1 | // Copyright 2007, Google Inc. |
2 | // All rights reserved. |
3 | // |
4 | // Redistribution and use in source and binary forms, with or without |
5 | // modification, are permitted provided that the following conditions are |
6 | // met: |
7 | // |
8 | // * Redistributions of source code must retain the above copyright |
9 | // notice, this list of conditions and the following disclaimer. |
10 | // * Redistributions in binary form must reproduce the above |
11 | // copyright notice, this list of conditions and the following disclaimer |
12 | // in the documentation and/or other materials provided with the |
13 | // distribution. |
14 | // * Neither the name of Google Inc. nor the names of its |
15 | // contributors may be used to endorse or promote products derived from |
16 | // this software without specific prior written permission. |
17 | // |
18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | |
30 | // Google Mock - a framework for writing C++ mock classes. |
31 | // |
32 | // The MATCHER* family of macros can be used in a namespace scope to |
33 | // define custom matchers easily. |
34 | // |
35 | // Basic Usage |
36 | // =========== |
37 | // |
38 | // The syntax |
39 | // |
40 | // MATCHER(name, description_string) { statements; } |
41 | // |
42 | // defines a matcher with the given name that executes the statements, |
43 | // which must return a bool to indicate if the match succeeds. Inside |
44 | // the statements, you can refer to the value being matched by 'arg', |
45 | // and refer to its type by 'arg_type'. |
46 | // |
47 | // The description string documents what the matcher does, and is used |
48 | // to generate the failure message when the match fails. Since a |
49 | // MATCHER() is usually defined in a header file shared by multiple |
50 | // C++ source files, we require the description to be a C-string |
51 | // literal to avoid possible side effects. It can be empty, in which |
52 | // case we'll use the sequence of words in the matcher name as the |
53 | // description. |
54 | // |
55 | // For example: |
56 | // |
57 | // MATCHER(IsEven, "") { return (arg % 2) == 0; } |
58 | // |
59 | // allows you to write |
60 | // |
61 | // // Expects mock_foo.Bar(n) to be called where n is even. |
62 | // EXPECT_CALL(mock_foo, Bar(IsEven())); |
63 | // |
64 | // or, |
65 | // |
66 | // // Verifies that the value of some_expression is even. |
67 | // EXPECT_THAT(some_expression, IsEven()); |
68 | // |
69 | // If the above assertion fails, it will print something like: |
70 | // |
71 | // Value of: some_expression |
72 | // Expected: is even |
73 | // Actual: 7 |
74 | // |
75 | // where the description "is even" is automatically calculated from the |
76 | // matcher name IsEven. |
77 | // |
78 | // Argument Type |
79 | // ============= |
80 | // |
81 | // Note that the type of the value being matched (arg_type) is |
82 | // determined by the context in which you use the matcher and is |
83 | // supplied to you by the compiler, so you don't need to worry about |
84 | // declaring it (nor can you). This allows the matcher to be |
85 | // polymorphic. For example, IsEven() can be used to match any type |
86 | // where the value of "(arg % 2) == 0" can be implicitly converted to |
87 | // a bool. In the "Bar(IsEven())" example above, if method Bar() |
88 | // takes an int, 'arg_type' will be int; if it takes an unsigned long, |
89 | // 'arg_type' will be unsigned long; and so on. |
90 | // |
91 | // Parameterizing Matchers |
92 | // ======================= |
93 | // |
94 | // Sometimes you'll want to parameterize the matcher. For that you |
95 | // can use another macro: |
96 | // |
97 | // MATCHER_P(name, param_name, description_string) { statements; } |
98 | // |
99 | // For example: |
100 | // |
101 | // MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; } |
102 | // |
103 | // will allow you to write: |
104 | // |
105 | // EXPECT_THAT(Blah("a"), HasAbsoluteValue(n)); |
106 | // |
107 | // which may lead to this message (assuming n is 10): |
108 | // |
109 | // Value of: Blah("a") |
110 | // Expected: has absolute value 10 |
111 | // Actual: -9 |
112 | // |
113 | // Note that both the matcher description and its parameter are |
114 | // printed, making the message human-friendly. |
115 | // |
116 | // In the matcher definition body, you can write 'foo_type' to |
117 | // reference the type of a parameter named 'foo'. For example, in the |
118 | // body of MATCHER_P(HasAbsoluteValue, value) above, you can write |
119 | // 'value_type' to refer to the type of 'value'. |
120 | // |
121 | // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to |
122 | // support multi-parameter matchers. |
123 | // |
124 | // Describing Parameterized Matchers |
125 | // ================================= |
126 | // |
127 | // The last argument to MATCHER*() is a string-typed expression. The |
128 | // expression can reference all of the matcher's parameters and a |
129 | // special bool-typed variable named 'negation'. When 'negation' is |
130 | // false, the expression should evaluate to the matcher's description; |
131 | // otherwise it should evaluate to the description of the negation of |
132 | // the matcher. For example, |
133 | // |
134 | // using testing::PrintToString; |
135 | // |
136 | // MATCHER_P2(InClosedRange, low, hi, |
137 | // std::string(negation ? "is not" : "is") + " in range [" + |
138 | // PrintToString(low) + ", " + PrintToString(hi) + "]") { |
139 | // return low <= arg && arg <= hi; |
140 | // } |
141 | // ... |
142 | // EXPECT_THAT(3, InClosedRange(4, 6)); |
143 | // EXPECT_THAT(3, Not(InClosedRange(2, 4))); |
144 | // |
145 | // would generate two failures that contain the text: |
146 | // |
147 | // Expected: is in range [4, 6] |
148 | // ... |
149 | // Expected: is not in range [2, 4] |
150 | // |
151 | // If you specify "" as the description, the failure message will |
152 | // contain the sequence of words in the matcher name followed by the |
153 | // parameter values printed as a tuple. For example, |
154 | // |
155 | // MATCHER_P2(InClosedRange, low, hi, "") { ... } |
156 | // ... |
157 | // EXPECT_THAT(3, InClosedRange(4, 6)); |
158 | // EXPECT_THAT(3, Not(InClosedRange(2, 4))); |
159 | // |
160 | // would generate two failures that contain the text: |
161 | // |
162 | // Expected: in closed range (4, 6) |
163 | // ... |
164 | // Expected: not (in closed range (2, 4)) |
165 | // |
166 | // Types of Matcher Parameters |
167 | // =========================== |
168 | // |
169 | // For the purpose of typing, you can view |
170 | // |
171 | // MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... } |
172 | // |
173 | // as shorthand for |
174 | // |
175 | // template <typename p1_type, ..., typename pk_type> |
176 | // FooMatcherPk<p1_type, ..., pk_type> |
177 | // Foo(p1_type p1, ..., pk_type pk) { ... } |
178 | // |
179 | // When you write Foo(v1, ..., vk), the compiler infers the types of |
180 | // the parameters v1, ..., and vk for you. If you are not happy with |
181 | // the result of the type inference, you can specify the types by |
182 | // explicitly instantiating the template, as in Foo<long, bool>(5, |
183 | // false). As said earlier, you don't get to (or need to) specify |
184 | // 'arg_type' as that's determined by the context in which the matcher |
185 | // is used. You can assign the result of expression Foo(p1, ..., pk) |
186 | // to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This |
187 | // can be useful when composing matchers. |
188 | // |
189 | // While you can instantiate a matcher template with reference types, |
190 | // passing the parameters by pointer usually makes your code more |
191 | // readable. If, however, you still want to pass a parameter by |
192 | // reference, be aware that in the failure message generated by the |
193 | // matcher you will see the value of the referenced object but not its |
194 | // address. |
195 | // |
196 | // Explaining Match Results |
197 | // ======================== |
198 | // |
199 | // Sometimes the matcher description alone isn't enough to explain why |
200 | // the match has failed or succeeded. For example, when expecting a |
201 | // long string, it can be very helpful to also print the diff between |
202 | // the expected string and the actual one. To achieve that, you can |
203 | // optionally stream additional information to a special variable |
204 | // named result_listener, whose type is a pointer to class |
205 | // MatchResultListener: |
206 | // |
207 | // MATCHER_P(EqualsLongString, str, "") { |
208 | // if (arg == str) return true; |
209 | // |
210 | // *result_listener << "the difference: " |
211 | /// << DiffStrings(str, arg); |
212 | // return false; |
213 | // } |
214 | // |
215 | // Overloading Matchers |
216 | // ==================== |
217 | // |
218 | // You can overload matchers with different numbers of parameters: |
219 | // |
220 | // MATCHER_P(Blah, a, description_string1) { ... } |
221 | // MATCHER_P2(Blah, a, b, description_string2) { ... } |
222 | // |
223 | // Caveats |
224 | // ======= |
225 | // |
226 | // When defining a new matcher, you should also consider implementing |
227 | // MatcherInterface or using MakePolymorphicMatcher(). These |
228 | // approaches require more work than the MATCHER* macros, but also |
229 | // give you more control on the types of the value being matched and |
230 | // the matcher parameters, which may leads to better compiler error |
231 | // messages when the matcher is used wrong. They also allow |
232 | // overloading matchers based on parameter types (as opposed to just |
233 | // based on the number of parameters). |
234 | // |
235 | // MATCHER*() can only be used in a namespace scope as templates cannot be |
236 | // declared inside of a local class. |
237 | // |
238 | // More Information |
239 | // ================ |
240 | // |
241 | // To learn more about using these macros, please search for 'MATCHER' |
242 | // on |
243 | // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md |
244 | // |
245 | // This file also implements some commonly used argument matchers. More |
246 | // matchers can be defined by the user implementing the |
247 | // MatcherInterface<T> interface if necessary. |
248 | // |
249 | // See googletest/include/gtest/gtest-matchers.h for the definition of class |
250 | // Matcher, class MatcherInterface, and others. |
251 | |
252 | // IWYU pragma: private, include "gmock/gmock.h" |
253 | // IWYU pragma: friend gmock/.* |
254 | |
255 | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
256 | #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
257 | |
258 | #include <algorithm> |
259 | #include <cmath> |
260 | #include <initializer_list> |
261 | #include <ios> |
262 | #include <iterator> |
263 | #include <limits> |
264 | #include <memory> |
265 | #include <ostream> // NOLINT |
266 | #include <sstream> |
267 | #include <string> |
268 | #include <type_traits> |
269 | #include <utility> |
270 | #include <vector> |
271 | |
272 | #include "gmock/internal/gmock-internal-utils.h" |
273 | #include "gmock/internal/gmock-port.h" |
274 | #include "gmock/internal/gmock-pp.h" |
275 | #include "gtest/gtest.h" |
276 | |
277 | // MSVC warning C5046 is new as of VS2017 version 15.8. |
278 | #if defined(_MSC_VER) && _MSC_VER >= 1915 |
279 | #define GMOCK_MAYBE_5046_ 5046 |
280 | #else |
281 | #define GMOCK_MAYBE_5046_ |
282 | #endif |
283 | |
284 | GTEST_DISABLE_MSC_WARNINGS_PUSH_( |
285 | 4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by |
286 | clients of class B */ |
287 | /* Symbol involving type with internal linkage not defined */) |
288 | |
289 | namespace testing { |
290 | |
291 | // To implement a matcher Foo for type T, define: |
292 | // 1. a class FooMatcherImpl that implements the |
293 | // MatcherInterface<T> interface, and |
294 | // 2. a factory function that creates a Matcher<T> object from a |
295 | // FooMatcherImpl*. |
296 | // |
297 | // The two-level delegation design makes it possible to allow a user |
298 | // to write "v" instead of "Eq(v)" where a Matcher is expected, which |
299 | // is impossible if we pass matchers by pointers. It also eases |
300 | // ownership management as Matcher objects can now be copied like |
301 | // plain values. |
302 | |
303 | // A match result listener that stores the explanation in a string. |
304 | class StringMatchResultListener : public MatchResultListener { |
305 | public: |
306 | StringMatchResultListener() : MatchResultListener(&ss_) {} |
307 | |
308 | // Returns the explanation accumulated so far. |
309 | std::string str() const { return ss_.str(); } |
310 | |
311 | // Clears the explanation accumulated so far. |
312 | void Clear() { ss_.str(s: "" ); } |
313 | |
314 | private: |
315 | ::std::stringstream ss_; |
316 | |
317 | StringMatchResultListener(const StringMatchResultListener&) = delete; |
318 | StringMatchResultListener& operator=(const StringMatchResultListener&) = |
319 | delete; |
320 | }; |
321 | |
322 | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
323 | // and MUST NOT BE USED IN USER CODE!!! |
324 | namespace internal { |
325 | |
326 | // The MatcherCastImpl class template is a helper for implementing |
327 | // MatcherCast(). We need this helper in order to partially |
328 | // specialize the implementation of MatcherCast() (C++ allows |
329 | // class/struct templates to be partially specialized, but not |
330 | // function templates.). |
331 | |
332 | // This general version is used when MatcherCast()'s argument is a |
333 | // polymorphic matcher (i.e. something that can be converted to a |
334 | // Matcher but is not one yet; for example, Eq(value)) or a value (for |
335 | // example, "hello"). |
336 | template <typename T, typename M> |
337 | class MatcherCastImpl { |
338 | public: |
339 | static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { |
340 | // M can be a polymorphic matcher, in which case we want to use |
341 | // its conversion operator to create Matcher<T>. Or it can be a value |
342 | // that should be passed to the Matcher<T>'s constructor. |
343 | // |
344 | // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a |
345 | // polymorphic matcher because it'll be ambiguous if T has an implicit |
346 | // constructor from M (this usually happens when T has an implicit |
347 | // constructor from any type). |
348 | // |
349 | // It won't work to unconditionally implicit_cast |
350 | // polymorphic_matcher_or_value to Matcher<T> because it won't trigger |
351 | // a user-defined conversion from M to T if one exists (assuming M is |
352 | // a value). |
353 | return CastImpl(polymorphic_matcher_or_value, |
354 | std::is_convertible<M, Matcher<T>>{}, |
355 | std::is_convertible<M, T>{}); |
356 | } |
357 | |
358 | private: |
359 | template <bool Ignore> |
360 | static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, |
361 | std::true_type /* convertible_to_matcher */, |
362 | std::integral_constant<bool, Ignore>) { |
363 | // M is implicitly convertible to Matcher<T>, which means that either |
364 | // M is a polymorphic matcher or Matcher<T> has an implicit constructor |
365 | // from M. In both cases using the implicit conversion will produce a |
366 | // matcher. |
367 | // |
368 | // Even if T has an implicit constructor from M, it won't be called because |
369 | // creating Matcher<T> would require a chain of two user-defined conversions |
370 | // (first to create T from M and then to create Matcher<T> from T). |
371 | return polymorphic_matcher_or_value; |
372 | } |
373 | |
374 | // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic |
375 | // matcher. It's a value of a type implicitly convertible to T. Use direct |
376 | // initialization to create a matcher. |
377 | static Matcher<T> CastImpl(const M& value, |
378 | std::false_type /* convertible_to_matcher */, |
379 | std::true_type /* convertible_to_T */) { |
380 | return Matcher<T>(ImplicitCast_<T>(value)); |
381 | } |
382 | |
383 | // M can't be implicitly converted to either Matcher<T> or T. Attempt to use |
384 | // polymorphic matcher Eq(value) in this case. |
385 | // |
386 | // Note that we first attempt to perform an implicit cast on the value and |
387 | // only fall back to the polymorphic Eq() matcher afterwards because the |
388 | // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end |
389 | // which might be undefined even when Rhs is implicitly convertible to Lhs |
390 | // (e.g. std::pair<const int, int> vs. std::pair<int, int>). |
391 | // |
392 | // We don't define this method inline as we need the declaration of Eq(). |
393 | static Matcher<T> CastImpl(const M& value, |
394 | std::false_type /* convertible_to_matcher */, |
395 | std::false_type /* convertible_to_T */); |
396 | }; |
397 | |
398 | // This more specialized version is used when MatcherCast()'s argument |
399 | // is already a Matcher. This only compiles when type T can be |
400 | // statically converted to type U. |
401 | template <typename T, typename U> |
402 | class MatcherCastImpl<T, Matcher<U>> { |
403 | public: |
404 | static Matcher<T> Cast(const Matcher<U>& source_matcher) { |
405 | return Matcher<T>(new Impl(source_matcher)); |
406 | } |
407 | |
408 | private: |
409 | class Impl : public MatcherInterface<T> { |
410 | public: |
411 | explicit Impl(const Matcher<U>& source_matcher) |
412 | : source_matcher_(source_matcher) {} |
413 | |
414 | // We delegate the matching logic to the source matcher. |
415 | bool MatchAndExplain(T x, MatchResultListener* listener) const override { |
416 | using FromType = typename std::remove_cv<typename std::remove_pointer< |
417 | typename std::remove_reference<T>::type>::type>::type; |
418 | using ToType = typename std::remove_cv<typename std::remove_pointer< |
419 | typename std::remove_reference<U>::type>::type>::type; |
420 | // Do not allow implicitly converting base*/& to derived*/&. |
421 | static_assert( |
422 | // Do not trigger if only one of them is a pointer. That implies a |
423 | // regular conversion and not a down_cast. |
424 | (std::is_pointer<typename std::remove_reference<T>::type>::value != |
425 | std::is_pointer<typename std::remove_reference<U>::type>::value) || |
426 | std::is_same<FromType, ToType>::value || |
427 | !std::is_base_of<FromType, ToType>::value, |
428 | "Can't implicitly convert from <base> to <derived>" ); |
429 | |
430 | // Do the cast to `U` explicitly if necessary. |
431 | // Otherwise, let implicit conversions do the trick. |
432 | using CastType = |
433 | typename std::conditional<std::is_convertible<T&, const U&>::value, |
434 | T&, U>::type; |
435 | |
436 | return source_matcher_.MatchAndExplain(static_cast<CastType>(x), |
437 | listener); |
438 | } |
439 | |
440 | void DescribeTo(::std::ostream* os) const override { |
441 | source_matcher_.DescribeTo(os); |
442 | } |
443 | |
444 | void DescribeNegationTo(::std::ostream* os) const override { |
445 | source_matcher_.DescribeNegationTo(os); |
446 | } |
447 | |
448 | private: |
449 | const Matcher<U> source_matcher_; |
450 | }; |
451 | }; |
452 | |
453 | // This even more specialized version is used for efficiently casting |
454 | // a matcher to its own type. |
455 | template <typename T> |
456 | class MatcherCastImpl<T, Matcher<T>> { |
457 | public: |
458 | static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } |
459 | }; |
460 | |
461 | // Template specialization for parameterless Matcher. |
462 | template <typename Derived> |
463 | class MatcherBaseImpl { |
464 | public: |
465 | MatcherBaseImpl() = default; |
466 | |
467 | template <typename T> |
468 | operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit) |
469 | return ::testing::Matcher<T>(new |
470 | typename Derived::template gmock_Impl<T>()); |
471 | } |
472 | }; |
473 | |
474 | // Template specialization for Matcher with parameters. |
475 | template <template <typename...> class Derived, typename... Ts> |
476 | class MatcherBaseImpl<Derived<Ts...>> { |
477 | public: |
478 | // Mark the constructor explicit for single argument T to avoid implicit |
479 | // conversions. |
480 | template <typename E = std::enable_if<sizeof...(Ts) == 1>, |
481 | typename E::type* = nullptr> |
482 | explicit MatcherBaseImpl(Ts... params) |
483 | : params_(std::forward<Ts>(params)...) {} |
484 | template <typename E = std::enable_if<sizeof...(Ts) != 1>, |
485 | typename = typename E::type> |
486 | MatcherBaseImpl(Ts... params) // NOLINT |
487 | : params_(std::forward<Ts>(params)...) {} |
488 | |
489 | template <typename F> |
490 | operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit) |
491 | return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{}); |
492 | } |
493 | |
494 | private: |
495 | template <typename F, std::size_t... tuple_ids> |
496 | ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const { |
497 | return ::testing::Matcher<F>( |
498 | new typename Derived<Ts...>::template gmock_Impl<F>( |
499 | std::get<tuple_ids>(params_)...)); |
500 | } |
501 | |
502 | const std::tuple<Ts...> params_; |
503 | }; |
504 | |
505 | } // namespace internal |
506 | |
507 | // In order to be safe and clear, casting between different matcher |
508 | // types is done explicitly via MatcherCast<T>(m), which takes a |
509 | // matcher m and returns a Matcher<T>. It compiles only when T can be |
510 | // statically converted to the argument type of m. |
511 | template <typename T, typename M> |
512 | inline Matcher<T> MatcherCast(const M& matcher) { |
513 | return internal::MatcherCastImpl<T, M>::Cast(matcher); |
514 | } |
