base<uint64_t, pcg128_t, dxsm_mixin, true, cheap_multiplier> |
1760 | cm_setseq_dxsm_128_64; |
1761 | |
1762 | typedef mcg_base<uint8_t, uint16_t, dxsm_mixin> mcg_dxsm_16_8; |
1763 | typedef mcg_base<uint16_t, uint32_t, dxsm_mixin> mcg_dxsm_32_16; |
1764 | typedef mcg_base<uint32_t, uint64_t, dxsm_mixin> mcg_dxsm_64_32; |
1765 | typedef mcg_base<uint64_t, pcg128_t, dxsm_mixin> mcg_dxsm_128_64; |
1766 | typedef mcg_base<uint64_t, pcg128_t, dxsm_mixin, true, cheap_multiplier> |
1767 | cm_mcg_dxsm_128_64; |
1768 | |
1769 | /* Predefined types for XSL RR (only defined for "large" types) */ |
1770 | |
1771 | typedef oneseq_base<uint32_t, uint64_t, xsl_rr_mixin> oneseq_xsl_rr_64_32; |
1772 | typedef oneseq_base<uint64_t, pcg128_t, xsl_rr_mixin> oneseq_xsl_rr_128_64; |
1773 | typedef oneseq_base<uint64_t, pcg128_t, xsl_rr_mixin, true, cheap_multiplier> |
1774 | cm_oneseq_xsl_rr_128_64; |
1775 | |
1776 | typedef unique_base<uint32_t, uint64_t, xsl_rr_mixin> unique_xsl_rr_64_32; |
1777 | typedef unique_base<uint64_t, pcg128_t, xsl_rr_mixin> unique_xsl_rr_128_64; |
1778 | typedef unique_base<uint64_t, pcg128_t, xsl_rr_mixin, true, cheap_multiplier> |
1779 | cm_unique_xsl_rr_128_64; |
1780 | |
1781 | typedef setseq_base<uint32_t, uint64_t, xsl_rr_mixin> setseq_xsl_rr_64_32; |
1782 | typedef setseq_base<uint64_t, pcg128_t, xsl_rr_mixin> setseq_xsl_rr_128_64; |
1783 | typedef setseq_base<uint64_t, pcg128_t, xsl_rr_mixin, true, cheap_multiplier> |
1784 | cm_setseq_xsl_rr_128_64; |
1785 | |
1786 | typedef mcg_base<uint32_t, uint64_t, xsl_rr_mixin> mcg_xsl_rr_64_32; |
1787 | typedef mcg_base<uint64_t, pcg128_t, xsl_rr_mixin> mcg_xsl_rr_128_64; |
1788 | typedef mcg_base<uint64_t, pcg128_t, xsl_rr_mixin, true, cheap_multiplier> |
1789 | cm_mcg_xsl_rr_128_64; |
1790 | |
1791 | |
1792 | /* Predefined types for XSL RR RR (only defined for "large" types) */ |
1793 | |
1794 | typedef oneseq_base<uint64_t, uint64_t, xsl_rr_rr_mixin> |
1795 | oneseq_xsl_rr_rr_64_64; |
1796 | typedef oneseq_base<pcg128_t, pcg128_t, xsl_rr_rr_mixin> |
1797 | oneseq_xsl_rr_rr_128_128; |
1798 | typedef oneseq_base<pcg128_t, pcg128_t, xsl_rr_rr_mixin, true, cheap_multiplier> |
1799 | cm_oneseq_xsl_rr_rr_128_128; |
1800 | |
1801 | typedef unique_base<uint64_t, uint64_t, xsl_rr_rr_mixin> |
1802 | unique_xsl_rr_rr_64_64; |
1803 | typedef unique_base<pcg128_t, pcg128_t, xsl_rr_rr_mixin> |
1804 | unique_xsl_rr_rr_128_128; |
1805 | typedef unique_base<pcg128_t, pcg128_t, xsl_rr_rr_mixin, true, cheap_multiplier> |
1806 | cm_unique_xsl_rr_rr_128_128; |
1807 | |
1808 | typedef setseq_base<uint64_t, uint64_t, xsl_rr_rr_mixin> |
1809 | setseq_xsl_rr_rr_64_64; |
1810 | typedef setseq_base<pcg128_t, pcg128_t, xsl_rr_rr_mixin> |
1811 | setseq_xsl_rr_rr_128_128; |
1812 | typedef setseq_base<pcg128_t, pcg128_t, xsl_rr_rr_mixin, true, cheap_multiplier> |
1813 | cm_setseq_xsl_rr_rr_128_128; |
1814 | |
1815 | // MCG versions don't make sense here, so aren't defined. |
1816 | |
1817 | /* Extended generators */ |
1818 | |
1819 | template <bitcount_t table_pow2, bitcount_t advance_pow2, |
1820 | typename BaseRNG, bool kdd = true> |
1821 | using ext_std8 = pcg_extended<table_pow2, advance_pow2, BaseRNG, |
1822 | oneseq_rxs_m_xs_8_8, kdd>; |
1823 | |
1824 | template <bitcount_t table_pow2, bitcount_t advance_pow2, |
1825 | typename BaseRNG, bool kdd = true> |