515 | |
516 | // This overload handles polymorphic matchers and values only since |
517 | // monomorphic matchers are handled by the next one. |
518 | template <typename T, typename M> |
519 | inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) { |
520 | return MatcherCast<T>(polymorphic_matcher_or_value); |
521 | } |
522 | |
523 | // This overload handles monomorphic matchers. |
524 | // |
525 | // In general, if type T can be implicitly converted to type U, we can |
526 | // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is |
527 | // contravariant): just keep a copy of the original Matcher<U>, convert the |
528 | // argument from type T to U, and then pass it to the underlying Matcher<U>. |
529 | // The only exception is when U is a reference and T is not, as the |
530 | // underlying Matcher<U> may be interested in the argument's address, which |
531 | // is not preserved in the conversion from T to U. |
532 | template <typename T, typename U> |
533 | inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) { |
534 | // Enforce that T can be implicitly converted to U. |
535 | static_assert(std::is_convertible<const T&, const U&>::value, |
536 | "T must be implicitly convertible to U" ); |
537 | // Enforce that we are not converting a non-reference type T to a reference |
538 | // type U. |
539 | static_assert(std::is_reference<T>::value || !std::is_reference<U>::value, |
540 | "cannot convert non reference arg to reference" ); |
541 | // In case both T and U are arithmetic types, enforce that the |
542 | // conversion is not lossy. |
543 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; |
544 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; |
545 | constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; |
546 | constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; |
547 | static_assert( |
548 | kTIsOther || kUIsOther || |
549 | (internal::LosslessArithmeticConvertible<RawT, RawU>::value), |
550 | "conversion of arithmetic types must be lossless" ); |
551 | return MatcherCast<T>(matcher); |
552 | } |
553 | |
554 | // A<T>() returns a matcher that matches any value of type T. |
555 | template <typename T> |
556 | Matcher<T> A(); |
557 | |
558 | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
559 | // and MUST NOT BE USED IN USER CODE!!! |
560 | namespace internal { |
561 | |
562 | // If the explanation is not empty, prints it to the ostream. |
563 | inline void PrintIfNotEmpty(const std::string& explanation, |
564 | ::std::ostream* os) { |
565 | if (explanation != "" && os != nullptr) { |
566 | *os << ", " << explanation; |
567 | } |
568 | } |
569 | |
570 | // Returns true if the given type name is easy to read by a human. |
571 | // This is used to decide whether printing the type of a value might |
572 | // be helpful. |
573 | inline bool IsReadableTypeName(const std::string& type_name) { |
574 | // We consider a type name readable if it's short or doesn't contain |
575 | // a template or function type. |
576 | return (type_name.length() <= 20 || |
577 | type_name.find_first_of(s: "<(" ) == std::string::npos); |
578 | } |
579 | |
580 | // Matches the value against the given matcher, prints the value and explains |
581 | // the match result to the listener. Returns the match result. |
582 | // 'listener' must not be NULL. |
583 | // Value cannot be passed by const reference, because some matchers take a |
584 | // non-const argument. |
585 | template <typename Value, typename T> |
586 | bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, |
587 | MatchResultListener* listener) { |
588 | if (!listener->IsInterested()) { |
589 | // If the listener is not interested, we do not need to construct the |
590 | // inner explanation. |
591 | return matcher.Matches(value); |
592 | } |
593 | |
594 | StringMatchResultListener inner_listener; |
595 | const bool match = matcher.MatchAndExplain(value, &inner_listener); |
596 | |
597 | UniversalPrint(value, listener->stream()); |
598 | #if GTEST_HAS_RTTI |
599 | const std::string& type_name = GetTypeName<Value>(); |
600 | if (IsReadableTypeName(type_name)) |
601 | *listener->stream() << " (of type " << type_name << ")" ; |
602 | #endif |
603 | PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream()); |
604 | |
605 | return match; |
606 | } |
607 | |
608 | // An internal helper class for doing compile-time loop on a tuple's |
609 | // fields. |
610 | template <size_t N> |
611 | class TuplePrefix { |
612 | public: |
613 | // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true |
614 | // if and only if the first N fields of matcher_tuple matches |
615 | // the first N fields of value_tuple, respectively. |
616 | template <typename MatcherTuple, typename ValueTuple> |
617 | static bool Matches(const MatcherTuple& matcher_tuple, |
618 | const ValueTuple& value_tuple) { |
619 | return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) && |
620 | std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple)); |
621 | } |
622 | |
623 | // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) |
624 | // describes failures in matching the first N fields of matchers |
625 | // against the first N fields of values. If there is no failure, |
626 | // nothing will be streamed to os. |
627 | template <typename MatcherTuple, typename ValueTuple> |
628 | static void ExplainMatchFailuresTo(const MatcherTuple& matchers, |
629 | const ValueTuple& values, |
630 | ::std::ostream* os) { |
631 | // First, describes failures in the first N - 1 fields. |
632 | TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); |
633 | |
634 | // Then describes the failure (if any) in the (N - 1)-th (0-based) |
635 | // field. |
636 | typename std::tuple_element<N - 1, MatcherTuple>::type matcher = |
637 | std::get<N - 1>(matchers); |
638 | typedef typename std::tuple_element<N - 1, ValueTuple>::type Value; |
639 | const Value& value = std::get<N - 1>(values); |
640 | StringMatchResultListener listener; |
641 | if (!matcher.MatchAndExplain(value, &listener)) { |
642 | *os << " Expected arg #" << N - 1 << ": " ; |
643 | std::get<N - 1>(matchers).DescribeTo(os); |
644 | *os << "\n Actual: " ; |
645 | // We remove the reference in type Value to prevent the |
646 | // universal printer from printing the address of value, which |
647 | // isn't interesting to the user most of the time. The |
648 | // matcher's MatchAndExplain() method handles the case when |
649 | // the address is interesting. |
650 | internal::UniversalPrint(value, os); |
651 | PrintIfNotEmpty(explanation: listener.str(), os); |
652 | *os << "\n" ; |
653 | } |
654 | } |
655 | }; |
656 | |
657 | // The base case. |
658 | template <> |
659 | class TuplePrefix<0> { |
660 | public: |
661 | template <typename MatcherTuple, typename ValueTuple> |
662 | static bool Matches(const MatcherTuple& /* matcher_tuple */, |
663 | const ValueTuple& /* value_tuple */) { |
664 | return true; |
665 | } |
666 | |
667 | template <typename MatcherTuple, typename ValueTuple> |
668 | static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, |
669 | const ValueTuple& /* values */, |
670 | ::std::ostream* /* os */) {} |
671 | }; |
672 | |
673 | // TupleMatches(matcher_tuple, value_tuple) returns true if and only if |
674 | // all matchers in matcher_tuple match the corresponding fields in |
675 | // value_tuple. It is a compiler error if matcher_tuple and |
676 | // value_tuple have different number of fields or incompatible field |
677 | // types. |
678 | template <typename MatcherTuple, typename ValueTuple> |
679 | bool TupleMatches(const MatcherTuple& matcher_tuple, |
680 | const ValueTuple& value_tuple) { |
681 | // Makes sure that matcher_tuple and value_tuple have the same |
682 | // number of fields. |
683 | static_assert(std::tuple_size<MatcherTuple>::value == |
684 | std::tuple_size<ValueTuple>::value, |
685 | "matcher and value have different numbers of fields" ); |
686 | return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple, |
687 | value_tuple); |
688 | } |
689 | |
690 | // Describes failures in matching matchers against values. If there |
691 | // is no failure, nothing will be streamed to os. |
692 | template <typename MatcherTuple, typename ValueTuple> |
693 | void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, |
694 | const ValueTuple& values, ::std::ostream* os) { |
695 | TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( |
696 | matchers, values, os); |
697 | } |
698 | |
699 | // TransformTupleValues and its helper. |
700 | // |
701 | // TransformTupleValuesHelper hides the internal machinery that |
702 | // TransformTupleValues uses to implement a tuple traversal. |
703 | template <typename Tuple, typename Func, typename OutIter> |
704 | class TransformTupleValuesHelper { |
705 | private: |
706 | typedef ::std::tuple_size<Tuple> TupleSize; |
707 | |
708 | public: |
709 | // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. |
710 | // Returns the final value of 'out' in case the caller needs it. |
711 | static OutIter Run(Func f, const Tuple& t, OutIter out) { |
712 | return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); |
713 | } |
714 | |
715 | private: |
716 | template <typename Tup, size_t kRemainingSize> |
717 | struct IterateOverTuple { |
718 | OutIter operator()(Func f, const Tup& t, OutIter out) const { |
719 | *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t)); |
720 | return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); |
721 | } |
722 | }; |
723 | template <typename Tup> |
724 | struct IterateOverTuple<Tup, 0> { |
725 | OutIter operator()(Func /* f */, const Tup& /* t */, OutIter out) const { |
726 | return out; |
727 | } |
728 | }; |
729 | }; |
730 | |
731 | // Successively invokes 'f(element)' on each element of the tuple 't', |
732 | // appending each result to the 'out' iterator. Returns the final value |
733 | // of 'out'. |
734 | template <typename Tuple, typename Func, typename OutIter> |
735 | OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { |
736 | return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); |
737 | } |
738 | |
739 | // Implements _, a matcher that matches any value of any |
740 | // type. This is a polymorphic matcher, so we need a template type |
741 | // conversion operator to make it appearing as a Matcher<T> for any |
742 | // type T. |
743 | class AnythingMatcher { |
744 | public: |
745 | using is_gtest_matcher = void; |
746 | |
747 | template <typename T> |
748 | bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const { |
749 | return true; |
750 | } |
751 | void DescribeTo(std::ostream* os) const { *os << "is anything" ; } |
752 | void DescribeNegationTo(::std::ostream* os) const { |
753 | // This is mostly for completeness' sake, as it's not very useful |
754 | // to write Not(A<bool>()). However we cannot completely rule out |
755 | // such a possibility, and it doesn't hurt to be prepared. |
756 | *os << "never matches" ; |
757 | } |
758 | }; |
759 | |
760 | // Implements the polymorphic IsNull() matcher, which matches any raw or smart |
761 | // pointer that is NULL. |
762 | class IsNullMatcher { |
763 | public: |
764 | template <typename Pointer> |
765 | bool MatchAndExplain(const Pointer& p, |
766 | MatchResultListener* /* listener */) const { |
767 | return p == nullptr; |
768 | } |
769 | |
770 | void DescribeTo(::std::ostream* os) const { *os << "is NULL" ; } |
771 | void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL" ; } |
772 | }; |
773 | |
774 | // Implements the polymorphic NotNull() matcher, which matches any raw or smart |
775 | // pointer that is not NULL. |
776 | class NotNullMatcher { |
777 | public: |
778 | template <typename Pointer> |
779 | bool MatchAndExplain(const Pointer& p, |
780 | MatchResultListener* /* listener */) const { |
781 | return p != nullptr; |
782 | } |
783 | |
784 | void DescribeTo(::std::ostream* os) const { *os << "isn't NULL" ; } |
785 | void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL" ; } |
786 | }; |
787 | |
788 | // Ref(variable) matches any argument that is a reference to |
789 | // 'variable'. This matcher is polymorphic as it can match any |
790 | // super type of the type of 'variable'. |
791 | // |
792 | // The RefMatcher template class implements Ref(variable). It can |
793 | // only be instantiated with a reference type. This prevents a user |
794 | // from mistakenly using Ref(x) to match a non-reference function |
795 | // argument. For example, the following will righteously cause a |
796 | // compiler error: |
797 | // |
798 | // int n; |
799 | // Matcher<int> m1 = Ref(n); // This won't compile. |
800 | // Matcher<int&> m2 = Ref(n); // This will compile. |
801 | template <typename T> |
802 | class RefMatcher; |
803 | |
804 | template <typename T> |
805 | class RefMatcher<T&> { |
806 | // Google Mock is a generic framework and thus needs to support |
807 | // mocking any function types, including those that take non-const |
808 | // reference arguments. Therefore the template parameter T (and |
809 | // Super below) can be instantiated to either a const type or a |
810 | // non-const type. |
811 | public: |
812 | // RefMatcher() takes a T& instead of const T&, as we want the |
813 | // compiler to catch using Ref(const_value) as a matcher for a |
814 | // non-const reference. |
815 | explicit RefMatcher(T& x) : object_(x) {} // NOLINT |
816 | |
817 | template <typename Super> |
818 | operator Matcher<Super&>() const { |
819 | // By passing object_ (type T&) to Impl(), which expects a Super&, |
820 | // we make sure that Super is a super type of T. In particular, |
821 | // this catches using Ref(const_value) as a matcher for a |
822 | // non-const reference, as you cannot implicitly convert a const |
823 | // reference to a non-const reference. |
824 | return MakeMatcher(new Impl<Super>(object_)); |
825 | } |
826 | |
827 | private: |
828 | template <typename Super> |
829 | class Impl : public MatcherInterface<Super&> { |
830 | public: |
831 | explicit Impl(Super& x) : object_(x) {} // NOLINT |
832 | |
833 | // MatchAndExplain() takes a Super& (as opposed to const Super&) |
834 | // in order to match the interface MatcherInterface<Super&>. |
835 | bool MatchAndExplain(Super& x, |
836 | MatchResultListener* listener) const override { |
837 | *listener << "which is located @" << static_cast<const void*>(&x); |
838 | return &x == &object_; |
839 | } |
840 | |
841 | void DescribeTo(::std::ostream* os) const override { |
842 | *os << "references the variable " ; |
843 | UniversalPrinter<Super&>::Print(object_, os); |
844 | } |
845 | |
846 | void DescribeNegationTo(::std::ostream* os) const override { |
847 | *os << "does not reference the variable " ; |
848 | UniversalPrinter<Super&>::Print(object_, os); |
849 | } |
850 | |
851 | private: |
852 | const Super& object_; |
853 | }; |
854 | |
855 | T& object_; |
856 | }; |
857 | |
858 | // Polymorphic helper functions for narrow and wide string matchers. |
859 | inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { |
860 | return String::CaseInsensitiveCStringEquals(lhs, rhs); |
861 | } |
862 | |
863 | inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, |
864 | const wchar_t* rhs) { |
865 | return String::CaseInsensitiveWideCStringEquals(lhs, rhs); |
866 | } |
867 | |
868 | // String comparison for narrow or wide strings that can have embedded NUL |
869 | // characters. |
870 | template <typename StringType> |
871 | bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) { |
872 | // Are the heads equal? |
873 | if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { |
874 | return false; |
875 | } |
876 | |
877 | // Skip the equal heads. |
878 | const typename StringType::value_type nul = 0; |
879 | const size_t i1 = s1.find(nul), i2 = s2.find(nul); |
880 | |
881 | // Are we at the end of either s1 or s2? |
882 | if (i1 == StringType::npos || i2 == StringType::npos) { |
883 | return i1 == i2; |
884 | } |
885 | |
886 | // Are the tails equal? |
887 | return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); |
888 | } |
889 | |
890 | // String matchers. |
891 | |
892 | // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. |
893 | template <typename StringType> |
894 | class StrEqualityMatcher { |
895 | public: |
896 | StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive) |
897 | : string_(std::move(str)), |
898 | expect_eq_(expect_eq), |
899 | case_sensitive_(case_sensitive) {} |
900 | |
901 | #if GTEST_INTERNAL_HAS_STRING_VIEW |
902 | bool MatchAndExplain(const internal::StringView& s, |
903 | MatchResultListener* listener) const { |
904 | // This should fail to compile if StringView is used with wide |
905 | // strings. |
906 | const StringType& str = std::string(s); |
907 | return MatchAndExplain(str, listener); |
908 | } |
909 | #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
910 | |
911 | // Accepts pointer types, particularly: |
912 | // const char* |
913 | // char* |
914 | // const wchar_t* |
915 | // wchar_t* |
916 | template <typename CharType> |
917 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
918 | if (s == nullptr) { |
919 | return !expect_eq_; |
920 | } |
921 | return MatchAndExplain(StringType(s), listener); |
922 | } |
923 | |
924 | // Matches anything that can convert to StringType. |
925 | // |
926 | // This is a template, not just a plain function with const StringType&, |
927 | // because StringView has some interfering non-explicit constructors. |
928 | template <typename MatcheeStringType> |
929 | bool MatchAndExplain(const MatcheeStringType& s, |
930 | MatchResultListener* /* listener */) const { |
931 | const StringType s2(s); |
932 | const bool eq = case_sensitive_ ? s2 == string_ |
933 | : CaseInsensitiveStringEquals(s2, string_); |
934 | return expect_eq_ == eq; |
935 | } |
936 | |
937 | void DescribeTo(::std::ostream* os) const { |
938 | DescribeToHelper(expect_eq: expect_eq_, os); |
939 | } |
940 | |
941 | void DescribeNegationTo(::std::ostream* os) const { |
942 | DescribeToHelper(expect_eq: !expect_eq_, os); |
943 | } |
944 | |
945 | private: |
946 | void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { |
947 | *os << (expect_eq ? "is " : "isn't " ); |
948 | *os << "equal to " ; |
949 | if (!case_sensitive_) { |
950 | *os << "(ignoring case) " ; |
951 | } |
952 | UniversalPrint(string_, os); |
953 | } |
954 | |
955 | const StringType string_; |
956 | const bool expect_eq_; |
957 | const bool case_sensitive_; |
958 | }; |
959 | |
960 | // Implements the polymorphic HasSubstr(substring) matcher, which |
961 | // can be used as a Matcher<T> as long as T can be converted to a |
962 | // string. |
963 | template <typename StringType> |
964 | class HasSubstrMatcher { |
965 | public: |
966 | explicit HasSubstrMatcher(const StringType& substring) |
967 | : substring_(substring) {} |
968 | |
969 | #if GTEST_INTERNAL_HAS_STRING_VIEW |
970 | bool MatchAndExplain(const internal::StringView& s, |
971 | MatchResultListener* listener) const { |
972 | // This should fail to compile if StringView is used with wide |
973 | // strings. |
974 | const StringType& str = std::string(s); |
975 | return MatchAndExplain(str, listener); |
976 | } |
977 | #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
978 | |
979 | // Accepts pointer types, particularly: |
980 | // const char* |
981 | // char* |
982 | // const wchar_t* |
983 | // wchar_t* |
984 | template <typename CharType> |
985 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
986 | return s != nullptr && MatchAndExplain(StringType(s), listener); |
987 | } |
988 | |
989 | // Matches anything that can convert to StringType. |
990 | // |
991 | // This is a template, not just a plain function with const StringType&, |
992 | // because StringView has some interfering non-explicit constructors. |
993 | template <typename MatcheeStringType> |
994 | bool MatchAndExplain(const MatcheeStringType& s, |
995 | MatchResultListener* /* listener */) const { |
996 | return StringType(s).find(substring_) != StringType::npos; |
997 | } |
998 | |
999 | // Describes what this matcher matches. |
1000 | void DescribeTo(::std::ostream* os) const { |
1001 | *os << "has substring " ; |
1002 | UniversalPrint(substring_, os); |
1003 | } |
1004 | |
1005 | void DescribeNegationTo(::std::ostream* os) const { |
1006 | *os << "has no substring " ; |
1007 | UniversalPrint(substring_, os); |
1008 | } |
1009 | |
1010 | private: |
1011 | const StringType substring_; |
1012 | }; |
1013 | |
1014 | // Implements the polymorphic StartsWith(substring) matcher, which |
1015 | // can be used as a Matcher<T> as long as T can be converted to a |
1016 | // string. |
1017 | template <typename StringType> |
1018 | class StartsWithMatcher { |
1019 | public: |
1020 | explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {} |
1021 | |
1022 | #if GTEST_INTERNAL_HAS_STRING_VIEW |
1023 | bool MatchAndExplain(const internal::StringView& s, |
1024 | MatchResultListener* listener) const { |
1025 | // This should fail to compile if StringView is used with wide |
1026 | // strings. |
1027 | const StringType& str = std::string(s); |
1028 | return MatchAndExplain(str, listener); |
1029 | } |
1030 | #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
1031 | |
1032 | // Accepts pointer types, particularly: |
1033 | // const char* |
1034 | // char* |
1035 | // const wchar_t* |
1036 | // wchar_t* |
1037 | template <typename CharType> |
1038 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
1039 | return s != nullptr && MatchAndExplain(StringType(s), listener); |
1040 | } |
1041 | |
1042 | // Matches anything that can convert to StringType. |
1043 | // |
1044 | // This is a template, not just a plain function with const StringType&, |
1045 | // because StringView has some interfering non-explicit constructors. |
1046 | template <typename MatcheeStringType> |
1047 | bool MatchAndExplain(const MatcheeStringType& s, |
1048 | MatchResultListener* /* listener */) const { |
1049 | const StringType& s2(s); |
1050 | return s2.length() >= prefix_.length() && |
1051 | s2.substr(0, prefix_.length()) == prefix_; |
1052 | } |
1053 | |
1054 | void DescribeTo(::std::ostream* os) const { |
1055 | *os << "starts with " ; |
1056 | UniversalPrint(prefix_, os); |
1057 | } |
1058 | |
1059 | void DescribeNegationTo(::std::ostream* os) const { |
1060 | *os << "doesn't start with " ; |
1061 | UniversalPrint(prefix_, os); |
1062 | } |
1063 | |
1064 | private: |
1065 | const StringType prefix_; |
1066 | }; |
1067 | |
1068 | // Implements the polymorphic EndsWith(substring) matcher, which |
1069 | // can be used as a Matcher<T> as long as T can be converted to a |
1070 | // string. |
1071 | template <typename StringType> |
1072 | class EndsWithMatcher { |
1073 | public: |
1074 | explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} |
1075 | |
1076 | #if GTEST_INTERNAL_HAS_STRING_VIEW |
1077 | bool MatchAndExplain(const internal::StringView& s, |
1078 | MatchResultListener* listener) const { |
1079 | // This should fail to compile if StringView is used with wide |
1080 | // strings. |
1081 | const StringType& str = std::string(s); |
1082 | return MatchAndExplain(str, listener); |
1083 | } |
1084 | #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
1085 | |
1086 | // Accepts pointer types, particularly: |
1087 | // const char* |
1088 | // char* |
1089 | // const wchar_t* |
1090 | // wchar_t* |
1091 | template <typename CharType> |
1092 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
1093 | return s != nullptr && MatchAndExplain(StringType(s), listener); |
1094 | } |
1095 | |
1096 | // Matches anything that can convert to StringType. |
1097 | // |
1098 | // This is a template, not just a plain function with const StringType&, |
1099 | // because StringView has some interfering non-explicit constructors. |
1100 | template <typename MatcheeStringType> |
1101 | bool MatchAndExplain(const MatcheeStringType& s, |
1102 | MatchResultListener* /* listener */) const { |
1103 | const StringType& s2(s); |
1104 | return s2.length() >= suffix_.length() && |
1105 | s2.substr(s2.length() - suffix_.length()) == suffix_; |
1106 | } |
1107 | |
1108 | void DescribeTo(::std::ostream* os) const { |
1109 | *os << "ends with " ; |
1110 | UniversalPrint(suffix_, os); |
1111 | } |
1112 | |
1113 | void DescribeNegationTo(::std::ostream* os) const { |
1114 | *os << "doesn't end with " ; |
1115 | UniversalPrint(suffix_, os); |
1116 | } |
1117 | |
1118 | private: |
1119 | const StringType suffix_; |
1120 | }; |
1121 | |
1122 | // Implements the polymorphic WhenBase64Unescaped(matcher) matcher, which can be |
1123 | // used as a Matcher<T> as long as T can be converted to a string. |
1124 | class WhenBase64UnescapedMatcher { |
1125 | public: |
1126 | using is_gtest_matcher = void; |
1127 | |
1128 | explicit WhenBase64UnescapedMatcher( |
1129 | const Matcher<const std::string&>& internal_matcher) |
1130 | : internal_matcher_(internal_matcher) {} |
1131 | |
1132 | // Matches anything that can convert to std::string. |
1133 | template <typename MatcheeStringType> |
1134 | bool MatchAndExplain(const MatcheeStringType& s, |
1135 | MatchResultListener* listener) const { |
1136 | const std::string s2(s); // NOLINT (needed for working with string_view). |
1137 | std::string unescaped; |
1138 | if (!internal::Base64Unescape(encoded: s2, decoded: &unescaped)) { |
1139 | if (listener != nullptr) { |
1140 | *listener << "is not a valid base64 escaped string" ; |
1141 | } |
1142 | return false; |
1143 | } |
1144 | return MatchPrintAndExplain(value&: unescaped, matcher: internal_matcher_, listener); |
1145 | } |
1146 | |
1147 | void DescribeTo(::std::ostream* os) const { |
1148 | *os << "matches after Base64Unescape " ; |
1149 | internal_matcher_.DescribeTo(os); |
1150 | } |
1151 | |
1152 | void DescribeNegationTo(::std::ostream* os) const { |
1153 | *os << "does not match after Base64Unescape " ; |
1154 | internal_matcher_.DescribeTo(os); |
1155 | } |
1156 | |
1157 | private: |
1158 | const Matcher<const std::string&> internal_matcher_; |
1159 | }; |
1160 | |
1161 | // Implements a matcher that compares the two fields of a 2-tuple |
1162 | // using one of the ==, <=, <, etc, operators. The two fields being |
1163 | // compared don't have to have the same type. |
1164 | // |
1165 | // The matcher defined here is polymorphic (for example, Eq() can be |
1166 | // used to match a std::tuple<int, short>, a std::tuple<const long&, double>, |
1167 | // etc). Therefore we use a template type conversion operator in the |
1168 | // implementation. |
1169 | template <typename D, typename Op> |
1170 | class PairMatchBase { |
1171 | public: |
1172 | template <typename T1, typename T2> |
1173 | operator Matcher<::std::tuple<T1, T2>>() const { |
1174 | return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>); |
1175 | } |
1176 | template <typename T1, typename T2> |
1177 | operator Matcher<const ::std::tuple<T1, T2>&>() const { |
1178 | return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>); |
1179 | } |
1180 | |
1181 | private: |
1182 | static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
1183 | return os << D::Desc(); |
1184 | } |
1185 | |
1186 | template <typename Tuple> |
1187 | class Impl : public MatcherInterface<Tuple> { |
1188 | public: |
1189 | bool MatchAndExplain(Tuple args, |
1190 | MatchResultListener* /* listener */) const override { |
1191 | return Op()(::std::get<0>(args), ::std::get<1>(args)); |
1192 | } |
1193 | void DescribeTo(::std::ostream* os) const override { |
1194 | *os << "are " << GetDesc; |
1195 | } |
1196 | void DescribeNegationTo(::std::ostream* os) const override { |
1197 | *os << "aren't " << GetDesc; |
1198 | } |
1199 | }; |
1200 | }; |
1201 | |
1202 | class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> { |
1203 | public: |
1204 | static const char* Desc() { return "an equal pair" ; } |
1205 | }; |
1206 | class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> { |
1207 | public: |
1208 | static const char* Desc() { return "an unequal pair" ; } |
1209 | }; |
1210 | class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> { |
1211 | public: |
1212 | static const char* Desc() { return "a pair where the first < the second" ; } |
1213 | }; |
1214 | class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> { |
1215 | public: |
1216 | static const char* Desc() { return "a pair where the first > the second" ; } |
1217 | }; |
1218 | class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> { |
1219 | public: |
1220 | static const char* Desc() { return "a pair where the first <= the second" ; } |
1221 | }; |
1222 | class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> { |
1223 | public: |
1224 | static const char* Desc() { return "a pair where the first >= the second" ; } |
1225 | }; |
1226 | |
1227 | // Implements the Not(...) matcher for a particular argument type T. |
1228 | // We do not nest it inside the NotMatcher class template, as that |
1229 | // will prevent different instantiations of NotMatcher from sharing |
1230 | // the same NotMatcherImpl<T> class. |
1231 | template <typename T> |
1232 | class NotMatcherImpl : public MatcherInterface<const T&> { |
1233 | public: |
1234 | explicit NotMatcherImpl(const Matcher<T>& matcher) : matcher_(matcher) {} |
1235 | |
1236 | bool MatchAndExplain(const T& x, |
1237 | MatchResultListener* listener) const override { |
1238 | return !matcher_.MatchAndExplain(x, listener); |
1239 | } |
1240 | |
1241 | void DescribeTo(::std::ostream* os) const override { |
1242 | matcher_.DescribeNegationTo(os); |
1243 | } |
1244 | |
1245 | void DescribeNegationTo(::std::ostream* os) const override { |
1246 | matcher_.DescribeTo(os); |
1247 | } |
1248 | |
1249 | private: |
1250 | const Matcher<T> matcher_; |
1251 | }; |
1252 | |
1253 | // Implements the Not(m) matcher, which matches a value that doesn't |
1254 | // match matcher m. |
1255 | template <typename InnerMatcher> |
1256 | class NotMatcher { |
1257 | public: |
1258 | explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} |
1259 | |
1260 | // This template type conversion operator allows Not(m) to be used |
1261 | // to match any type m can match. |
1262 | template <typename T> |
1263 | operator Matcher<T>() const { |
1264 | return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); |
1265 | } |
1266 | |
1267 | private: |
1268 | InnerMatcher matcher_; |
1269 | }; |
1270 | |
1271 | // Implements the AllOf(m1, m2) matcher for a particular argument type |
1272 | // T. We do not nest it inside the BothOfMatcher class template, as |
1273 | // that will prevent different instantiations of BothOfMatcher from |
1274 | // sharing the same BothOfMatcherImpl<T> class. |
1275 | template <typename T> |
1276 | class AllOfMatcherImpl : public MatcherInterface<const T&> { |
1277 | public: |
1278 | explicit AllOfMatcherImpl(std::vector<Matcher<T>> matchers) |
1279 | : matchers_(std::move(matchers)) {} |
1280 | |
1281 | void DescribeTo(::std::ostream* os) const override { |
1282 | *os << "(" ; |
1283 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1284 | if (i != 0) *os << ") and (" ; |
1285 | matchers_[i].DescribeTo(os); |
1286 | } |
1287 | *os << ")" ; |
1288 | } |
1289 | |
1290 | void DescribeNegationTo(::std::ostream* os) const override { |
1291 | *os << "(" ; |
1292 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1293 | if (i != 0) *os << ") or (" ; |
1294 | matchers_[i].DescribeNegationTo(os); |
1295 | } |
1296 | *os << ")" ; |
1297 | } |
1298 | |
1299 | bool MatchAndExplain(const T& x, |
1300 | MatchResultListener* listener) const override { |
1301 | // If either matcher1_ or matcher2_ doesn't match x, we only need |
1302 | // to explain why one of them fails. |
1303 | std::string all_match_result; |
1304 | |
1305 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1306 | StringMatchResultListener slistener; |
1307 | if (matchers_[i].MatchAndExplain(x, &slistener)) { |
1308 | if (all_match_result.empty()) { |
1309 | all_match_result = slistener.str(); |
1310 | } else { |
1311 | std::string result = slistener.str(); |
1312 | if (!result.empty()) { |
1313 | all_match_result += ", and " ; |
1314 | all_match_result += result; |
1315 | } |
1316 | } |
1317 | } else { |
1318 | *listener << slistener.str(); |
1319 | return false; |
1320 | } |
1321 | } |
1322 | |
1323 | // Otherwise we need to explain why *both* of them match. |
1324 | *listener << all_match_result; |
1325 | return true; |
1326 | } |
1327 | |
1328 | private: |
1329 | const std::vector<Matcher<T>> matchers_; |
1330 | }; |
1331 | |
1332 | // VariadicMatcher is used for the variadic implementation of |
1333 | // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). |
1334 | // CombiningMatcher<T> is used to recursively combine the provided matchers |
1335 | // (of type Args...). |
1336 | template <template <typename T> class CombiningMatcher, typename... Args> |
1337 | class VariadicMatcher { |
1338 | public: |
1339 | VariadicMatcher(const Args&... matchers) // NOLINT |
1340 | : matchers_(matchers...) { |
1341 | static_assert(sizeof...(Args) > 0, "Must have at least one matcher." ); |
1342 | } |
1343 | |
1344 | VariadicMatcher(const VariadicMatcher&) = default; |
1345 | VariadicMatcher& operator=(const VariadicMatcher&) = delete; |
1346 | |
1347 | // This template type conversion operator allows an |
1348 | // VariadicMatcher<Matcher1, Matcher2...> object to match any type that |
1349 | // all of the provided matchers (Matcher1, Matcher2, ...) can match. |
1350 | template <typename T> |
1351 | operator Matcher<T>() const { |
1352 | std::vector<Matcher<T>> values; |
1353 | CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>()); |
1354 | return Matcher<T>(new CombiningMatcher<T>(std::move(values))); |
1355 | } |
1356 | |
1357 | private: |
1358 | template <typename T, size_t I> |
1359 | void CreateVariadicMatcher(std::vector<Matcher<T>>* values, |
1360 | std::integral_constant<size_t, I>) const { |
1361 | values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_))); |
1362 | CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>()); |
1363 | } |
1364 | |
1365 | template <typename T> |
1366 | void CreateVariadicMatcher( |
1367 | std::vector<Matcher<T>>*, |
1368 | std::integral_constant<size_t, sizeof...(Args)>) const {} |
1369 | |
1370 | std::tuple<Args...> matchers_; |
1371 | }; |
1372 | |
1373 | template <typename... Args> |
1374 | using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>; |
1375 | |
1376 | // Implements the AnyOf(m1, m2) matcher for a particular argument type |
1377 | // T. We do not nest it inside the AnyOfMatcher class template, as |
1378 | // that will prevent different instantiations of AnyOfMatcher from |
1379 | // sharing the same EitherOfMatcherImpl<T> class. |
1380 | template <typename T> |
1381 | class AnyOfMatcherImpl : public MatcherInterface<const T&> { |
1382 | public: |
1383 | explicit AnyOfMatcherImpl(std::vector<Matcher<T>> matchers) |
1384 | : matchers_(std::move(matchers)) {} |
1385 | |
1386 | void DescribeTo(::std::ostream* os) const override { |
1387 | *os << "(" ; |
1388 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1389 | if (i != 0) *os << ") or (" ; |
1390 | matchers_[i].DescribeTo(os); |
1391 | } |
1392 | *os << ")" ; |
1393 | } |
1394 | |
1395 | void DescribeNegationTo(::std::ostream* os) const override { |
1396 | *os << "(" ; |
1397 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1398 | if (i != 0) *os << ") and (" ; |
1399 | matchers_[i].DescribeNegationTo(os); |
1400 | } |
1401 | *os << ")" ; |
1402 | } |
1403 | |
1404 | bool MatchAndExplain(const T& x, |
1405 | MatchResultListener* listener) const override { |
1406 | std::string no_match_result; |
1407 | |
1408 | // If either matcher1_ or matcher2_ matches x, we just need to |
1409 | // explain why *one* of them matches. |
1410 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1411 | StringMatchResultListener slistener; |
1412 | if (matchers_[i].MatchAndExplain(x, &slistener)) { |
1413 | *listener << slistener.str(); |
1414 | return true; |
1415 | } else { |
1416 | if (no_match_result.empty()) { |
1417 | no_match_result = slistener.str(); |
1418 | } else { |
1419 | std::string result = slistener.str(); |
1420 | if (!result.empty()) { |
1421 | no_match_result += ", and " ; |
1422 | no_match_result += result; |
1423 | } |
1424 | } |
1425 | } |
1426 | } |
1427 | |
1428 | // Otherwise we need to explain why *both* of them fail. |
1429 | *listener << no_match_result; |
1430 | return false; |
1431 | } |
1432 | |
1433 | private: |
1434 | const std::vector<Matcher<T>> matchers_; |
1435 | }; |
1436 | |
1437 | // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). |
1438 | template <typename... Args> |
1439 | using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>; |
1440 | |
1441 | // ConditionalMatcher is the implementation of Conditional(cond, m1, m2) |
1442 | template <typename MatcherTrue, typename MatcherFalse> |
1443 | class ConditionalMatcher { |
1444 | public: |
1445 | ConditionalMatcher(bool condition, MatcherTrue matcher_true, |
1446 | MatcherFalse matcher_false) |
1447 | : condition_(condition), |
1448 | matcher_true_(std::move(matcher_true)), |
1449 | matcher_false_(std::move(matcher_false)) {} |
1450 | |
1451 | template <typename T> |
1452 | operator Matcher<T>() const { // NOLINT(runtime/explicit) |
1453 | return condition_ ? SafeMatcherCast<T>(matcher_true_) |
1454 | : SafeMatcherCast<T>(matcher_false_); |
1455 | } |
1456 | |
1457 | private: |
1458 | bool condition_; |
1459 | MatcherTrue matcher_true_; |
1460 | MatcherFalse matcher_false_; |
1461 | }; |
1462 | |
1463 | // Wrapper for implementation of Any/AllOfArray(). |
1464 | template <template <class> class MatcherImpl, typename T> |
1465 | class SomeOfArrayMatcher { |
1466 | public: |
1467 | // Constructs the matcher from a sequence of element values or |
1468 | // element matchers. |
1469 | template <typename Iter> |
1470 | SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
1471 | |
1472 | template <typename U> |
1473 | operator Matcher<U>() const { // NOLINT |
1474 | using RawU = typename std::decay<U>::type; |
1475 | std::vector<Matcher<RawU>> matchers; |
1476 | for (const auto& matcher : matchers_) { |
1477 | matchers.push_back(MatcherCast<RawU>(matcher)); |
1478 | } |
1479 | return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers))); |
1480 | } |
1481 | |
1482 | private: |
1483 | const ::std::vector<T> matchers_; |
1484 | }; |
1485 | |
1486 | template <typename T> |
1487 | using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>; |
1488 | |
1489 | template <typename T> |
1490 | using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>; |
1491 | |
1492 | // Used for implementing Truly(pred), which turns a predicate into a |
1493 | // matcher. |
1494 | template <typename Predicate> |
1495 | class TrulyMatcher { |
1496 | public: |
1497 | explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} |
1498 | |
1499 | // This method template allows Truly(pred) to be used as a matcher |
1500 | // for type T where T is the argument type of predicate 'pred'. The |
1501 | // argument is passed by reference as the predicate may be |
1502 | // interested in the address of the argument. |
1503 | template <typename T> |
1504 | bool MatchAndExplain(T& x, // NOLINT |
1505 | MatchResultListener* listener) const { |
1506 | // Without the if-statement, MSVC sometimes warns about converting |
1507 | // a value to bool (warning 4800). |
1508 | // |
1509 | // We cannot write 'return !!predicate_(x);' as that doesn't work |
1510 | // when predicate_(x) returns a class convertible to bool but |
1511 | // having no operator!(). |
1512 | if (predicate_(x)) return true; |
1513 | *listener << "didn't satisfy the given predicate" ; |
1514 | return false; |
1515 | } |
1516 | |
1517 | void DescribeTo(::std::ostream* os) const { |
1518 | *os << "satisfies the given predicate" ; |
1519 | } |
1520 | |
1521 | void DescribeNegationTo(::std::ostream* os) const { |
1522 | *os << "doesn't satisfy the given predicate" ; |
1523 | } |
1524 | |
1525 | private: |
1526 | Predicate predicate_; |
1527 | }; |
1528 | |
1529 | // Used for implementing Matches(matcher), which turns a matcher into |
1530 | // a predicate. |
1531 | template <typename M> |
1532 | class MatcherAsPredicate { |
1533 | public: |
1534 | explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} |
1535 | |
1536 | // This template operator() allows Matches(m) to be used as a |
1537 | // predicate on type T where m is a matcher on type T. |
1538 | // |
1539 | // The argument x is passed by reference instead of by value, as |
1540 | // some matcher may be interested in its address (e.g. as in |
1541 | // Matches(Ref(n))(x)). |
1542 | template <typename T> |
1543 | bool operator()(const T& x) const { |
1544 | // We let matcher_ commit to a particular type here instead of |
1545 | // when the MatcherAsPredicate object was constructed. This |
1546 | // allows us to write Matches(m) where m is a polymorphic matcher |
1547 | // (e.g. Eq(5)). |
1548 | // |
1549 | // If we write Matcher<T>(matcher_).Matches(x) here, it won't |
1550 | // compile when matcher_ has type Matcher<const T&>; if we write |
1551 | // Matcher<const T&>(matcher_).Matches(x) here, it won't compile |
1552 | // when matcher_ has type Matcher<T>; if we just write |
1553 | // matcher_.Matches(x), it won't compile when matcher_ is |
1554 | // polymorphic, e.g. Eq(5). |
1555 | // |
1556 | // MatcherCast<const T&>() is necessary for making the code work |
1557 | // in all of the above situations. |
1558 | return MatcherCast<const T&>(matcher_).Matches(x); |
1559 | } |
1560 | |
1561 | private: |
1562 | M matcher_; |
1563 | }; |
1564 | |
1565 | // For implementing ASSERT_THAT() and EXPECT_THAT(). The template |
1566 | // argument M must be a type that can be converted to a matcher. |
1567 | template <typename M> |
1568 | class PredicateFormatterFromMatcher { |
1569 | public: |
1570 | explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {} |
1571 | |
1572 | // This template () operator allows a PredicateFormatterFromMatcher |
1573 | // object to act as a predicate-formatter suitable for using with |
1574 | // Google Test's EXPECT_PRED_FORMAT1() macro. |
1575 | template <typename T> |
1576 | AssertionResult operator()(const char* value_text, const T& x) const { |
1577 | // We convert matcher_ to a Matcher<const T&> *now* instead of |
1578 | // when the PredicateFormatterFromMatcher object was constructed, |
1579 | // as matcher_ may be polymorphic (e.g. NotNull()) and we won't |
1580 | // know which type to instantiate it to until we actually see the |
1581 | // type of x here. |
1582 | // |
1583 | // We write SafeMatcherCast<const T&>(matcher_) instead of |
1584 | // Matcher<const T&>(matcher_), as the latter won't compile when |
1585 | // matcher_ has type Matcher<T> (e.g. An<int>()). |
1586 | // We don't write MatcherCast<const T&> either, as that allows |
1587 | // potentially unsafe downcasting of the matcher argument. |
1588 | const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); |
1589 | |