1826 | using ext_std16 = pcg_extended<table_pow2, advance_pow2, BaseRNG, |
1827 | oneseq_rxs_m_xs_16_16, kdd>; |
1828 | |
1829 | template <bitcount_t table_pow2, bitcount_t advance_pow2, |
1830 | typename BaseRNG, bool kdd = true> |
1831 | using ext_std32 = pcg_extended<table_pow2, advance_pow2, BaseRNG, |
1832 | oneseq_rxs_m_xs_32_32, kdd>; |
1833 | |
1834 | template <bitcount_t table_pow2, bitcount_t advance_pow2, |
1835 | typename BaseRNG, bool kdd = true> |
1836 | using ext_std64 = pcg_extended<table_pow2, advance_pow2, BaseRNG, |
1837 | oneseq_rxs_m_xs_64_64, kdd>; |
1838 | |
1839 | |
1840 | template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true> |
1841 | using ext_oneseq_rxs_m_xs_32_32 = |
1842 | ext_std32<table_pow2, advance_pow2, oneseq_rxs_m_xs_32_32, kdd>; |
1843 | |
1844 | template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true> |
1845 | using ext_mcg_xsh_rs_64_32 = |
1846 | ext_std32<table_pow2, advance_pow2, mcg_xsh_rs_64_32, kdd>; |
1847 | |
1848 | template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true> |
1849 | using ext_oneseq_xsh_rs_64_32 = |
1850 | ext_std32<table_pow2, advance_pow2, oneseq_xsh_rs_64_32, kdd>; |
1851 | |
1852 | template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true> |
1853 | using ext_setseq_xsh_rr_64_32 = |
1854 | ext_std32<table_pow2, advance_pow2, setseq_xsh_rr_64_32, kdd>; |
1855 | |
1856 | template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true> |
1857 | using ext_mcg_xsl_rr_128_64 = |
1858 | ext_std64<table_pow2, advance_pow2, mcg_xsl_rr_128_64, kdd>; |
1859 | |
1860 | template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true> |
1861 | using ext_oneseq_xsl_rr_128_64 = |
1862 | ext_std64<table_pow2, advance_pow2, oneseq_xsl_rr_128_64, kdd>; |
1863 | |
1864 | template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true> |
1865 | using ext_setseq_xsl_rr_128_64 = |
1866 | ext_std64<table_pow2, advance_pow2, setseq_xsl_rr_128_64, kdd>; |
1867 | |
1868 | } // namespace pcg_engines |
1869 | |
1870 | typedef pcg_engines::setseq_xsh_rr_64_32 pcg32; |
1871 | typedef pcg_engines::oneseq_xsh_rr_64_32 pcg32_oneseq; |
1872 | typedef pcg_engines::unique_xsh_rr_64_32 pcg32_unique; |
1873 | typedef pcg_engines::mcg_xsh_rs_64_32 pcg32_fast; |
1874 | |
1875 | typedef pcg_engines::setseq_xsl_rr_128_64 pcg64; |
1876 | typedef pcg_engines::oneseq_xsl_rr_128_64 pcg64_oneseq; |
1877 | typedef pcg_engines::unique_xsl_rr_128_64 pcg64_unique; |
1878 | typedef pcg_engines::mcg_xsl_rr_128_64 pcg64_fast; |
1879 | |
1880 | typedef pcg_engines::setseq_rxs_m_xs_8_8 pcg8_once_insecure; |
1881 | typedef pcg_engines::setseq_rxs_m_xs_16_16 pcg16_once_insecure; |
1882 | typedef pcg_engines::setseq_rxs_m_xs_32_32 pcg32_once_insecure; |
1883 | typedef pcg_engines::setseq_rxs_m_xs_64_64 pcg64_once_insecure; |
1884 | typedef pcg_engines::setseq_xsl_rr_rr_128_128 pcg128_once_insecure; |
1885 | |
1886 | typedef pcg_engines::oneseq_rxs_m_xs_8_8 pcg8_oneseq_once_insecure; |
1887 | typedef pcg_engines::oneseq_rxs_m_xs_16_16 pcg16_oneseq_once_insecure; |
1888 | typedef pcg_engines::oneseq_rxs_m_xs_32_32 pcg32_oneseq_once_insecure; |
1889 | typedef pcg_engines::oneseq_rxs_m_xs_64_64 pcg64_oneseq_once_insecure; |
1890 | typedef pcg_engines::oneseq_xsl_rr_rr_128_128 pcg128_oneseq_once_insecure; |
1891 | |
1892 | |
1893 | // These two extended RNGs provide two-dimensionally equidistributed |