1590 | // The expected path here is that the matcher should match (i.e. that most |
1591 | // tests pass) so optimize for this case. |
1592 | if (matcher.Matches(x)) { |
1593 | return AssertionSuccess(); |
1594 | } |
1595 | |
1596 | ::std::stringstream ss; |
1597 | ss << "Value of: " << value_text << "\n" |
1598 | << "Expected: " ; |
1599 | matcher.DescribeTo(&ss); |
1600 | |
1601 | // Rerun the matcher to "PrintAndExplain" the failure. |
1602 | StringMatchResultListener listener; |
1603 | if (MatchPrintAndExplain(x, matcher, &listener)) { |
1604 | ss << "\n The matcher failed on the initial attempt; but passed when " |
1605 | "rerun to generate the explanation." ; |
1606 | } |
1607 | ss << "\n Actual: " << listener.str(); |
1608 | return AssertionFailure() << ss.str(); |
1609 | } |
1610 | |
1611 | private: |
1612 | const M matcher_; |
1613 | }; |
1614 | |
1615 | // A helper function for converting a matcher to a predicate-formatter |
1616 | // without the user needing to explicitly write the type. This is |
1617 | // used for implementing ASSERT_THAT() and EXPECT_THAT(). |
1618 | // Implementation detail: 'matcher' is received by-value to force decaying. |
1619 | template <typename M> |
1620 | inline PredicateFormatterFromMatcher<M> MakePredicateFormatterFromMatcher( |
1621 | M matcher) { |
1622 | return PredicateFormatterFromMatcher<M>(std::move(matcher)); |
1623 | } |
1624 | |
1625 | // Implements the polymorphic IsNan() matcher, which matches any floating type |
1626 | // value that is Nan. |
1627 | class IsNanMatcher { |
1628 | public: |
1629 | template <typename FloatType> |
1630 | bool MatchAndExplain(const FloatType& f, |
1631 | MatchResultListener* /* listener */) const { |
1632 | return (::std::isnan)(f); |
1633 | } |
1634 | |
1635 | void DescribeTo(::std::ostream* os) const { *os << "is NaN" ; } |
1636 | void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NaN" ; } |
1637 | }; |
1638 | |
1639 | // Implements the polymorphic floating point equality matcher, which matches |
1640 | // two float values using ULP-based approximation or, optionally, a |
1641 | // user-specified epsilon. The template is meant to be instantiated with |
1642 | // FloatType being either float or double. |
1643 | template <typename FloatType> |
1644 | class FloatingEqMatcher { |
1645 | public: |
1646 | // Constructor for FloatingEqMatcher. |
1647 | // The matcher's input will be compared with expected. The matcher treats two |
1648 | // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards, |
1649 | // equality comparisons between NANs will always return false. We specify a |
1650 | // negative max_abs_error_ term to indicate that ULP-based approximation will |
1651 | // be used for comparison. |
1652 | FloatingEqMatcher(FloatType expected, bool nan_eq_nan) |
1653 | : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {} |
1654 | |
1655 | // Constructor that supports a user-specified max_abs_error that will be used |
1656 | // for comparison instead of ULP-based approximation. The max absolute |
1657 | // should be non-negative. |
1658 | FloatingEqMatcher(FloatType expected, bool nan_eq_nan, |
1659 | FloatType max_abs_error) |
1660 | : expected_(expected), |
1661 | nan_eq_nan_(nan_eq_nan), |
1662 | max_abs_error_(max_abs_error) { |
1663 | GTEST_CHECK_(max_abs_error >= 0) |
1664 | << ", where max_abs_error is" << max_abs_error; |
1665 | } |
1666 | |
1667 | // Implements floating point equality matcher as a Matcher<T>. |
1668 | template <typename T> |
1669 | class Impl : public MatcherInterface<T> { |
1670 | public: |
1671 | Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) |
1672 | : expected_(expected), |
1673 | nan_eq_nan_(nan_eq_nan), |
1674 | max_abs_error_(max_abs_error) {} |
1675 | |
1676 | bool MatchAndExplain(T value, |
1677 | MatchResultListener* listener) const override { |
1678 | const FloatingPoint<FloatType> actual(value), expected(expected_); |
1679 | |
1680 | // Compares NaNs first, if nan_eq_nan_ is true. |
1681 | if (actual.is_nan() || expected.is_nan()) { |
1682 | if (actual.is_nan() && expected.is_nan()) { |
1683 | return nan_eq_nan_; |
1684 | } |
1685 | // One is nan; the other is not nan. |
1686 | return false; |
1687 | } |
1688 | if (HasMaxAbsError()) { |
1689 | // We perform an equality check so that inf will match inf, regardless |
1690 | // of error bounds. If the result of value - expected_ would result in |
1691 | // overflow or if either value is inf, the default result is infinity, |
1692 | // which should only match if max_abs_error_ is also infinity. |
1693 | if (value == expected_) { |
1694 | return true; |
1695 | } |
1696 | |
1697 | const FloatType diff = value - expected_; |
1698 | if (::std::fabs(diff) <= max_abs_error_) { |
1699 | return true; |
1700 | } |
1701 | |
1702 | if (listener->IsInterested()) { |
1703 | *listener << "which is " << diff << " from " << expected_; |
1704 | } |
1705 | return false; |
1706 | } else { |
1707 | return actual.AlmostEquals(expected); |
1708 | } |
1709 | } |
1710 | |
1711 | void DescribeTo(::std::ostream* os) const override { |
1712 | // os->precision() returns the previously set precision, which we |
1713 | // store to restore the ostream to its original configuration |
1714 | // after outputting. |
1715 | const ::std::streamsize old_precision = |
1716 | os->precision(::std::numeric_limits<FloatType>::digits10 + 2); |
1717 | if (FloatingPoint<FloatType>(expected_).is_nan()) { |
1718 | if (nan_eq_nan_) { |
1719 | *os << "is NaN" ; |
1720 | } else { |
1721 | *os << "never matches" ; |
1722 | } |
1723 | } else { |
1724 | *os << "is approximately " << expected_; |
1725 | if (HasMaxAbsError()) { |
1726 | *os << " (absolute error <= " << max_abs_error_ << ")" ; |
1727 | } |
1728 | } |
1729 | os->precision(prec: old_precision); |
1730 | } |
1731 | |
1732 | void DescribeNegationTo(::std::ostream* os) const override { |
1733 | // As before, get original precision. |
1734 | const ::std::streamsize old_precision = |
1735 | os->precision(::std::numeric_limits<FloatType>::digits10 + 2); |
1736 | if (FloatingPoint<FloatType>(expected_).is_nan()) { |
1737 | if (nan_eq_nan_) { |
1738 | *os << "isn't NaN" ; |
1739 | } else { |
1740 | *os << "is anything" ; |
1741 | } |
1742 | } else { |
1743 | *os << "isn't approximately " << expected_; |
1744 | if (HasMaxAbsError()) { |
1745 | *os << " (absolute error > " << max_abs_error_ << ")" ; |
1746 | } |
1747 | } |
1748 | // Restore original precision. |
1749 | os->precision(prec: old_precision); |
1750 | } |
1751 | |
1752 | private: |
1753 | bool HasMaxAbsError() const { return max_abs_error_ >= 0; } |
1754 | |
1755 | const FloatType expected_; |
1756 | const bool nan_eq_nan_; |
1757 | // max_abs_error will be used for value comparison when >= 0. |
1758 | const FloatType max_abs_error_; |
1759 | }; |
1760 | |
1761 | // The following 3 type conversion operators allow FloatEq(expected) and |
1762 | // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a |
1763 | // Matcher<const float&>, or a Matcher<float&>, but nothing else. |
1764 | operator Matcher<FloatType>() const { |
1765 | return MakeMatcher( |
1766 | new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); |
1767 | } |
1768 | |
1769 | operator Matcher<const FloatType&>() const { |
1770 | return MakeMatcher( |
1771 | new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
1772 | } |
1773 | |
1774 | operator Matcher<FloatType&>() const { |
1775 | return MakeMatcher( |
1776 | new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
1777 | } |
1778 | |
1779 | private: |
1780 | const FloatType expected_; |
1781 | const bool nan_eq_nan_; |
1782 | // max_abs_error will be used for value comparison when >= 0. |
1783 | const FloatType max_abs_error_; |
1784 | }; |
1785 | |
1786 | // A 2-tuple ("binary") wrapper around FloatingEqMatcher: |
1787 | // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false) |
1788 | // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e) |
1789 | // against y. The former implements "Eq", the latter "Near". At present, there |
1790 | // is no version that compares NaNs as equal. |
1791 | template <typename FloatType> |
1792 | class FloatingEq2Matcher { |
1793 | public: |
1794 | FloatingEq2Matcher() { Init(max_abs_error_val: -1, nan_eq_nan_val: false); } |
1795 | |
1796 | explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(max_abs_error_val: -1, nan_eq_nan_val: nan_eq_nan); } |
1797 | |
1798 | explicit FloatingEq2Matcher(FloatType max_abs_error) { |
1799 | Init(max_abs_error_val: max_abs_error, nan_eq_nan_val: false); |
1800 | } |
1801 | |
1802 | FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) { |
1803 | Init(max_abs_error_val: max_abs_error, nan_eq_nan_val: nan_eq_nan); |
1804 | } |
1805 | |
1806 | template <typename T1, typename T2> |
1807 | operator Matcher<::std::tuple<T1, T2>>() const { |
1808 | return MakeMatcher( |
1809 | new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_)); |
1810 | } |
1811 | template <typename T1, typename T2> |
1812 | operator Matcher<const ::std::tuple<T1, T2>&>() const { |
1813 | return MakeMatcher( |
1814 | new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_)); |
1815 | } |
1816 | |
1817 | private: |
1818 | static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
1819 | return os << "an almost-equal pair" ; |
1820 | } |
1821 | |
1822 | template <typename Tuple> |
1823 | class Impl : public MatcherInterface<Tuple> { |
1824 | public: |
1825 | Impl(FloatType max_abs_error, bool nan_eq_nan) |
1826 | : max_abs_error_(max_abs_error), nan_eq_nan_(nan_eq_nan) {} |
1827 | |
1828 | bool MatchAndExplain(Tuple args, |
1829 | MatchResultListener* listener) const override { |
1830 | if (max_abs_error_ == -1) { |
1831 | FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_); |
1832 | return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( |
1833 | ::std::get<1>(args), listener); |
1834 | } else { |
1835 | FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_, |
1836 | max_abs_error_); |
1837 | return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( |
1838 | ::std::get<1>(args), listener); |
1839 | } |
1840 | } |
1841 | void DescribeTo(::std::ostream* os) const override { |
1842 | *os << "are " << GetDesc; |
1843 | } |
1844 | void DescribeNegationTo(::std::ostream* os) const override { |
1845 | *os << "aren't " << GetDesc; |
1846 | } |
1847 | |
1848 | private: |
1849 | FloatType max_abs_error_; |
1850 | const bool nan_eq_nan_; |
1851 | }; |
1852 | |
1853 | void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) { |
1854 | max_abs_error_ = max_abs_error_val; |
1855 | nan_eq_nan_ = nan_eq_nan_val; |
1856 | } |
1857 | FloatType max_abs_error_; |
1858 | bool nan_eq_nan_; |
1859 | }; |
1860 | |
1861 | // Implements the Pointee(m) matcher for matching a pointer whose |
1862 | // pointee matches matcher m. The pointer can be either raw or smart. |
1863 | template <typename InnerMatcher> |
1864 | class PointeeMatcher { |
1865 | public: |
1866 | explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} |
1867 | |
1868 | // This type conversion operator template allows Pointee(m) to be |
1869 | // used as a matcher for any pointer type whose pointee type is |
1870 | // compatible with the inner matcher, where type Pointer can be |
1871 | // either a raw pointer or a smart pointer. |
1872 | // |
1873 | // The reason we do this instead of relying on |
1874 | // MakePolymorphicMatcher() is that the latter is not flexible |
1875 | // enough for implementing the DescribeTo() method of Pointee(). |
1876 | template <typename Pointer> |
1877 | operator Matcher<Pointer>() const { |
1878 | return Matcher<Pointer>(new Impl<const Pointer&>(matcher_)); |
1879 | } |
1880 | |
1881 | private: |
1882 | // The monomorphic implementation that works for a particular pointer type. |
1883 | template <typename Pointer> |
1884 | class Impl : public MatcherInterface<Pointer> { |
1885 | public: |
1886 | using Pointee = |
1887 | typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( |
1888 | Pointer)>::element_type; |
1889 | |
1890 | explicit Impl(const InnerMatcher& matcher) |
1891 | : matcher_(MatcherCast<const Pointee&>(matcher)) {} |
1892 | |
1893 | void DescribeTo(::std::ostream* os) const override { |
1894 | *os << "points to a value that " ; |
1895 | matcher_.DescribeTo(os); |
1896 | } |
1897 | |
1898 | void DescribeNegationTo(::std::ostream* os) const override { |
1899 | *os << "does not point to a value that " ; |
1900 | matcher_.DescribeTo(os); |
1901 | } |
1902 | |
1903 | bool MatchAndExplain(Pointer pointer, |
1904 | MatchResultListener* listener) const override { |
1905 | if (GetRawPointer(pointer) == nullptr) return false; |
1906 | |
1907 | *listener << "which points to " ; |
1908 | return MatchPrintAndExplain(*pointer, matcher_, listener); |
1909 | } |
1910 | |
1911 | private: |
1912 | const Matcher<const Pointee&> matcher_; |
1913 | }; |
1914 | |
1915 | const InnerMatcher matcher_; |
1916 | }; |
1917 | |
1918 | // Implements the Pointer(m) matcher |
1919 | // Implements the Pointer(m) matcher for matching a pointer that matches matcher |
1920 | // m. The pointer can be either raw or smart, and will match `m` against the |
1921 | // raw pointer. |
1922 | template <typename InnerMatcher> |
1923 | class PointerMatcher { |
1924 | public: |
1925 | explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} |
1926 | |
1927 | // This type conversion operator template allows Pointer(m) to be |
1928 | // used as a matcher for any pointer type whose pointer type is |
1929 | // compatible with the inner matcher, where type PointerType can be |
1930 | // either a raw pointer or a smart pointer. |
1931 | // |
1932 | // The reason we do this instead of relying on |
1933 | // MakePolymorphicMatcher() is that the latter is not flexible |
1934 | // enough for implementing the DescribeTo() method of Pointer(). |
1935 | template <typename PointerType> |
1936 | operator Matcher<PointerType>() const { // NOLINT |
1937 | return Matcher<PointerType>(new Impl<const PointerType&>(matcher_)); |
1938 | } |
1939 | |
1940 | private: |
1941 | // The monomorphic implementation that works for a particular pointer type. |
1942 | template <typename PointerType> |
1943 | class Impl : public MatcherInterface<PointerType> { |
1944 | public: |
1945 | using Pointer = |
1946 | const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( |
1947 | PointerType)>::element_type*; |
1948 | |
1949 | explicit Impl(const InnerMatcher& matcher) |
1950 | : matcher_(MatcherCast<Pointer>(matcher)) {} |
1951 | |
1952 | void DescribeTo(::std::ostream* os) const override { |
1953 | *os << "is a pointer that " ; |
1954 | matcher_.DescribeTo(os); |
1955 | } |
1956 | |
1957 | void DescribeNegationTo(::std::ostream* os) const override { |
1958 | *os << "is not a pointer that " ; |
1959 | matcher_.DescribeTo(os); |
1960 | } |
1961 | |
1962 | bool MatchAndExplain(PointerType pointer, |
1963 | MatchResultListener* listener) const override { |
1964 | *listener << "which is a pointer that " ; |
1965 | Pointer p = GetRawPointer(pointer); |
1966 | return MatchPrintAndExplain(p, matcher_, listener); |
1967 | } |
1968 | |
1969 | private: |
1970 | Matcher<Pointer> matcher_; |
1971 | }; |
1972 | |
1973 | const InnerMatcher matcher_; |
1974 | }; |
1975 | |
1976 | #if GTEST_HAS_RTTI |
1977 | // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or |
1978 | // reference that matches inner_matcher when dynamic_cast<T> is applied. |
1979 | // The result of dynamic_cast<To> is forwarded to the inner matcher. |
1980 | // If To is a pointer and the cast fails, the inner matcher will receive NULL. |
1981 | // If To is a reference and the cast fails, this matcher returns false |
1982 | // immediately. |
1983 | template <typename To> |
1984 | class WhenDynamicCastToMatcherBase { |
1985 | public: |
1986 | explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) |
1987 | : matcher_(matcher) {} |
1988 | |
1989 | void DescribeTo(::std::ostream* os) const { |
1990 | GetCastTypeDescription(os); |
1991 | matcher_.DescribeTo(os); |
1992 | } |
1993 | |
1994 | void DescribeNegationTo(::std::ostream* os) const { |
1995 | GetCastTypeDescription(os); |
1996 | matcher_.DescribeNegationTo(os); |
1997 | } |
1998 | |
1999 | protected: |
2000 | const Matcher<To> matcher_; |
2001 | |
2002 | static std::string GetToName() { return GetTypeName<To>(); } |
2003 | |
2004 | private: |
2005 | static void GetCastTypeDescription(::std::ostream* os) { |
2006 | *os << "when dynamic_cast to " << GetToName() << ", " ; |
2007 | } |
2008 | }; |
2009 | |
2010 | // Primary template. |
2011 | // To is a pointer. Cast and forward the result. |
2012 | template <typename To> |
2013 | class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { |
2014 | public: |
2015 | explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) |
2016 | : WhenDynamicCastToMatcherBase<To>(matcher) {} |
2017 | |
2018 | template <typename From> |
2019 | bool MatchAndExplain(From from, MatchResultListener* listener) const { |
2020 | To to = dynamic_cast<To>(from); |
2021 | return MatchPrintAndExplain(to, this->matcher_, listener); |
2022 | } |
2023 | }; |
2024 | |
2025 | // Specialize for references. |
2026 | // In this case we return false if the dynamic_cast fails. |
2027 | template <typename To> |
2028 | class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { |
2029 | public: |
2030 | explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) |
2031 | : WhenDynamicCastToMatcherBase<To&>(matcher) {} |
2032 | |
2033 | template <typename From> |
2034 | bool MatchAndExplain(From& from, MatchResultListener* listener) const { |
2035 | // We don't want an std::bad_cast here, so do the cast with pointers. |
2036 | To* to = dynamic_cast<To*>(&from); |
2037 | if (to == nullptr) { |
2038 | *listener << "which cannot be dynamic_cast to " << this->GetToName(); |
2039 | return false; |
2040 | } |
2041 | return MatchPrintAndExplain(*to, this->matcher_, listener); |
2042 | } |
2043 | }; |
2044 | #endif // GTEST_HAS_RTTI |
2045 | |
2046 | // Implements the Field() matcher for matching a field (i.e. member |
2047 | // variable) of an object. |
2048 | template <typename Class, typename FieldType> |
2049 | class FieldMatcher { |
2050 | public: |
2051 | FieldMatcher(FieldType Class::*field, |
2052 | const Matcher<const FieldType&>& matcher) |
2053 | : field_(field), matcher_(matcher), whose_field_("whose given field " ) {} |
2054 | |
2055 | FieldMatcher(const std::string& field_name, FieldType Class::*field, |
2056 | const Matcher<const FieldType&>& matcher) |
2057 | : field_(field), |
2058 | matcher_(matcher), |
2059 | whose_field_("whose field `" + field_name + "` " ) {} |
2060 | |
2061 | void DescribeTo(::std::ostream* os) const { |
2062 | *os << "is an object " << whose_field_; |
2063 | matcher_.DescribeTo(os); |
2064 | } |
2065 | |
2066 | void DescribeNegationTo(::std::ostream* os) const { |
2067 | *os << "is an object " << whose_field_; |
2068 | matcher_.DescribeNegationTo(os); |
2069 | } |
2070 | |
2071 | template <typename T> |
2072 | bool MatchAndExplain(const T& value, MatchResultListener* listener) const { |
2073 | // FIXME: The dispatch on std::is_pointer was introduced as a workaround for |
2074 | // a compiler bug, and can now be removed. |
2075 | return MatchAndExplainImpl( |
2076 | typename std::is_pointer<typename std::remove_const<T>::type>::type(), |
2077 | value, listener); |
2078 | } |
2079 | |
2080 | private: |
2081 | bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, |
2082 | const Class& obj, |
2083 | MatchResultListener* listener) const { |
2084 | *listener << whose_field_ << "is " ; |
2085 | return MatchPrintAndExplain(obj.*field_, matcher_, listener); |
2086 | } |
2087 | |
2088 | bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, |
2089 | MatchResultListener* listener) const { |
2090 | if (p == nullptr) return false; |
2091 | |
2092 | *listener << "which points to an object " ; |
2093 | // Since *p has a field, it must be a class/struct/union type and |
2094 | // thus cannot be a pointer. Therefore we pass false_type() as |
2095 | // the first argument. |
2096 | return MatchAndExplainImpl(std::false_type(), *p, listener); |
2097 | } |
2098 | |
2099 | const FieldType Class::*field_; |
2100 | const Matcher<const FieldType&> matcher_; |
2101 | |
2102 | // Contains either "whose given field " if the name of the field is unknown |
2103 | // or "whose field `name_of_field` " if the name is known. |
2104 | const std::string whose_field_; |
2105 | }; |
2106 | |
2107 | // Implements the Property() matcher for matching a property |
2108 | // (i.e. return value of a getter method) of an object. |
2109 | // |
2110 | // Property is a const-qualified member function of Class returning |
2111 | // PropertyType. |
2112 | template <typename Class, typename PropertyType, typename Property> |
2113 | class PropertyMatcher { |
2114 | public: |
2115 | typedef const PropertyType& RefToConstProperty; |
2116 | |
2117 | PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher) |
2118 | : property_(property), |
2119 | matcher_(matcher), |
2120 | whose_property_("whose given property " ) {} |
2121 | |
2122 | PropertyMatcher(const std::string& property_name, Property property, |
2123 | const Matcher<RefToConstProperty>& matcher) |
2124 | : property_(property), |
2125 | matcher_(matcher), |
2126 | whose_property_("whose property `" + property_name + "` " ) {} |
2127 | |
2128 | void DescribeTo(::std::ostream* os) const { |
2129 | *os << "is an object " << whose_property_; |
2130 | matcher_.DescribeTo(os); |
2131 | } |
2132 | |
2133 | void DescribeNegationTo(::std::ostream* os) const { |
2134 | *os << "is an object " << whose_property_; |
2135 | matcher_.DescribeNegationTo(os); |
2136 | } |
2137 | |
2138 | template <typename T> |
2139 | bool MatchAndExplain(const T& value, MatchResultListener* listener) const { |
2140 | return MatchAndExplainImpl( |
2141 | typename std::is_pointer<typename std::remove_const<T>::type>::type(), |
2142 | value, listener); |
2143 | } |
2144 | |
2145 | private: |
2146 | bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, |
2147 | const Class& obj, |
2148 | MatchResultListener* listener) const { |
2149 | *listener << whose_property_ << "is " ; |
2150 | // Cannot pass the return value (for example, int) to MatchPrintAndExplain, |
2151 | // which takes a non-const reference as argument. |
2152 | RefToConstProperty result = (obj.*property_)(); |
2153 | return MatchPrintAndExplain(result, matcher_, listener); |
2154 | } |
2155 | |
2156 | bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, |
2157 | MatchResultListener* listener) const { |
2158 | if (p == nullptr) return false; |
2159 | |
2160 | *listener << "which points to an object " ; |
2161 | // Since *p has a property method, it must be a class/struct/union |
2162 | // type and thus cannot be a pointer. Therefore we pass |
2163 | // false_type() as the first argument. |
2164 | return MatchAndExplainImpl(std::false_type(), *p, listener); |
2165 | } |
2166 | |
2167 | Property property_; |
2168 | const Matcher<RefToConstProperty> matcher_; |
2169 | |
2170 | // Contains either "whose given property " if the name of the property is |
2171 | // unknown or "whose property `name_of_property` " if the name is known. |
2172 | const std::string whose_property_; |
2173 | }; |
2174 | |
2175 | // Type traits specifying various features of different functors for ResultOf. |
2176 | // The default template specifies features for functor objects. |
2177 | template <typename Functor> |
2178 | struct CallableTraits { |
2179 | typedef Functor StorageType; |
2180 | |
2181 | static void CheckIsValid(Functor /* functor */) {} |
2182 | |
2183 | template <typename T> |
2184 | static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) { |
2185 | return f(arg); |
2186 | } |
2187 | }; |
2188 | |
2189 | // Specialization for function pointers. |
2190 | template <typename ArgType, typename ResType> |
2191 | struct CallableTraits<ResType (*)(ArgType)> { |
2192 | typedef ResType ResultType; |
2193 | typedef ResType (*StorageType)(ArgType); |
2194 | |
2195 | static void CheckIsValid(ResType (*f)(ArgType)) { |
2196 | GTEST_CHECK_(f != nullptr) |
2197 | << "NULL function pointer is passed into ResultOf()." ; |
2198 | } |
2199 | template <typename T> |
2200 | static ResType Invoke(ResType (*f)(ArgType), T arg) { |
2201 | return (*f)(arg); |
2202 | } |
2203 | }; |
2204 | |
2205 | // Implements the ResultOf() matcher for matching a return value of a |
2206 | // unary function of an object. |
2207 | template <typename Callable, typename InnerMatcher> |
2208 | class ResultOfMatcher { |
2209 | public: |
2210 | ResultOfMatcher(Callable callable, InnerMatcher matcher) |
2211 | : ResultOfMatcher(/*result_description=*/"" , std::move(callable), |
2212 | std::move(matcher)) {} |
2213 | |
2214 | ResultOfMatcher(const std::string& result_description, Callable callable, |
2215 | InnerMatcher matcher) |
2216 | : result_description_(result_description), |
2217 | callable_(std::move(callable)), |
2218 | matcher_(std::move(matcher)) { |
2219 | CallableTraits<Callable>::CheckIsValid(callable_); |
2220 | } |
2221 | |
2222 | template <typename T> |
2223 | operator Matcher<T>() const { |
2224 | return Matcher<T>( |
2225 | new Impl<const T&>(result_description_, callable_, matcher_)); |
2226 | } |
2227 | |
2228 | private: |
2229 | typedef typename CallableTraits<Callable>::StorageType CallableStorageType; |
2230 | |
2231 | template <typename T> |
2232 | class Impl : public MatcherInterface<T> { |
2233 | using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>( |
2234 | std::declval<CallableStorageType>(), std::declval<T>())); |
2235 | |
2236 | public: |
2237 | template <typename M> |
2238 | Impl(const std::string& result_description, |
2239 | const CallableStorageType& callable, const M& matcher) |
2240 | : result_description_(result_description), |
2241 | callable_(callable), |
2242 | matcher_(MatcherCast<ResultType>(matcher)) {} |
2243 | |
2244 | void DescribeTo(::std::ostream* os) const override { |
2245 | if (result_description_.empty()) { |
2246 | *os << "is mapped by the given callable to a value that " ; |
2247 | } else { |
2248 | *os << "whose " << result_description_ << " " ; |
2249 | } |
2250 | matcher_.DescribeTo(os); |
2251 | } |
2252 | |
2253 | void DescribeNegationTo(::std::ostream* os) const override { |
2254 | if (result_description_.empty()) { |
2255 | *os << "is mapped by the given callable to a value that " ; |
2256 | } else { |
2257 | *os << "whose " << result_description_ << " " ; |
2258 | } |
2259 | matcher_.DescribeNegationTo(os); |
2260 | } |
2261 | |
2262 | bool MatchAndExplain(T obj, MatchResultListener* listener) const override { |
2263 | if (result_description_.empty()) { |
2264 | *listener << "which is mapped by the given callable to " ; |
2265 | } else { |
2266 | *listener << "whose " << result_description_ << " is " ; |
2267 | } |
2268 | // Cannot pass the return value directly to MatchPrintAndExplain, which |
2269 | // takes a non-const reference as argument. |
2270 | // Also, specifying template argument explicitly is needed because T could |
2271 | // be a non-const reference (e.g. Matcher<Uncopyable&>). |
2272 | ResultType result = |
2273 | CallableTraits<Callable>::template Invoke<T>(callable_, obj); |
2274 | return MatchPrintAndExplain(result, matcher_, listener); |
2275 | } |
2276 | |
2277 | private: |
2278 | const std::string result_description_; |
2279 | // Functors often define operator() as non-const method even though |
2280 | // they are actually stateless. But we need to use them even when |
2281 | // 'this' is a const pointer. It's the user's responsibility not to |
2282 | // use stateful callables with ResultOf(), which doesn't guarantee |
2283 | // how many times the callable will be invoked. |
2284 | mutable CallableStorageType callable_; |
2285 | const Matcher<ResultType> matcher_; |
2286 | }; // class Impl |
2287 | |
2288 | const std::string result_description_; |
2289 | const CallableStorageType callable_; |
2290 | const InnerMatcher matcher_; |
2291 | }; |
2292 | |
2293 | // Implements a matcher that checks the size of an STL-style container. |
2294 | template <typename SizeMatcher> |
2295 | class SizeIsMatcher { |
2296 | public: |
2297 | explicit SizeIsMatcher(const SizeMatcher& size_matcher) |
2298 | : size_matcher_(size_matcher) {} |
2299 | |
2300 | template <typename Container> |
2301 | operator Matcher<Container>() const { |
2302 | return Matcher<Container>(new Impl<const Container&>(size_matcher_)); |
2303 | } |
2304 | |
2305 | template <typename Container> |
2306 | class Impl : public MatcherInterface<Container> { |
2307 | public: |
2308 | using SizeType = decltype(std::declval<Container>().size()); |
2309 | explicit Impl(const SizeMatcher& size_matcher) |
2310 | : size_matcher_(MatcherCast<SizeType>(size_matcher)) {} |
2311 | |
2312 | void DescribeTo(::std::ostream* os) const override { |
2313 | *os << "has a size that " ; |
2314 | size_matcher_.DescribeTo(os); |
2315 | } |
2316 | void DescribeNegationTo(::std::ostream* os) const override { |
2317 | *os << "has a size that " ; |
2318 | size_matcher_.DescribeNegationTo(os); |
2319 | } |
2320 | |
2321 | bool MatchAndExplain(Container container, |
2322 | MatchResultListener* listener) const override { |
2323 | SizeType size = container.size(); |
2324 | StringMatchResultListener size_listener; |
2325 | const bool result = size_matcher_.MatchAndExplain(size, &size_listener); |
2326 | *listener << "whose size " << size |
2327 | << (result ? " matches" : " doesn't match" ); |
2328 | PrintIfNotEmpty(explanation: size_listener.str(), os: listener->stream()); |
2329 | return result; |
2330 | } |
2331 | |
2332 | private: |
2333 | const Matcher<SizeType> size_matcher_; |
2334 | }; |
2335 | |
2336 | private: |
2337 | const SizeMatcher size_matcher_; |
2338 | }; |
2339 | |
2340 | // Implements a matcher that checks the begin()..end() distance of an STL-style |
2341 | // container. |
2342 | template <typename DistanceMatcher> |
2343 | class BeginEndDistanceIsMatcher { |
2344 | public: |
2345 | explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) |
2346 | : distance_matcher_(distance_matcher) {} |
2347 | |
2348 | template <typename Container> |
2349 | operator Matcher<Container>() const { |
2350 | return Matcher<Container>(new Impl<const Container&>(distance_matcher_)); |
2351 | } |
2352 | |
2353 | template <typename Container> |
2354 | class Impl : public MatcherInterface<Container> { |
2355 | public: |
2356 | typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_( |
2357 | Container)> |
2358 | ContainerView; |
2359 | typedef typename std::iterator_traits< |
2360 | typename ContainerView::type::const_iterator>::difference_type |
2361 | DistanceType; |
2362 | explicit Impl(const DistanceMatcher& distance_matcher) |
2363 | : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {} |
2364 | |
2365 | void DescribeTo(::std::ostream* os) const override { |
2366 | *os << "distance between begin() and end() " ; |
2367 | distance_matcher_.DescribeTo(os); |
2368 | } |
2369 | void DescribeNegationTo(::std::ostream* os) const override { |
2370 | *os << "distance between begin() and end() " ; |
2371 | distance_matcher_.DescribeNegationTo(os); |
2372 | } |
2373 | |
2374 | bool MatchAndExplain(Container container, |
2375 | MatchResultListener* listener) const override { |
2376 | using std::begin; |
2377 | using std::end; |
2378 | DistanceType distance = std::distance(begin(container), end(container)); |
2379 | StringMatchResultListener distance_listener; |
2380 | const bool result = |
2381 | distance_matcher_.MatchAndExplain(distance, &distance_listener); |
2382 | *listener << "whose distance between begin() and end() " << distance |
2383 | << (result ? " matches" : " doesn't match" ); |
2384 | PrintIfNotEmpty(explanation: distance_listener.str(), os: listener->stream()); |
2385 | return result; |
2386 | } |
2387 | |
2388 | private: |
2389 | const Matcher<DistanceType> distance_matcher_; |
2390 | }; |
2391 | |
2392 | private: |
2393 | const DistanceMatcher distance_matcher_; |
2394 | }; |
2395 | |
2396 | // Implements an equality matcher for any STL-style container whose elements |
2397 | // support ==. This matcher is like Eq(), but its failure explanations provide |
2398 | // more detailed information that is useful when the container is used as a set. |
2399 | // The failure message reports elements that are in one of the operands but not |
2400 | // the other. The failure messages do not report duplicate or out-of-order |
2401 | // elements in the containers (which don't properly matter to sets, but can |
2402 | // occur if the containers are vectors or lists, for example). |
2403 | // |
2404 | // Uses the container's const_iterator, value_type, operator ==, |
2405 | // begin(), and end(). |
2406 | template <typename Container> |
2407 | class ContainerEqMatcher { |
2408 | public: |
2409 | typedef internal::StlContainerView<Container> View; |
2410 | typedef typename View::type StlContainer; |
2411 | typedef typename View::const_reference StlContainerReference; |
2412 | |
2413 | static_assert(!std::is_const<Container>::value, |
2414 | "Container type must not be const" ); |
2415 | static_assert(!std::is_reference<Container>::value, |
2416 | "Container type must not be a reference" ); |
2417 | |
2418 | // We make a copy of expected in case the elements in it are modified |
2419 | // after this matcher is created. |
2420 | explicit ContainerEqMatcher(const Container& expected) |
2421 | : expected_(View::Copy(expected)) {} |
2422 | |
2423 | void DescribeTo(::std::ostream* os) const { |
2424 | *os << "equals " ; |
2425 | UniversalPrint(expected_, os); |
2426 | } |
2427 | void DescribeNegationTo(::std::ostream* os) const { |
2428 | *os << "does not equal " ; |
2429 | UniversalPrint(expected_, os); |
2430 | } |
2431 | |
2432 | template <typename LhsContainer> |
2433 | bool MatchAndExplain(const LhsContainer& lhs, |
2434 | MatchResultListener* listener) const { |
2435 | typedef internal::StlContainerView< |
2436 | typename std::remove_const<LhsContainer>::type> |
2437 | LhsView; |
2438 | StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
2439 | if (lhs_stl_container == expected_) return true; |
2440 | |
2441 | ::std::ostream* const os = listener->stream(); |
2442 | if (os != nullptr) { |
2443 | // Something is different. Check for extra values first. |
2444 | bool = false; |
2445 | for (auto it = lhs_stl_container.begin(); it != lhs_stl_container.end(); |
2446 | ++it) { |
2447 | if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == |
2448 | expected_.end()) { |
2449 | if (printed_header) { |
2450 | *os << ", " ; |
2451 | } else { |
2452 | *os << "which has these unexpected elements: " ; |
2453 | printed_header = true; |
2454 | } |
2455 | UniversalPrint(*it, os); |
2456 | } |
2457 | } |
2458 | |
2459 | // Now check for missing values. |
2460 | bool = false; |
2461 | for (auto it = expected_.begin(); it != expected_.end(); ++it) { |
2462 | if (internal::ArrayAwareFind(lhs_stl_container.begin(), |
2463 | lhs_stl_container.end(), |
2464 | *it) == lhs_stl_container.end()) { |
2465 | if (printed_header2) { |
2466 | *os << ", " ; |
2467 | } else { |
2468 | *os << (printed_header ? ",\nand" : "which" ) |
2469 | << " doesn't have these expected elements: " ; |
2470 | printed_header2 = true; |
2471 | } |
2472 | UniversalPrint(*it, os); |
2473 | } |
2474 | } |
2475 | } |
2476 | |
2477 | return false; |
2478 | } |
2479 | |
2480 | private: |
2481 | const StlContainer expected_; |
2482 | }; |
2483 | |
2484 | // A comparator functor that uses the < operator to compare two values. |
2485 | struct LessComparator { |
2486 | template <typename T, typename U> |
2487 | bool operator()(const T& lhs, const U& rhs) const { |
2488 | return lhs < rhs; |
2489 | } |
2490 | }; |
2491 | |
2492 | // Implements WhenSortedBy(comparator, container_matcher). |
2493 | template <typename Comparator, typename ContainerMatcher> |
2494 | class WhenSortedByMatcher { |
2495 | public: |
2496 | WhenSortedByMatcher(const Comparator& comparator, |
2497 | const ContainerMatcher& matcher) |
2498 | : comparator_(comparator), matcher_(matcher) {} |
2499 | |
2500 | template <typename LhsContainer> |
2501 | operator Matcher<LhsContainer>() const { |
2502 | return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); |
2503 | } |
2504 | |
2505 | template <typename LhsContainer> |
2506 | class Impl : public MatcherInterface<LhsContainer> { |
2507 | public: |
2508 | typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_( |
2509 | LhsContainer)> |
2510 | LhsView; |
2511 | typedef typename LhsView::type LhsStlContainer; |
2512 | typedef typename LhsView::const_reference LhsStlContainerReference; |
2513 | // Transforms std::pair<const Key, Value> into std::pair<Key, Value> |
2514 | // so that we can match associative containers. |
2515 | typedef |
2516 | typename RemoveConstFromKey<typename LhsStlContainer::value_type>::type |
2517 | LhsValue; |
2518 | |
2519 | Impl(const Comparator& comparator, const ContainerMatcher& matcher) |
2520 | : comparator_(comparator), matcher_(matcher) {} |
2521 | |
2522 | void DescribeTo(::std::ostream* os) const override { |
2523 | *os << "(when sorted) " ; |
2524 | matcher_.DescribeTo(os); |
2525 | } |
2526 | |
2527 | void DescribeNegationTo(::std::ostream* os) const override { |
2528 | *os << "(when sorted) " ; |
2529 | matcher_.DescribeNegationTo(os); |
2530 | } |
2531 | |
2532 | bool MatchAndExplain(LhsContainer lhs, |
2533 | MatchResultListener* listener) const override { |
2534 | LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
2535 | ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), |
2536 | lhs_stl_container.end()); |
2537 | ::std::sort(sorted_container.begin(), sorted_container.end(), |
2538 | comparator_); |
2539 | |
2540 | if (!listener->IsInterested()) { |
2541 | // If the listener is not interested, we do not need to |
2542 | // construct the inner explanation. |
2543 | return matcher_.Matches(sorted_container); |
2544 | } |
2545 | |
2546 | *listener << "which is " ; |
2547 | UniversalPrint(sorted_container, listener->stream()); |
2548 | *listener << " when sorted" ; |
2549 | |
2550 | StringMatchResultListener inner_listener; |
2551 | const bool match = |
2552 | matcher_.MatchAndExplain(sorted_container, &inner_listener); |
2553 | PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream()); |
2554 | return match; |
2555 | } |
2556 | |
2557 | private: |
2558 | const Comparator comparator_; |
2559 | const Matcher<const ::std::vector<LhsValue>&> matcher_; |
2560 | |
2561 | Impl(const Impl&) = delete; |
2562 | Impl& operator=(const Impl&) = delete; |
2563 | }; |
2564 | |
2565 | private: |
2566 | const Comparator comparator_; |
2567 | const ContainerMatcher matcher_; |
2568 | }; |
2569 | |
2570 | // Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher |
2571 | // must be able to be safely cast to Matcher<std::tuple<const T1&, const |
2572 | // T2&> >, where T1 and T2 are the types of elements in the LHS |
2573 | // container and the RHS container respectively. |
2574 | template <typename TupleMatcher, typename RhsContainer> |
2575 | class PointwiseMatcher { |
2576 | static_assert( |
2577 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value, |
2578 | "use UnorderedPointwise with hash tables" ); |
2579 | |
2580 | public: |
2581 | typedef internal::StlContainerView<RhsContainer> RhsView; |
2582 | typedef typename RhsView::type RhsStlContainer; |
2583 | typedef typename RhsStlContainer::value_type RhsValue; |
2584 | |
2585 | static_assert(!std::is_const<RhsContainer>::value, |
2586 | "RhsContainer type must not be const" ); |
2587 | static_assert(!std::is_reference<RhsContainer>::value, |
2588 | "RhsContainer type must not be a reference" ); |
2589 | |
2590 | // Like ContainerEq, we make a copy of rhs in case the elements in |
2591 | // it are modified after this matcher is created. |
2592 | PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) |
2593 | : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {} |
2594 | |
2595 | template <typename LhsContainer> |
2596 | operator Matcher<LhsContainer>() const { |
2597 | static_assert( |
2598 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value, |
2599 | "use UnorderedPointwise with hash tables" ); |
2600 | |
2601 | return Matcher<LhsContainer>( |
2602 | new Impl<const LhsContainer&>(tuple_matcher_, rhs_)); |
2603 | } |
2604 | |
2605 | template <typename LhsContainer> |
2606 | class Impl : public MatcherInterface<LhsContainer> { |
2607 | public: |
2608 | typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_( |
2609 | LhsContainer)> |
2610 | LhsView; |
2611 | typedef typename LhsView::type LhsStlContainer; |
2612 | typedef typename LhsView::const_reference LhsStlContainerReference; |
2613 | typedef typename LhsStlContainer::value_type LhsValue; |
2614 | // We pass the LHS value and the RHS value to the inner matcher by |
2615 | // reference, as they may be expensive to copy. We must use tuple |
2616 | // instead of pair here, as a pair cannot hold references (C++ 98, |
2617 | // 20.2.2 [lib.pairs]). |
2618 | typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; |
2619 | |
2620 | Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) |
2621 | // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. |
2622 | : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), |
2623 | rhs_(rhs) {} |
2624 | |
2625 | void DescribeTo(::std::ostream* os) const override { |
2626 | *os << "contains " << rhs_.size() |
2627 | << " values, where each value and its corresponding value in " ; |
2628 | UniversalPrinter<RhsStlContainer>::Print(rhs_, os); |
2629 | *os << " " ; |
2630 | mono_tuple_matcher_.DescribeTo(os); |
2631 | } |
2632 | void DescribeNegationTo(::std::ostream* os) const override { |
2633 | *os << "doesn't contain exactly " << rhs_.size() |
2634 | << " values, or contains a value x at some index i" |
2635 | << " where x and the i-th value of " ; |
2636 | UniversalPrint(rhs_, os); |
2637 | *os << " " ; |
2638 | mono_tuple_matcher_.DescribeNegationTo(os); |
2639 | } |
2640 | |
2641 | bool MatchAndExplain(LhsContainer lhs, |
2642 | MatchResultListener* listener) const override { |
2643 | LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
2644 | const size_t actual_size = lhs_stl_container.size(); |
2645 | if (actual_size != rhs_.size()) { |
2646 | *listener << "which contains " << actual_size << " values" ; |
2647 | return false; |
2648 | } |
2649 | |
2650 | auto left = lhs_stl_container.begin(); |
2651 | auto right = rhs_.begin(); |
2652 | for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { |
2653 | if (listener->IsInterested()) { |
2654 | StringMatchResultListener inner_listener; |
2655 | // Create InnerMatcherArg as a temporarily object to avoid it outlives |
2656 | // *left and *right. Dereference or the conversion to `const T&` may |
2657 | // return temp objects, e.g. for vector<bool>. |
2658 | if (!mono_tuple_matcher_.MatchAndExplain( |
2659 | InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