1894 | // 32-bit generators. pcg32_k2_fast occupies the same space as pcg64, |
1895 | // and can be called twice to generate 64 bits, but does not required |
1896 | // 128-bit math; on 32-bit systems, it's faster than pcg64 as well. |
1897 | |
1898 | typedef pcg_engines::ext_setseq_xsh_rr_64_32<1,16,true> pcg32_k2; |
1899 | typedef pcg_engines::ext_oneseq_xsh_rs_64_32<1,32,true> pcg32_k2_fast; |
1900 | |
1901 | // These eight extended RNGs have about as much state as arc4random |
1902 | // |
1903 | // - the k variants are k-dimensionally equidistributed |
1904 | // - the c variants offer better crypographic security |
1905 | // |
1906 | // (just how good the cryptographic security is is an open question) |
1907 | |
1908 | typedef pcg_engines::ext_setseq_xsh_rr_64_32<6,16,true> pcg32_k64; |
1909 | typedef pcg_engines::ext_mcg_xsh_rs_64_32<6,32,true> pcg32_k64_oneseq; |
1910 | typedef pcg_engines::ext_oneseq_xsh_rs_64_32<6,32,true> pcg32_k64_fast; |
1911 | |
1912 | typedef pcg_engines::ext_setseq_xsh_rr_64_32<6,16,false> pcg32_c64; |
1913 | typedef pcg_engines::ext_oneseq_xsh_rs_64_32<6,32,false> pcg32_c64_oneseq; |
1914 | typedef pcg_engines::ext_mcg_xsh_rs_64_32<6,32,false> pcg32_c64_fast; |
1915 | |
1916 | typedef pcg_engines::ext_setseq_xsl_rr_128_64<5,16,true> pcg64_k32; |
1917 | typedef pcg_engines::ext_oneseq_xsl_rr_128_64<5,128,true> pcg64_k32_oneseq; |
1918 | typedef pcg_engines::ext_mcg_xsl_rr_128_64<5,128,true> pcg64_k32_fast; |
1919 | |
1920 | typedef pcg_engines::ext_setseq_xsl_rr_128_64<5,16,false> pcg64_c32; |
1921 | typedef pcg_engines::ext_oneseq_xsl_rr_128_64<5,128,false> pcg64_c32_oneseq; |
1922 | typedef pcg_engines::ext_mcg_xsl_rr_128_64<5,128,false> pcg64_c32_fast; |
1923 | |
1924 | // These eight extended RNGs have more state than the Mersenne twister |
1925 | // |
1926 | // - the k variants are k-dimensionally equidistributed |
1927 | // - the c variants offer better crypographic security |
1928 | // |
1929 | // (just how good the cryptographic security is is an open question) |
1930 | |
1931 | typedef pcg_engines::ext_setseq_xsh_rr_64_32<10,16,true> pcg32_k1024; |
1932 | typedef pcg_engines::ext_oneseq_xsh_rs_64_32<10,32,true> pcg32_k1024_fast; |
1933 | |
1934 | typedef pcg_engines::ext_setseq_xsh_rr_64_32<10,16,false> pcg32_c1024; |
1935 | typedef pcg_engines::ext_oneseq_xsh_rs_64_32<10,32,false> pcg32_c1024_fast; |
1936 | |
1937 | typedef pcg_engines::ext_setseq_xsl_rr_128_64<10,16,true> pcg64_k1024; |
1938 | typedef pcg_engines::ext_oneseq_xsl_rr_128_64<10,128,true> pcg64_k1024_fast; |
1939 | |
1940 | typedef pcg_engines::ext_setseq_xsl_rr_128_64<10,16,false> pcg64_c1024; |
1941 | typedef pcg_engines::ext_oneseq_xsl_rr_128_64<10,128,false> pcg64_c1024_fast; |
1942 | |
1943 | // These generators have an insanely huge period (2^524352), and is suitable |
1944 | // for silly party tricks, such as dumping out 64 KB ZIP files at an arbitrary |
1945 | // point in the future. [Actually, over the full period of the generator, it |
1946 | // will produce every 64 KB ZIP file 2^64 times!] |
1947 | |
1948 | typedef pcg_engines::ext_setseq_xsh_rr_64_32<14,16,true> pcg32_k16384; |
1949 | typedef pcg_engines::ext_oneseq_xsh_rs_64_32<14,32,true> pcg32_k16384_fast; |
1950 | |
1951 | #ifdef _MSC_VER |
1952 | #pragma warning(default:4146) |
1953 | #endif |
1954 | |
1955 | #endif // PCG_RAND_HPP_INCLUDED |
1956 | |