2660 | ImplicitCast_<const RhsValue&>(*right)), |
2661 | &inner_listener)) { |
2662 | *listener << "where the value pair (" ; |
2663 | UniversalPrint(*left, listener->stream()); |
2664 | *listener << ", " ; |
2665 | UniversalPrint(*right, listener->stream()); |
2666 | *listener << ") at index #" << i << " don't match" ; |
2667 | PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream()); |
2668 | return false; |
2669 | } |
2670 | } else { |
2671 | if (!mono_tuple_matcher_.Matches( |
2672 | InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
2673 | ImplicitCast_<const RhsValue&>(*right)))) |
2674 | return false; |
2675 | } |
2676 | } |
2677 | |
2678 | return true; |
2679 | } |
2680 | |
2681 | private: |
2682 | const Matcher<InnerMatcherArg> mono_tuple_matcher_; |
2683 | const RhsStlContainer rhs_; |
2684 | }; |
2685 | |
2686 | private: |
2687 | const TupleMatcher tuple_matcher_; |
2688 | const RhsStlContainer rhs_; |
2689 | }; |
2690 | |
2691 | // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. |
2692 | template <typename Container> |
2693 | class QuantifierMatcherImpl : public MatcherInterface<Container> { |
2694 | public: |
2695 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
2696 | typedef StlContainerView<RawContainer> View; |
2697 | typedef typename View::type StlContainer; |
2698 | typedef typename View::const_reference StlContainerReference; |
2699 | typedef typename StlContainer::value_type Element; |
2700 | |
2701 | template <typename InnerMatcher> |
2702 | explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) |
2703 | : inner_matcher_( |
2704 | testing::SafeMatcherCast<const Element&>(inner_matcher)) {} |
2705 | |
2706 | // Checks whether: |
2707 | // * All elements in the container match, if all_elements_should_match. |
2708 | // * Any element in the container matches, if !all_elements_should_match. |
2709 | bool MatchAndExplainImpl(bool all_elements_should_match, Container container, |
2710 | MatchResultListener* listener) const { |
2711 | StlContainerReference stl_container = View::ConstReference(container); |
2712 | size_t i = 0; |
2713 | for (auto it = stl_container.begin(); it != stl_container.end(); |
2714 | ++it, ++i) { |
2715 | StringMatchResultListener inner_listener; |
2716 | const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); |
2717 | |
2718 | if (matches != all_elements_should_match) { |
2719 | *listener << "whose element #" << i |
2720 | << (matches ? " matches" : " doesn't match" ); |
2721 | PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream()); |
2722 | return !all_elements_should_match; |
2723 | } |
2724 | } |
2725 | return all_elements_should_match; |
2726 | } |
2727 | |
2728 | bool MatchAndExplainImpl(const Matcher<size_t>& count_matcher, |
2729 | Container container, |
2730 | MatchResultListener* listener) const { |
2731 | StlContainerReference stl_container = View::ConstReference(container); |
2732 | size_t i = 0; |
2733 | std::vector<size_t> match_elements; |
2734 | for (auto it = stl_container.begin(); it != stl_container.end(); |
2735 | ++it, ++i) { |
2736 | StringMatchResultListener inner_listener; |
2737 | const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); |
2738 | if (matches) { |
2739 | match_elements.push_back(x: i); |
2740 | } |
2741 | } |
2742 | if (listener->IsInterested()) { |
2743 | if (match_elements.empty()) { |
2744 | *listener << "has no element that matches" ; |
2745 | } else if (match_elements.size() == 1) { |
2746 | *listener << "whose element #" << match_elements[0] << " matches" ; |
2747 | } else { |
2748 | *listener << "whose elements (" ; |
2749 | std::string sep = "" ; |
2750 | for (size_t e : match_elements) { |
2751 | *listener << sep << e; |
2752 | sep = ", " ; |
2753 | } |
2754 | *listener << ") match" ; |
2755 | } |
2756 | } |
2757 | StringMatchResultListener count_listener; |
2758 | if (count_matcher.MatchAndExplain(x: match_elements.size(), listener: &count_listener)) { |
2759 | *listener << " and whose match quantity of " << match_elements.size() |
2760 | << " matches" ; |
2761 | PrintIfNotEmpty(explanation: count_listener.str(), os: listener->stream()); |
2762 | return true; |
2763 | } else { |
2764 | if (match_elements.empty()) { |
2765 | *listener << " and" ; |
2766 | } else { |
2767 | *listener << " but" ; |
2768 | } |
2769 | *listener << " whose match quantity of " << match_elements.size() |
2770 | << " does not match" ; |
2771 | PrintIfNotEmpty(explanation: count_listener.str(), os: listener->stream()); |
2772 | return false; |
2773 | } |
2774 | } |
2775 | |
2776 | protected: |
2777 | const Matcher<const Element&> inner_matcher_; |
2778 | }; |
2779 | |
2780 | // Implements Contains(element_matcher) for the given argument type Container. |
2781 | // Symmetric to EachMatcherImpl. |
2782 | template <typename Container> |
2783 | class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { |
2784 | public: |
2785 | template <typename InnerMatcher> |
2786 | explicit ContainsMatcherImpl(InnerMatcher inner_matcher) |
2787 | : QuantifierMatcherImpl<Container>(inner_matcher) {} |
2788 | |
2789 | // Describes what this matcher does. |
2790 | void DescribeTo(::std::ostream* os) const override { |
2791 | *os << "contains at least one element that " ; |
2792 | this->inner_matcher_.DescribeTo(os); |
2793 | } |
2794 | |
2795 | void DescribeNegationTo(::std::ostream* os) const override { |
2796 | *os << "doesn't contain any element that " ; |
2797 | this->inner_matcher_.DescribeTo(os); |
2798 | } |
2799 | |
2800 | bool MatchAndExplain(Container container, |
2801 | MatchResultListener* listener) const override { |
2802 | return this->MatchAndExplainImpl(false, container, listener); |
2803 | } |
2804 | }; |
2805 | |
2806 | // Implements Each(element_matcher) for the given argument type Container. |
2807 | // Symmetric to ContainsMatcherImpl. |
2808 | template <typename Container> |
2809 | class EachMatcherImpl : public QuantifierMatcherImpl<Container> { |
2810 | public: |
2811 | template <typename InnerMatcher> |
2812 | explicit EachMatcherImpl(InnerMatcher inner_matcher) |
2813 | : QuantifierMatcherImpl<Container>(inner_matcher) {} |
2814 | |
2815 | // Describes what this matcher does. |
2816 | void DescribeTo(::std::ostream* os) const override { |
2817 | *os << "only contains elements that " ; |
2818 | this->inner_matcher_.DescribeTo(os); |
2819 | } |
2820 | |
2821 | void DescribeNegationTo(::std::ostream* os) const override { |
2822 | *os << "contains some element that " ; |
2823 | this->inner_matcher_.DescribeNegationTo(os); |
2824 | } |
2825 | |
2826 | bool MatchAndExplain(Container container, |
2827 | MatchResultListener* listener) const override { |
2828 | return this->MatchAndExplainImpl(true, container, listener); |
2829 | } |
2830 | }; |
2831 | |
2832 | // Implements Contains(element_matcher).Times(n) for the given argument type |
2833 | // Container. |
2834 | template <typename Container> |
2835 | class ContainsTimesMatcherImpl : public QuantifierMatcherImpl<Container> { |
2836 | public: |
2837 | template <typename InnerMatcher> |
2838 | explicit ContainsTimesMatcherImpl(InnerMatcher inner_matcher, |
2839 | Matcher<size_t> count_matcher) |
2840 | : QuantifierMatcherImpl<Container>(inner_matcher), |
2841 | count_matcher_(std::move(count_matcher)) {} |
2842 | |
2843 | void DescribeTo(::std::ostream* os) const override { |
2844 | *os << "quantity of elements that match " ; |
2845 | this->inner_matcher_.DescribeTo(os); |
2846 | *os << " " ; |
2847 | count_matcher_.DescribeTo(os); |
2848 | } |
2849 | |
2850 | void DescribeNegationTo(::std::ostream* os) const override { |
2851 | *os << "quantity of elements that match " ; |
2852 | this->inner_matcher_.DescribeTo(os); |
2853 | *os << " " ; |
2854 | count_matcher_.DescribeNegationTo(os); |
2855 | } |
2856 | |
2857 | bool MatchAndExplain(Container container, |
2858 | MatchResultListener* listener) const override { |
2859 | return this->MatchAndExplainImpl(count_matcher_, container, listener); |
2860 | } |
2861 | |
2862 | private: |
2863 | const Matcher<size_t> count_matcher_; |
2864 | }; |
2865 | |
2866 | // Implements polymorphic Contains(element_matcher).Times(n). |
2867 | template <typename M> |
2868 | class ContainsTimesMatcher { |
2869 | public: |
2870 | explicit ContainsTimesMatcher(M m, Matcher<size_t> count_matcher) |
2871 | : inner_matcher_(m), count_matcher_(std::move(count_matcher)) {} |
2872 | |
2873 | template <typename Container> |
2874 | operator Matcher<Container>() const { // NOLINT |
2875 | return Matcher<Container>(new ContainsTimesMatcherImpl<const Container&>( |
2876 | inner_matcher_, count_matcher_)); |
2877 | } |
2878 | |
2879 | private: |
2880 | const M inner_matcher_; |
2881 | const Matcher<size_t> count_matcher_; |
2882 | }; |
2883 | |
2884 | // Implements polymorphic Contains(element_matcher). |
2885 | template <typename M> |
2886 | class ContainsMatcher { |
2887 | public: |
2888 | explicit ContainsMatcher(M m) : inner_matcher_(m) {} |
2889 | |
2890 | template <typename Container> |
2891 | operator Matcher<Container>() const { // NOLINT |
2892 | return Matcher<Container>( |
2893 | new ContainsMatcherImpl<const Container&>(inner_matcher_)); |
2894 | } |
2895 | |
2896 | ContainsTimesMatcher<M> Times(Matcher<size_t> count_matcher) const { |
2897 | return ContainsTimesMatcher<M>(inner_matcher_, std::move(count_matcher)); |
2898 | } |
2899 | |
2900 | private: |
2901 | const M inner_matcher_; |
2902 | }; |
2903 | |
2904 | // Implements polymorphic Each(element_matcher). |
2905 | template <typename M> |
2906 | class EachMatcher { |
2907 | public: |
2908 | explicit EachMatcher(M m) : inner_matcher_(m) {} |
2909 | |
2910 | template <typename Container> |
2911 | operator Matcher<Container>() const { // NOLINT |
2912 | return Matcher<Container>( |
2913 | new EachMatcherImpl<const Container&>(inner_matcher_)); |
2914 | } |
2915 | |
2916 | private: |
2917 | const M inner_matcher_; |
2918 | }; |
2919 | |
2920 | struct Rank1 {}; |
2921 | struct Rank0 : Rank1 {}; |
2922 | |
2923 | namespace pair_getters { |
2924 | using std::get; |
2925 | template <typename T> |
2926 | auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT |
2927 | return get<0>(x); |
2928 | } |
2929 | template <typename T> |
2930 | auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT |
2931 | return x.first; |
2932 | } |
2933 | |
2934 | template <typename T> |
2935 | auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT |
2936 | return get<1>(x); |
2937 | } |
2938 | template <typename T> |
2939 | auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT |
2940 | return x.second; |
2941 | } |
2942 | } // namespace pair_getters |
2943 | |
2944 | // Implements Key(inner_matcher) for the given argument pair type. |
2945 | // Key(inner_matcher) matches an std::pair whose 'first' field matches |
2946 | // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
2947 | // std::map that contains at least one element whose key is >= 5. |
2948 | template <typename PairType> |
2949 | class KeyMatcherImpl : public MatcherInterface<PairType> { |
2950 | public: |
2951 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
2952 | typedef typename RawPairType::first_type KeyType; |
2953 | |
2954 | template <typename InnerMatcher> |
2955 | explicit KeyMatcherImpl(InnerMatcher inner_matcher) |
2956 | : inner_matcher_( |
2957 | testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {} |
2958 | |
2959 | // Returns true if and only if 'key_value.first' (the key) matches the inner |
2960 | // matcher. |
2961 | bool MatchAndExplain(PairType key_value, |
2962 | MatchResultListener* listener) const override { |
2963 | StringMatchResultListener inner_listener; |
2964 | const bool match = inner_matcher_.MatchAndExplain( |
2965 | pair_getters::First(key_value, Rank0()), &inner_listener); |
2966 | const std::string explanation = inner_listener.str(); |
2967 | if (explanation != "" ) { |
2968 | *listener << "whose first field is a value " << explanation; |
2969 | } |
2970 | return match; |
2971 | } |
2972 | |
2973 | // Describes what this matcher does. |
2974 | void DescribeTo(::std::ostream* os) const override { |
2975 | *os << "has a key that " ; |
2976 | inner_matcher_.DescribeTo(os); |
2977 | } |
2978 | |
2979 | // Describes what the negation of this matcher does. |
2980 | void DescribeNegationTo(::std::ostream* os) const override { |
2981 | *os << "doesn't have a key that " ; |
2982 | inner_matcher_.DescribeTo(os); |
2983 | } |
2984 | |
2985 | private: |
2986 | const Matcher<const KeyType&> inner_matcher_; |
2987 | }; |
2988 | |
2989 | // Implements polymorphic Key(matcher_for_key). |
2990 | template <typename M> |
2991 | class KeyMatcher { |
2992 | public: |
2993 | explicit KeyMatcher(M m) : matcher_for_key_(m) {} |
2994 | |
2995 | template <typename PairType> |
2996 | operator Matcher<PairType>() const { |
2997 | return Matcher<PairType>( |
2998 | new KeyMatcherImpl<const PairType&>(matcher_for_key_)); |
2999 | } |
3000 | |
3001 | private: |
3002 | const M matcher_for_key_; |
3003 | }; |
3004 | |
3005 | // Implements polymorphic Address(matcher_for_address). |
3006 | template <typename InnerMatcher> |
3007 | class AddressMatcher { |
3008 | public: |
3009 | explicit AddressMatcher(InnerMatcher m) : matcher_(m) {} |
3010 | |
3011 | template <typename Type> |
3012 | operator Matcher<Type>() const { // NOLINT |
3013 | return Matcher<Type>(new Impl<const Type&>(matcher_)); |
3014 | } |
3015 | |
3016 | private: |
3017 | // The monomorphic implementation that works for a particular object type. |
3018 | template <typename Type> |
3019 | class Impl : public MatcherInterface<Type> { |
3020 | public: |
3021 | using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *; |
3022 | explicit Impl(const InnerMatcher& matcher) |
3023 | : matcher_(MatcherCast<Address>(matcher)) {} |
3024 | |
3025 | void DescribeTo(::std::ostream* os) const override { |
3026 | *os << "has address that " ; |
3027 | matcher_.DescribeTo(os); |
3028 | } |
3029 | |
3030 | void DescribeNegationTo(::std::ostream* os) const override { |
3031 | *os << "does not have address that " ; |
3032 | matcher_.DescribeTo(os); |
3033 | } |
3034 | |
3035 | bool MatchAndExplain(Type object, |
3036 | MatchResultListener* listener) const override { |
3037 | *listener << "which has address " ; |
3038 | Address address = std::addressof(object); |
3039 | return MatchPrintAndExplain(address, matcher_, listener); |
3040 | } |
3041 | |
3042 | private: |
3043 | const Matcher<Address> matcher_; |
3044 | }; |
3045 | const InnerMatcher matcher_; |
3046 | }; |
3047 | |
3048 | // Implements Pair(first_matcher, second_matcher) for the given argument pair |
3049 | // type with its two matchers. See Pair() function below. |
3050 | template <typename PairType> |
3051 | class PairMatcherImpl : public MatcherInterface<PairType> { |
3052 | public: |
3053 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
3054 | typedef typename RawPairType::first_type FirstType; |
3055 | typedef typename RawPairType::second_type SecondType; |
3056 | |
3057 | template <typename FirstMatcher, typename SecondMatcher> |
3058 | PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) |
3059 | : first_matcher_( |
3060 | testing::SafeMatcherCast<const FirstType&>(first_matcher)), |
3061 | second_matcher_( |
3062 | testing::SafeMatcherCast<const SecondType&>(second_matcher)) {} |
3063 | |
3064 | // Describes what this matcher does. |
3065 | void DescribeTo(::std::ostream* os) const override { |
3066 | *os << "has a first field that " ; |
3067 | first_matcher_.DescribeTo(os); |
3068 | *os << ", and has a second field that " ; |
3069 | second_matcher_.DescribeTo(os); |
3070 | } |
3071 | |
3072 | // Describes what the negation of this matcher does. |
3073 | void DescribeNegationTo(::std::ostream* os) const override { |
3074 | *os << "has a first field that " ; |
3075 | first_matcher_.DescribeNegationTo(os); |
3076 | *os << ", or has a second field that " ; |
3077 | second_matcher_.DescribeNegationTo(os); |
3078 | } |
3079 | |
3080 | // Returns true if and only if 'a_pair.first' matches first_matcher and |
3081 | // 'a_pair.second' matches second_matcher. |
3082 | bool MatchAndExplain(PairType a_pair, |
3083 | MatchResultListener* listener) const override { |
3084 | if (!listener->IsInterested()) { |
3085 | // If the listener is not interested, we don't need to construct the |
3086 | // explanation. |
3087 | return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) && |
3088 | second_matcher_.Matches(pair_getters::Second(a_pair, Rank0())); |
3089 | } |
3090 | StringMatchResultListener first_inner_listener; |
3091 | if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()), |
3092 | &first_inner_listener)) { |
3093 | *listener << "whose first field does not match" ; |
3094 | PrintIfNotEmpty(explanation: first_inner_listener.str(), os: listener->stream()); |
3095 | return false; |
3096 | } |
3097 | StringMatchResultListener second_inner_listener; |
3098 | if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()), |
3099 | &second_inner_listener)) { |
3100 | *listener << "whose second field does not match" ; |
3101 | PrintIfNotEmpty(explanation: second_inner_listener.str(), os: listener->stream()); |
3102 | return false; |
3103 | } |
3104 | ExplainSuccess(first_explanation: first_inner_listener.str(), second_explanation: second_inner_listener.str(), |
3105 | listener); |
3106 | return true; |
3107 | } |
3108 | |
3109 | private: |
3110 | void ExplainSuccess(const std::string& first_explanation, |
3111 | const std::string& second_explanation, |
3112 | MatchResultListener* listener) const { |
3113 | *listener << "whose both fields match" ; |
3114 | if (first_explanation != "" ) { |
3115 | *listener << ", where the first field is a value " << first_explanation; |
3116 | } |
3117 | if (second_explanation != "" ) { |
3118 | *listener << ", " ; |
3119 | if (first_explanation != "" ) { |
3120 | *listener << "and " ; |
3121 | } else { |
3122 | *listener << "where " ; |
3123 | } |
3124 | *listener << "the second field is a value " << second_explanation; |
3125 | } |
3126 | } |
3127 | |
3128 | const Matcher<const FirstType&> first_matcher_; |
3129 | const Matcher<const SecondType&> second_matcher_; |
3130 | }; |
3131 | |
3132 | // Implements polymorphic Pair(first_matcher, second_matcher). |
3133 | template <typename FirstMatcher, typename SecondMatcher> |
3134 | class PairMatcher { |
3135 | public: |
3136 | PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) |
3137 | : first_matcher_(first_matcher), second_matcher_(second_matcher) {} |
3138 | |
3139 | template <typename PairType> |
3140 | operator Matcher<PairType>() const { |
3141 | return Matcher<PairType>( |
3142 | new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_)); |
3143 | } |
3144 | |
3145 | private: |
3146 | const FirstMatcher first_matcher_; |
3147 | const SecondMatcher second_matcher_; |
3148 | }; |
3149 | |
3150 | template <typename T, size_t... I> |
3151 | auto UnpackStructImpl(const T& t, IndexSequence<I...>, int) |
3152 | -> decltype(std::tie(get<I>(t)...)) { |
3153 | static_assert(std::tuple_size<T>::value == sizeof...(I), |
3154 | "Number of arguments doesn't match the number of fields." ); |
3155 | return std::tie(get<I>(t)...); |
3156 | } |
3157 | |
3158 | #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606 |
3159 | template <typename T> |
3160 | auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) { |
3161 | const auto& [a] = t; |
3162 | return std::tie(a); |
3163 | } |
3164 | template <typename T> |
3165 | auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) { |
3166 | const auto& [a, b] = t; |
3167 | return std::tie(a, b); |
3168 | } |
3169 | template <typename T> |
3170 | auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) { |
3171 | const auto& [a, b, c] = t; |
3172 | return std::tie(a, b, c); |
3173 | } |
3174 | template <typename T> |
3175 | auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) { |
3176 | const auto& [a, b, c, d] = t; |
3177 | return std::tie(a, b, c, d); |
3178 | } |
3179 | template <typename T> |
3180 | auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) { |
3181 | const auto& [a, b, c, d, e] = t; |
3182 | return std::tie(a, b, c, d, e); |
3183 | } |
3184 | template <typename T> |
3185 | auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) { |
3186 | const auto& [a, b, c, d, e, f] = t; |
3187 | return std::tie(a, b, c, d, e, f); |
3188 | } |
3189 | template <typename T> |
3190 | auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) { |
3191 | const auto& [a, b, c, d, e, f, g] = t; |
3192 | return std::tie(a, b, c, d, e, f, g); |
3193 | } |
3194 | template <typename T> |
3195 | auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) { |
3196 | const auto& [a, b, c, d, e, f, g, h] = t; |
3197 | return std::tie(a, b, c, d, e, f, g, h); |
3198 | } |
3199 | template <typename T> |
3200 | auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) { |
3201 | const auto& [a, b, c, d, e, f, g, h, i] = t; |
3202 | return std::tie(a, b, c, d, e, f, g, h, i); |
3203 | } |
3204 | template <typename T> |
3205 | auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) { |
3206 | const auto& [a, b, c, d, e, f, g, h, i, j] = t; |
3207 | return std::tie(a, b, c, d, e, f, g, h, i, j); |
3208 | } |
3209 | template <typename T> |
3210 | auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) { |
3211 | const auto& [a, b, c, d, e, f, g, h, i, j, k] = t; |
3212 | return std::tie(a, b, c, d, e, f, g, h, i, j, k); |
3213 | } |
3214 | template <typename T> |
3215 | auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) { |
3216 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t; |
3217 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l); |
3218 | } |
3219 | template <typename T> |
3220 | auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) { |
3221 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t; |
3222 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m); |
3223 | } |
3224 | template <typename T> |
3225 | auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) { |
3226 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t; |
3227 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n); |
3228 | } |
3229 | template <typename T> |
3230 | auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) { |
3231 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t; |
3232 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o); |
3233 | } |
3234 | template <typename T> |
3235 | auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) { |
3236 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t; |
3237 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p); |
3238 | } |
3239 | template <typename T> |
3240 | auto UnpackStructImpl(const T& t, MakeIndexSequence<17>, char) { |
3241 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q] = t; |
3242 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q); |
3243 | } |
3244 | template <typename T> |
3245 | auto UnpackStructImpl(const T& t, MakeIndexSequence<18>, char) { |
3246 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r] = t; |
3247 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r); |
3248 | } |
3249 | template <typename T> |
3250 | auto UnpackStructImpl(const T& t, MakeIndexSequence<19>, char) { |
3251 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s] = t; |
3252 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s); |
3253 | } |
3254 | #endif // defined(__cpp_structured_bindings) |
3255 | |
3256 | template <size_t I, typename T> |
3257 | auto UnpackStruct(const T& t) |
3258 | -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) { |
3259 | return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0); |
3260 | } |
3261 | |
3262 | // Helper function to do comma folding in C++11. |
3263 | // The array ensures left-to-right order of evaluation. |
3264 | // Usage: VariadicExpand({expr...}); |
3265 | template <typename T, size_t N> |
3266 | void VariadicExpand(const T (&)[N]) {} |
3267 | |
3268 | template <typename Struct, typename StructSize> |
3269 | class FieldsAreMatcherImpl; |
3270 | |
3271 | template <typename Struct, size_t... I> |
3272 | class FieldsAreMatcherImpl<Struct, IndexSequence<I...>> |
3273 | : public MatcherInterface<Struct> { |
3274 | using UnpackedType = |
3275 | decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>())); |
3276 | using MatchersType = std::tuple< |
3277 | Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>; |
3278 | |
3279 | public: |
3280 | template <typename Inner> |
3281 | explicit FieldsAreMatcherImpl(const Inner& matchers) |
3282 | : matchers_(testing::SafeMatcherCast< |
3283 | const typename std::tuple_element<I, UnpackedType>::type&>( |
3284 | std::get<I>(matchers))...) {} |
3285 | |
3286 | void DescribeTo(::std::ostream* os) const override { |
3287 | const char* separator = "" ; |
3288 | VariadicExpand( |
3289 | {(*os << separator << "has field #" << I << " that " , |
3290 | std::get<I>(matchers_).DescribeTo(os), separator = ", and " )...}); |
3291 | } |
3292 | |
3293 | void DescribeNegationTo(::std::ostream* os) const override { |
3294 | const char* separator = "" ; |
3295 | VariadicExpand({(*os << separator << "has field #" << I << " that " , |
3296 | std::get<I>(matchers_).DescribeNegationTo(os), |
3297 | separator = ", or " )...}); |
3298 | } |
3299 | |
3300 | bool MatchAndExplain(Struct t, MatchResultListener* listener) const override { |
3301 | return MatchInternal(tuple: (UnpackStruct<sizeof...(I)>)(t), listener); |
3302 | } |
3303 | |
3304 | private: |
3305 | bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const { |
3306 | if (!listener->IsInterested()) { |
3307 | // If the listener is not interested, we don't need to construct the |
3308 | // explanation. |
3309 | bool good = true; |
3310 | VariadicExpand({good = good && std::get<I>(matchers_).Matches( |
3311 | std::get<I>(tuple))...}); |
3312 | return good; |
3313 | } |
3314 | |
3315 | size_t failed_pos = ~size_t{}; |
3316 | |
3317 | std::vector<StringMatchResultListener> inner_listener(sizeof...(I)); |
3318 | |
3319 | VariadicExpand( |
3320 | {failed_pos == ~size_t{}&& !std::get<I>(matchers_).MatchAndExplain( |
3321 | std::get<I>(tuple), &inner_listener[I]) |
3322 | ? failed_pos = I |
3323 | : 0 ...}); |
3324 | if (failed_pos != ~size_t{}) { |
3325 | *listener << "whose field #" << failed_pos << " does not match" ; |
3326 | PrintIfNotEmpty(explanation: inner_listener[failed_pos].str(), os: listener->stream()); |
3327 | return false; |
3328 | } |
3329 | |
3330 | *listener << "whose all elements match" ; |
3331 | const char* separator = ", where" ; |
3332 | for (size_t index = 0; index < sizeof...(I); ++index) { |
3333 | const std::string str = inner_listener[index].str(); |
3334 | if (!str.empty()) { |
3335 | *listener << separator << " field #" << index << " is a value " << str; |
3336 | separator = ", and" ; |
3337 | } |
3338 | } |
3339 | |
3340 | return true; |
3341 | } |
3342 | |
3343 | MatchersType matchers_; |
3344 | }; |
3345 | |
3346 | template <typename... Inner> |
3347 | class FieldsAreMatcher { |
3348 | public: |
3349 | explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {} |
3350 | |
3351 | template <typename Struct> |
3352 | operator Matcher<Struct>() const { // NOLINT |
3353 | return Matcher<Struct>( |
3354 | new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>( |
3355 | matchers_)); |
3356 | } |
3357 | |
3358 | private: |
3359 | std::tuple<Inner...> matchers_; |
3360 | }; |
3361 | |
3362 | // Implements ElementsAre() and ElementsAreArray(). |
3363 | template <typename Container> |
3364 | class ElementsAreMatcherImpl : public MatcherInterface<Container> { |
3365 | public: |
3366 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
3367 | typedef internal::StlContainerView<RawContainer> View; |
3368 | typedef typename View::type StlContainer; |
3369 | typedef typename View::const_reference StlContainerReference; |
3370 | typedef typename StlContainer::value_type Element; |
3371 | |
3372 | // Constructs the matcher from a sequence of element values or |
3373 | // element matchers. |
3374 | template <typename InputIter> |
3375 | ElementsAreMatcherImpl(InputIter first, InputIter last) { |
3376 | while (first != last) { |
3377 | matchers_.push_back(MatcherCast<const Element&>(*first++)); |
3378 | } |
3379 | } |
3380 | |
3381 | // Describes what this matcher does. |
3382 | void DescribeTo(::std::ostream* os) const override { |
3383 | if (count() == 0) { |
3384 | *os << "is empty" ; |
3385 | } else if (count() == 1) { |
3386 | *os << "has 1 element that " ; |
3387 | matchers_[0].DescribeTo(os); |
3388 | } else { |
3389 | *os << "has " << Elements(count: count()) << " where\n" ; |
3390 | for (size_t i = 0; i != count(); ++i) { |
3391 | *os << "element #" << i << " " ; |
3392 | matchers_[i].DescribeTo(os); |
3393 | if (i + 1 < count()) { |
3394 | *os << ",\n" ; |
3395 | } |
3396 | } |
3397 | } |
3398 | } |
3399 | |
3400 | // Describes what the negation of this matcher does. |
3401 | void DescribeNegationTo(::std::ostream* os) const override { |
3402 | if (count() == 0) { |
3403 | *os << "isn't empty" ; |
3404 | return; |
3405 | } |
3406 | |
3407 | *os << "doesn't have " << Elements(count: count()) << ", or\n" ; |
3408 | for (size_t i = 0; i != count(); ++i) { |
3409 | *os << "element #" << i << " " ; |
3410 | matchers_[i].DescribeNegationTo(os); |
3411 | if (i + 1 < count()) { |
3412 | *os << ", or\n" ; |
3413 | } |
3414 | } |
3415 | } |
3416 | |
3417 | bool MatchAndExplain(Container container, |
3418 | MatchResultListener* listener) const override { |
3419 | // To work with stream-like "containers", we must only walk |
3420 | // through the elements in one pass. |
3421 | |
3422 | const bool listener_interested = listener->IsInterested(); |
3423 | |
3424 | // explanations[i] is the explanation of the element at index i. |
3425 | ::std::vector<std::string> explanations(count()); |
3426 | StlContainerReference stl_container = View::ConstReference(container); |
3427 | auto it = stl_container.begin(); |
3428 | size_t exam_pos = 0; |
3429 | bool mismatch_found = false; // Have we found a mismatched element yet? |
3430 | |
3431 | // Go through the elements and matchers in pairs, until we reach |
3432 | // the end of either the elements or the matchers, or until we find a |
3433 | // mismatch. |
3434 | for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { |
3435 | bool match; // Does the current element match the current matcher? |
3436 | if (listener_interested) { |
3437 | StringMatchResultListener s; |
3438 | match = matchers_[exam_pos].MatchAndExplain(*it, &s); |
3439 | explanations[exam_pos] = s.str(); |
3440 | } else { |
3441 | match = matchers_[exam_pos].Matches(*it); |
3442 | } |
3443 | |
3444 | if (!match) { |
3445 | mismatch_found = true; |
3446 | break; |
3447 | } |
3448 | } |
3449 | // If mismatch_found is true, 'exam_pos' is the index of the mismatch. |
3450 | |
3451 | // Find how many elements the actual container has. We avoid |
3452 | // calling size() s.t. this code works for stream-like "containers" |
3453 | // that don't define size(). |
3454 | size_t actual_count = exam_pos; |
3455 | for (; it != stl_container.end(); ++it) { |
3456 | ++actual_count; |
3457 | } |
3458 | |
3459 | if (actual_count != count()) { |
3460 | // The element count doesn't match. If the container is empty, |
3461 | // there's no need to explain anything as Google Mock already |
3462 | // prints the empty container. Otherwise we just need to show |
3463 | // how many elements there actually are. |
3464 | if (listener_interested && (actual_count != 0)) { |
3465 | *listener << "which has " << Elements(count: actual_count); |
3466 | } |
3467 | return false; |
3468 | } |
3469 | |
3470 | if (mismatch_found) { |
3471 | // The element count matches, but the exam_pos-th element doesn't match. |
3472 | if (listener_interested) { |
3473 | *listener << "whose element #" << exam_pos << " doesn't match" ; |
3474 | PrintIfNotEmpty(explanation: explanations[exam_pos], os: listener->stream()); |
3475 | } |
3476 | return false; |
3477 | } |
3478 | |
3479 | // Every element matches its expectation. We need to explain why |
3480 | // (the obvious ones can be skipped). |
3481 | if (listener_interested) { |
3482 | bool reason_printed = false; |
3483 | for (size_t i = 0; i != count(); ++i) { |
3484 | const std::string& s = explanations[i]; |
3485 | if (!s.empty()) { |
3486 | if (reason_printed) { |
3487 | *listener << ",\nand " ; |
3488 | } |
3489 | *listener << "whose element #" << i << " matches, " << s; |
3490 | reason_printed = true; |
3491 | } |
3492 | } |
3493 | } |
3494 | return true; |
3495 | } |
3496 | |
3497 | private: |
3498 | static Message Elements(size_t count) { |
3499 | return Message() << count << (count == 1 ? " element" : " elements" ); |
3500 | } |
3501 | |
3502 | size_t count() const { return matchers_.size(); } |
3503 | |
3504 | ::std::vector<Matcher<const Element&>> matchers_; |
3505 | }; |
3506 | |
3507 | // Connectivity matrix of (elements X matchers), in element-major order. |
3508 | // Initially, there are no edges. |
3509 | // Use NextGraph() to iterate over all possible edge configurations. |
3510 | // Use Randomize() to generate a random edge configuration. |
3511 | class GTEST_API_ MatchMatrix { |
3512 | public: |
3513 | MatchMatrix(size_t num_elements, size_t num_matchers) |
3514 | : num_elements_(num_elements), |
3515 | num_matchers_(num_matchers), |
3516 | matched_(num_elements_ * num_matchers_, 0) {} |
3517 | |
3518 | size_t LhsSize() const { return num_elements_; } |
3519 | size_t RhsSize() const { return num_matchers_; } |
3520 | bool HasEdge(size_t ilhs, size_t irhs) const { |
3521 | return matched_[SpaceIndex(ilhs, irhs)] == 1; |
3522 | } |
3523 | void SetEdge(size_t ilhs, size_t irhs, bool b) { |
3524 | matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; |
3525 | } |
3526 | |
3527 | // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, |
3528 | // adds 1 to that number; returns false if incrementing the graph left it |
3529 | // empty. |
3530 | bool NextGraph(); |
3531 | |
3532 | void Randomize(); |
3533 | |
3534 | std::string DebugString() const; |
3535 | |
3536 | private: |
3537 | size_t SpaceIndex(size_t ilhs, size_t irhs) const { |
3538 | return ilhs * num_matchers_ + irhs; |
3539 | } |
3540 | |
3541 | size_t num_elements_; |
3542 | size_t num_matchers_; |
3543 | |
3544 | // Each element is a char interpreted as bool. They are stored as a |
3545 | // flattened array in lhs-major order, use 'SpaceIndex()' to translate |
3546 | // a (ilhs, irhs) matrix coordinate into an offset. |
3547 | ::std::vector<char> matched_; |
3548 | }; |
3549 | |
3550 | typedef ::std::pair<size_t, size_t> ElementMatcherPair; |
3551 | typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; |
3552 | |
3553 | // Returns a maximum bipartite matching for the specified graph 'g'. |
3554 | // The matching is represented as a vector of {element, matcher} pairs. |
3555 | GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g); |
3556 | |
3557 | struct UnorderedMatcherRequire { |
3558 | enum Flags { |
3559 | Superset = 1 << 0, |
3560 | Subset = 1 << 1, |
3561 | ExactMatch = Superset | Subset, |
3562 | }; |
3563 | }; |
3564 | |
3565 | // Untyped base class for implementing UnorderedElementsAre. By |
3566 | // putting logic that's not specific to the element type here, we |
3567 | // reduce binary bloat and increase compilation speed. |
3568 | class GTEST_API_ UnorderedElementsAreMatcherImplBase { |
3569 | protected: |
3570 | explicit UnorderedElementsAreMatcherImplBase( |
3571 | UnorderedMatcherRequire::Flags matcher_flags) |
3572 | : match_flags_(matcher_flags) {} |
3573 | |
3574 | // A vector of matcher describers, one for each element matcher. |
3575 | // Does not own the describers (and thus can be used only when the |
3576 | // element matchers are alive). |
3577 | typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; |
3578 | |
3579 | // Describes this UnorderedElementsAre matcher. |
3580 | void DescribeToImpl(::std::ostream* os) const; |
3581 | |
3582 | // Describes the negation of this UnorderedElementsAre matcher. |
3583 | void DescribeNegationToImpl(::std::ostream* os) const; |
3584 | |
3585 | bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts, |
3586 | const MatchMatrix& matrix, |
3587 | MatchResultListener* listener) const; |
3588 | |
3589 | bool FindPairing(const MatchMatrix& matrix, |
3590 | MatchResultListener* listener) const; |
3591 | |
3592 | MatcherDescriberVec& matcher_describers() { return matcher_describers_; } |
3593 | |
3594 | static Message Elements(size_t n) { |
3595 | return Message() << n << " element" << (n == 1 ? "" : "s" ); |
3596 | } |
3597 | |
3598 | UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; } |
3599 | |
3600 | private: |
3601 | UnorderedMatcherRequire::Flags match_flags_; |
3602 | MatcherDescriberVec matcher_describers_; |
3603 | }; |
3604 | |
3605 | // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and |
3606 | // IsSupersetOf. |
3607 | template <typename Container> |
3608 | class UnorderedElementsAreMatcherImpl |
3609 | : public MatcherInterface<Container>, |
3610 | public UnorderedElementsAreMatcherImplBase { |
3611 | public: |
3612 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
3613 | typedef internal::StlContainerView<RawContainer> View; |
3614 | typedef typename View::type StlContainer; |
3615 | typedef typename View::const_reference StlContainerReference; |
3616 | typedef typename StlContainer::value_type Element; |
3617 | |
3618 | template <typename InputIter> |
3619 | UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags, |
3620 | InputIter first, InputIter last) |
3621 | : UnorderedElementsAreMatcherImplBase(matcher_flags) { |
3622 | for (; first != last; ++first) { |
3623 | matchers_.push_back(MatcherCast<const Element&>(*first)); |
3624 | } |
3625 | for (const auto& m : matchers_) { |
3626 | matcher_describers().push_back(m.GetDescriber()); |
3627 | } |
3628 | } |
3629 | |
3630 | // Describes what this matcher does. |
3631 | void DescribeTo(::std::ostream* os) const override { |
3632 | return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); |
3633 | } |
3634 | |
3635 | // Describes what the negation of this matcher does. |
3636 | void DescribeNegationTo(::std::ostream* os) const override { |
3637 | return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); |
3638 | } |
3639 | |
3640 | bool MatchAndExplain(Container container, |
3641 | MatchResultListener* listener) const override { |
3642 | StlContainerReference stl_container = View::ConstReference(container); |
3643 | ::std::vector<std::string> element_printouts; |
3644 | MatchMatrix matrix = |
3645 | AnalyzeElements(stl_container.begin(), stl_container.end(), |
3646 | &element_printouts, listener); |
3647 | |
3648 | return VerifyMatchMatrix(element_printouts, matrix, listener) && |
3649 | FindPairing(matrix, listener); |
3650 | } |
3651 | |
3652 | private: |
3653 | template <typename ElementIter> |
3654 | MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, |
3655 | ::std::vector<std::string>* element_printouts, |
3656 | MatchResultListener* listener) const { |
3657 | element_printouts->clear(); |
3658 | ::std::vector<char> did_match; |
3659 | size_t num_elements = 0; |
3660 | DummyMatchResultListener dummy; |
3661 | for (; elem_first != elem_last; ++num_elements, ++elem_first) { |
3662 | if (listener->IsInterested()) { |
3663 | element_printouts->push_back(PrintToString(*elem_first)); |
3664 | } |
3665 | for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
3666 | did_match.push_back( |
3667 | matchers_[irhs].MatchAndExplain(*elem_first, &dummy)); |
3668 | } |
3669 | } |
3670 | |
3671 | MatchMatrix matrix(num_elements, matchers_.size()); |
3672 | ::std::vector<char>::const_iterator did_match_iter = did_match.begin(); |
3673 | for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { |
3674 | for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
3675 | matrix.SetEdge(ilhs, irhs, b: *did_match_iter++ != 0); |
3676 | } |
3677 | } |
3678 | return matrix; |
3679 | } |
3680 | |
3681 | ::std::vector<Matcher<const Element&>> matchers_; |
3682 | }; |
3683 | |
3684 | // Functor for use in TransformTuple. |
3685 | // Performs MatcherCast<Target> on an input argument of any type. |
3686 | template <typename Target> |
3687 | struct CastAndAppendTransform { |
3688 | template <typename Arg> |
3689 | Matcher<Target> operator()(const Arg& a) const { |
3690 | return MatcherCast<Target>(a); |
3691 | } |
3692 | }; |
3693 | |
3694 | // Implements UnorderedElementsAre. |
3695 | template <typename MatcherTuple> |
3696 | class UnorderedElementsAreMatcher { |
3697 | public: |
3698 | explicit UnorderedElementsAreMatcher(const MatcherTuple& args) |
3699 | : matchers_(args) {} |
3700 | |
3701 | template <typename Container> |
3702 | operator Matcher<Container>() const { |
3703 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
3704 | typedef typename internal::StlContainerView<RawContainer>::type View; |
3705 | typedef typename View::value_type Element; |
3706 | typedef ::std::vector<Matcher<const Element&>> MatcherVec; |
3707 | MatcherVec matchers; |
3708 | matchers.reserve(::std::tuple_size<MatcherTuple>::value); |
3709 | TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
3710 | ::std::back_inserter(matchers)); |
3711 | return Matcher<Container>( |
3712 | new UnorderedElementsAreMatcherImpl<const Container&>( |
3713 | UnorderedMatcherRequire::ExactMatch, matchers.begin(), |
3714 | matchers.end())); |
3715 | } |
3716 | |
3717 | private: |
3718 | const MatcherTuple matchers_; |
3719 | }; |
3720 | |
3721 | // Implements ElementsAre. |
3722 | template <typename MatcherTuple> |
3723 | class ElementsAreMatcher { |
3724 | public: |
3725 | explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} |
3726 | |
3727 | template <typename Container> |
3728 | operator Matcher<Container>() const { |
3729 | static_assert( |
3730 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value || |
3731 | ::std::tuple_size<MatcherTuple>::value < 2, |
3732 | "use UnorderedElementsAre with hash tables" ); |
3733 | |
3734 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
3735 | typedef typename internal::StlContainerView<RawContainer>::type View; |
3736 | typedef typename View::value_type Element; |
3737 | typedef ::std::vector<Matcher<const Element&>> MatcherVec; |
3738 | MatcherVec matchers; |
3739 | matchers.reserve(::std::tuple_size<MatcherTuple>::value); |
3740 | TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
3741 | ::std::back_inserter(matchers)); |
3742 | return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( |
3743 | matchers.begin(), matchers.end())); |
3744 | } |
3745 | |
3746 | private: |
3747 | const MatcherTuple matchers_; |
3748 | }; |
3749 | |
3750 | // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf(). |
3751 | template <typename T> |
3752 | class UnorderedElementsAreArrayMatcher { |
3753 | public: |
3754 | template <typename Iter> |
3755 | UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags, |
3756 | Iter first, Iter last) |
3757 | : match_flags_(match_flags), matchers_(first, last) {} |
3758 | |
3759 | template <typename Container> |
3760 | operator Matcher<Container>() const { |
3761 | return Matcher<Container>( |
3762 | new UnorderedElementsAreMatcherImpl<const Container&>( |
3763 | match_flags_, matchers_.begin(), matchers_.end())); |
3764 | } |
3765 | |
3766 | private: |
3767 | UnorderedMatcherRequire::Flags match_flags_; |
3768 | ::std::vector<T> matchers_; |
3769 | }; |
3770 | |
3771 | // Implements ElementsAreArray(). |
3772 | template <typename T> |
3773 | class ElementsAreArrayMatcher { |
3774 | public: |
3775 | template <typename Iter> |
3776 | ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
3777 | |
3778 | template <typename Container> |
3779 | operator Matcher<Container>() const { |
3780 | static_assert( |
3781 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value, |
3782 | "use UnorderedElementsAreArray with hash tables" ); |
3783 | |
3784 | return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( |
3785 | matchers_.begin(), matchers_.end())); |
3786 | } |
3787 | |
3788 | private: |
3789 | const ::std::vector<T> matchers_; |
3790 | }; |
3791 | |
3792 | // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second |
3793 | // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm, |
3794 | // second) is a polymorphic matcher that matches a value x if and only if |
3795 | // tm matches tuple (x, second). Useful for implementing |
3796 | // UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
3797 | // |
3798 | // BoundSecondMatcher is copyable and assignable, as we need to put |
3799 | // instances of this class in a vector when implementing |
3800 | // UnorderedPointwise(). |
3801 | template <typename Tuple2Matcher, typename Second> |
3802 | class BoundSecondMatcher { |
3803 | public: |
3804 | BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) |
3805 | : tuple2_matcher_(tm), second_value_(second) {} |
3806 | |
3807 | BoundSecondMatcher(const BoundSecondMatcher& other) = default; |
3808 | |
3809 | template <typename T> |
3810 | operator Matcher<T>() const { |
3811 | return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); |
3812 | } |
3813 | |
3814 | // We have to define this for UnorderedPointwise() to compile in |
3815 | // C++98 mode, as it puts BoundSecondMatcher instances in a vector, |
3816 | // which requires the elements to be assignable in C++98. The |
3817 | // compiler cannot generate the operator= for us, as Tuple2Matcher |
3818 | // and Second may not be assignable. |
3819 | // |
3820 | // However, this should never be called, so the implementation just |
3821 | // need to assert. |
3822 | void operator=(const BoundSecondMatcher& /*rhs*/) { |
3823 | GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned." ; |
3824 | } |
3825 | |
3826 | private: |
3827 | template <typename T> |
3828 | class Impl : public MatcherInterface<T> { |
3829 | public: |
3830 | typedef ::std::tuple<T, Second> ArgTuple; |
3831 | |
3832 | Impl(const Tuple2Matcher& tm, const Second& second) |
3833 | : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), |
3834 | second_value_(second) {} |
3835 | |
3836 | void DescribeTo(::std::ostream* os) const override { |
3837 | *os << "and " ; |
3838 | UniversalPrint(second_value_, os); |
3839 | *os << " " ; |
3840 | mono_tuple2_matcher_.DescribeTo(os); |
3841 | } |
3842 | |
3843 | bool MatchAndExplain(T x, MatchResultListener* listener) const override { |
3844 | return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), |
3845 | listener); |
3846 | } |
3847 | |
3848 | private: |
3849 | const Matcher<const ArgTuple&> mono_tuple2_matcher_; |
3850 | const Second second_value_; |
3851 | }; |
3852 | |
3853 | const Tuple2Matcher tuple2_matcher_; |
3854 | const Second second_value_; |
3855 | }; |
3856 | |
3857 | // Given a 2-tuple matcher tm and a value second, |
3858 | // MatcherBindSecond(tm, second) returns a matcher that matches a |
3859 | // value x if and only if tm matches tuple (x, second). Useful for |
3860 | // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
3861 | template <typename Tuple2Matcher, typename Second> |
3862 | BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( |
3863 | const Tuple2Matcher& tm, const Second& second) { |
3864 | return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); |
3865 | } |
3866 | |
3867 | // Returns the description for a matcher defined using the MATCHER*() |
3868 | // macro where the user-supplied description string is "", if |
3869 | // 'negation' is false; otherwise returns the description of the |
3870 | // negation of the matcher. 'param_values' contains a list of strings |
3871 | // that are the print-out of the matcher's parameters. |
3872 | GTEST_API_ std::string FormatMatcherDescription( |
3873 | bool negation, const char* matcher_name, |
3874 | const std::vector<const char*>& param_names, const Strings& param_values); |
3875 | |
3876 | // Implements a matcher that checks the value of a optional<> type variable. |
3877 | template <typename ValueMatcher> |
3878 | class OptionalMatcher { |
3879 | public: |
3880 | explicit OptionalMatcher(const ValueMatcher& value_matcher) |
3881 | : value_matcher_(value_matcher) {} |
3882 | |
3883 | template <typename Optional> |
3884 | operator Matcher<Optional>() const { |
3885 | return Matcher<Optional>(new Impl<const Optional&>(value_matcher_)); |
3886 | } |
3887 | |
3888 | template <typename Optional> |
3889 | class Impl : public MatcherInterface<Optional> { |
3890 | public: |
3891 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView; |
3892 | typedef typename OptionalView::value_type ValueType; |
3893 | explicit Impl(const ValueMatcher& value_matcher) |
3894 | : value_matcher_(MatcherCast<ValueType>(value_matcher)) {} |
3895 | |
3896 | void DescribeTo(::std::ostream* os) const override { |
3897 | *os << "value " ; |
3898 | value_matcher_.DescribeTo(os); |
3899 | } |
3900 | |
3901 | void DescribeNegationTo(::std::ostream* os) const override { |
3902 | *os << "value " ; |
3903 | value_matcher_.DescribeNegationTo(os); |
3904 | } |
3905 | |
3906 | bool MatchAndExplain(Optional optional, |
3907 | MatchResultListener* listener) const override { |
3908 | if (!optional) { |
3909 | *listener << "which is not engaged" ; |
3910 | return false; |
3911 | } |
3912 | const ValueType& value = *optional; |
3913 | StringMatchResultListener value_listener; |
3914 | const bool match = value_matcher_.MatchAndExplain(value, &value_listener); |
3915 | *listener << "whose value " << PrintToString(value) |
3916 | << (match ? " matches" : " doesn't match" ); |
3917 | PrintIfNotEmpty(explanation: value_listener.str(), os: listener->stream()); |
3918 | return match; |
3919 | } |
3920 | |
3921 | private: |
3922 | const Matcher<ValueType> value_matcher_; |
3923 | }; |
3924 | |
3925 | private: |
3926 | const ValueMatcher value_matcher_; |
3927 | }; |
3928 | |
3929 | namespace variant_matcher { |
3930 | // Overloads to allow VariantMatcher to do proper ADL lookup. |
3931 | template <typename T> |
3932 | void holds_alternative() {} |
3933 | template <typename T> |
3934 | void get() {} |
3935 | |
3936 | // Implements a matcher that checks the value of a variant<> type variable. |
3937 | template <typename T> |
3938 | class VariantMatcher { |
3939 | public: |
3940 | explicit VariantMatcher(::testing::Matcher<const T&> matcher) |
3941 | : matcher_(std::move(matcher)) {} |
3942 | |
3943 | template <typename Variant> |
3944 | bool MatchAndExplain(const Variant& value, |
3945 | ::testing::MatchResultListener* listener) const { |
3946 | using std::get; |
3947 | if (!listener->IsInterested()) { |
3948 | return holds_alternative<T>(value) && matcher_.Matches(get<T>(value)); |
3949 | } |
3950 | |
3951 | if (!holds_alternative<T>(value)) { |
3952 | *listener << "whose value is not of type '" << GetTypeName() << "'" ; |
3953 | return false; |
3954 | } |
3955 | |
3956 | const T& elem = get<T>(value); |
3957 | StringMatchResultListener elem_listener; |
3958 | const bool match = matcher_.MatchAndExplain(elem, &elem_listener); |
3959 | *listener << "whose value " << PrintToString(elem) |
3960 | << (match ? " matches" : " doesn't match" ); |
3961 | PrintIfNotEmpty(explanation: elem_listener.str(), os: listener->stream()); |
3962 | return match; |
3963 | } |
3964 | |
3965 | void DescribeTo(std::ostream* os) const { |
3966 | *os << "is a variant<> with value of type '" << GetTypeName() |
3967 | << "' and the value " ; |
3968 | matcher_.DescribeTo(os); |
3969 | } |
3970 | |
3971 | void DescribeNegationTo(std::ostream* os) const { |
3972 | *os << "is a variant<> with value of type other than '" << GetTypeName() |
3973 | << "' or the value " ; |
3974 | matcher_.DescribeNegationTo(os); |
3975 | } |
3976 | |
3977 | private: |
3978 | static std::string GetTypeName() { |
3979 | #if GTEST_HAS_RTTI |
3980 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
3981 | return internal::GetTypeName<T>()); |
3982 | #endif |
3983 | return "the element type" ; |
3984 | } |
3985 | |
3986 | const ::testing::Matcher<const T&> matcher_; |
3987 | }; |
3988 | |
3989 | } // namespace variant_matcher |
3990 | |
3991 | namespace any_cast_matcher { |
3992 | |
3993 | // Overloads to allow AnyCastMatcher to do proper ADL lookup. |
3994 | template <typename T> |
3995 | void any_cast() {} |
3996 | |
3997 | // Implements a matcher that any_casts the value. |
3998 | template <typename T> |
3999 | class AnyCastMatcher { |
4000 | public: |
4001 | explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher) |
4002 | : matcher_(matcher) {} |
4003 | |
4004 | template <typename AnyType> |
4005 | bool MatchAndExplain(const AnyType& value, |
4006 | ::testing::MatchResultListener* listener) const { |
4007 | if (!listener->IsInterested()) { |
4008 | const T* ptr = any_cast<T>(&value); |
4009 | return ptr != nullptr && matcher_.Matches(*ptr); |
4010 | } |
4011 | |
4012 | const T* elem = any_cast<T>(&value); |
4013 | if (elem == nullptr) { |
4014 | *listener << "whose value is not of type '" << GetTypeName() << "'" ; |
4015 | return false; |
4016 | } |
4017 | |
4018 | StringMatchResultListener elem_listener; |
4019 | const bool match = matcher_.MatchAndExplain(*elem, &elem_listener); |
4020 | *listener << "whose value " << PrintToString(*elem) |
4021 | << (match ? " matches" : " doesn't match" ); |
4022 | PrintIfNotEmpty(explanation: elem_listener.str(), os: listener->stream()); |
4023 | return match; |
4024 | } |
4025 | |
4026 | void DescribeTo(std::ostream* os) const { |
4027 | *os << "is an 'any' type with value of type '" << GetTypeName() |
4028 | << "' and the value " ; |
4029 | matcher_.DescribeTo(os); |
4030 | } |
4031 | |
4032 | void DescribeNegationTo(std::ostream* os) const { |
4033 | *os << "is an 'any' type with value of type other than '" << GetTypeName() |
4034 | << "' or the value " ; |
4035 | matcher_.DescribeNegationTo(os); |
4036 | } |
4037 | |
4038 | private: |
4039 | static std::string GetTypeName() { |
4040 | #if GTEST_HAS_RTTI |
4041 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
4042 | return internal::GetTypeName<T>()); |
4043 | #endif |
4044 | return "the element type" ; |
4045 | } |
4046 | |
4047 | const ::testing::Matcher<const T&> matcher_; |
4048 | }; |
4049 | |
4050 | } // namespace any_cast_matcher |
4051 | |
4052 | // Implements the Args() matcher. |
4053 | template <class ArgsTuple, size_t... k> |
4054 | class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> { |
4055 | public: |
4056 | using RawArgsTuple = typename std::decay<ArgsTuple>::type; |
4057 | using SelectedArgs = |
4058 | std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>; |
4059 | using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>; |
4060 | |
4061 | template <typename InnerMatcher> |
4062 | explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) |
4063 | : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {} |
4064 | |
4065 | bool MatchAndExplain(ArgsTuple args, |
4066 | MatchResultListener* listener) const override { |
4067 | // Workaround spurious C4100 on MSVC<=15.7 when k is empty. |
4068 | (void)args; |
4069 | const SelectedArgs& selected_args = |
4070 | std::forward_as_tuple(std::get<k>(args)...); |
4071 | if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args); |
4072 | |
4073 | PrintIndices(os: listener->stream()); |
4074 | *listener << "are " << PrintToString(selected_args); |
4075 | |
4076 | StringMatchResultListener inner_listener; |
4077 | const bool match = |
4078 | inner_matcher_.MatchAndExplain(selected_args, &inner_listener); |
4079 | PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream()); |
4080 | return match; |
4081 | } |
4082 | |
4083 | void DescribeTo(::std::ostream* os) const override { |
4084 | *os << "are a tuple " ; |
4085 | PrintIndices(os); |
4086 | inner_matcher_.DescribeTo(os); |
4087 | } |
4088 | |
4089 | void DescribeNegationTo(::std::ostream* os) const override { |
4090 | *os << "are a tuple " ; |
4091 | PrintIndices(os); |
4092 | inner_matcher_.DescribeNegationTo(os); |
4093 | } |
4094 | |
4095 | private: |
4096 | // Prints the indices of the selected fields. |
4097 | static void PrintIndices(::std::ostream* os) { |
4098 | *os << "whose fields (" ; |
4099 | const char* sep = "" ; |
4100 | // Workaround spurious C4189 on MSVC<=15.7 when k is empty. |
4101 | (void)sep; |
4102 | // The static_cast to void is needed to silence Clang's -Wcomma warning. |
4103 | // This pattern looks suspiciously like we may have mismatched parentheses |
4104 | // and may have been trying to use the first operation of the comma operator |
4105 | // as a member of the array, so Clang warns that we may have made a mistake. |
4106 | const char* dummy[] = { |
4107 | "" , (static_cast<void>(*os << sep << "#" << k), sep = ", " )...}; |
4108 | (void)dummy; |
4109 | *os << ") " ; |
4110 | } |
4111 | |
4112 | MonomorphicInnerMatcher inner_matcher_; |
4113 | }; |
4114 | |
4115 | template <class InnerMatcher, size_t... k> |
4116 | class ArgsMatcher { |
4117 | public: |
4118 | explicit ArgsMatcher(InnerMatcher inner_matcher) |
4119 | : inner_matcher_(std::move(inner_matcher)) {} |
4120 | |
4121 | template <typename ArgsTuple> |
4122 | operator Matcher<ArgsTuple>() const { // NOLINT |
4123 | return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_)); |
4124 | } |
4125 | |
4126 | private: |
4127 | InnerMatcher inner_matcher_; |
4128 | }; |
4129 | |
4130 | } // namespace internal |
4131 | |
4132 | // ElementsAreArray(iterator_first, iterator_last) |
4133 | // ElementsAreArray(pointer, count) |
4134 | // ElementsAreArray(array) |
4135 | // ElementsAreArray(container) |
4136 | // ElementsAreArray({ e1, e2, ..., en }) |
4137 | // |
4138 | // The ElementsAreArray() functions are like ElementsAre(...), except |
4139 | // that they are given a homogeneous sequence rather than taking each |
4140 | // element as a function argument. The sequence can be specified as an |
4141 | // array, a pointer and count, a vector, an initializer list, or an |
4142 | // STL iterator range. In each of these cases, the underlying sequence |
4143 | // can be either a sequence of values or a sequence of matchers. |
4144 | // |
4145 | // All forms of ElementsAreArray() make a copy of the input matcher sequence. |
4146 | |
4147 | template <typename Iter> |
4148 | inline internal::ElementsAreArrayMatcher< |
4149 | typename ::std::iterator_traits<Iter>::value_type> |
4150 | ElementsAreArray(Iter first, Iter last) { |
4151 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
4152 | return internal::ElementsAreArrayMatcher<T>(first, last); |
4153 | } |
4154 | |
4155 | template <typename T> |
4156 | inline auto ElementsAreArray(const T* pointer, size_t count) |
4157 | -> decltype(ElementsAreArray(pointer, pointer + count)) { |
4158 | return ElementsAreArray(pointer, pointer + count); |
4159 | } |
4160 | |
4161 | template <typename T, size_t N> |
4162 | inline auto ElementsAreArray(const T (&array)[N]) |
4163 | -> decltype(ElementsAreArray(array, N)) { |
4164 | return ElementsAreArray(array, N); |
4165 | } |
4166 | |
4167 | template <typename Container> |
4168 | inline auto ElementsAreArray(const Container& container) |
4169 | -> decltype(ElementsAreArray(container.begin(), container.end())) { |
4170 | return ElementsAreArray(container.begin(), container.end()); |
4171 | } |
4172 | |
4173 | template <typename T> |
4174 | inline auto ElementsAreArray(::std::initializer_list<T> xs) |
4175 | -> decltype(ElementsAreArray(xs.begin(), xs.end())) { |
4176 | return ElementsAreArray(xs.begin(), xs.end()); |
4177 | } |
4178 | |
4179 | // UnorderedElementsAreArray(iterator_first, iterator_last) |
4180 | // UnorderedElementsAreArray(pointer, count) |
4181 | // UnorderedElementsAreArray(array) |
4182 | // UnorderedElementsAreArray(container) |
4183 | // UnorderedElementsAreArray({ e1, e2, ..., en }) |
4184 | // |
4185 | // UnorderedElementsAreArray() verifies that a bijective mapping onto a |
4186 | // collection of matchers exists. |
4187 | // |
4188 | // The matchers can be specified as an array, a pointer and count, a container, |
4189 | // an initializer list, or an STL iterator range. In each of these cases, the |
4190 | // underlying matchers can be either values or matchers. |
4191 | |
4192 | template <typename Iter> |
4193 | inline internal::UnorderedElementsAreArrayMatcher< |
4194 | typename ::std::iterator_traits<Iter>::value_type> |
4195 | UnorderedElementsAreArray(Iter first, Iter last) { |
4196 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
4197 | return internal::UnorderedElementsAreArrayMatcher<T>( |
4198 | internal::UnorderedMatcherRequire::ExactMatch, first, last); |
4199 | } |
4200 | |
4201 | template <typename T> |
4202 | inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray( |
4203 | const T* pointer, size_t count) { |
4204 | return UnorderedElementsAreArray(pointer, pointer + count); |
4205 | } |
4206 | |
4207 | template <typename T, size_t N> |
4208 | inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray( |
4209 | const T (&array)[N]) { |
4210 | return UnorderedElementsAreArray(array, N); |
4211 | } |
4212 | |
4213 | template <typename Container> |
4214 | inline internal::UnorderedElementsAreArrayMatcher< |
4215 | typename Container::value_type> |
4216 | UnorderedElementsAreArray(const Container& container) { |
4217 | return UnorderedElementsAreArray(container.begin(), container.end()); |
4218 | } |
4219 | |
4220 | template <typename T> |
4221 | inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray( |
4222 | ::std::initializer_list<T> xs) { |
4223 | return UnorderedElementsAreArray(xs.begin(), xs.end()); |
4224 | } |
4225 | |
4226 | // _ is a matcher that matches anything of any type. |
4227 | // |
4228 | // This definition is fine as: |
4229 | // |
4230 | // 1. The C++ standard permits using the name _ in a namespace that |
4231 | // is not the global namespace or ::std. |
4232 | // 2. The AnythingMatcher class has no data member or constructor, |
4233 | // so it's OK to create global variables of this type. |
4234 | // 3. c-style has approved of using _ in this case. |
4235 | const internal::AnythingMatcher _ = {}; |
4236 | // Creates a matcher that matches any value of the given type T. |
4237 | template <typename T> |
4238 | inline Matcher<T> A() { |
4239 | return _; |
4240 | } |
4241 | |
4242 | // Creates a matcher that matches any value of the given type T. |
4243 | template <typename T> |
4244 | inline Matcher<T> An() { |
4245 | return _; |
4246 | } |
4247 | |
4248 | template <typename T, typename M> |
4249 | Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl( |
4250 | const M& value, std::false_type /* convertible_to_matcher */, |
4251 | std::false_type /* convertible_to_T */) { |
4252 | return Eq(value); |
4253 | } |
4254 | |
4255 | // Creates a polymorphic matcher that matches any NULL pointer. |
4256 | inline PolymorphicMatcher<internal::IsNullMatcher> IsNull() { |
4257 | return MakePolymorphicMatcher(impl: internal::IsNullMatcher()); |
4258 | } |
4259 | |
4260 | // Creates a polymorphic matcher that matches any non-NULL pointer. |
4261 | // This is convenient as Not(NULL) doesn't compile (the compiler |
4262 | // thinks that that expression is comparing a pointer with an integer). |
4263 | inline PolymorphicMatcher<internal::NotNullMatcher> NotNull() { |
4264 | return MakePolymorphicMatcher(impl: internal::NotNullMatcher()); |
4265 | } |
4266 | |
4267 | // Creates a polymorphic matcher that matches any argument that |
4268 | // references variable x. |
4269 | template <typename T> |
4270 | inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT |
4271 | return internal::RefMatcher<T&>(x); |
4272 | } |
4273 | |
4274 | // Creates a polymorphic matcher that matches any NaN floating point. |
4275 | inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() { |
4276 | return MakePolymorphicMatcher(impl: internal::IsNanMatcher()); |
4277 | } |
4278 | |
4279 | // Creates a matcher that matches any double argument approximately |
4280 | // equal to rhs, where two NANs are considered unequal. |
4281 | inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { |
4282 | return internal::FloatingEqMatcher<double>(rhs, false); |
4283 | } |
4284 | |
4285 | // Creates a matcher that matches any double argument approximately |
4286 | // equal to rhs, including NaN values when rhs is NaN. |
4287 | inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { |
4288 | return internal::FloatingEqMatcher<double>(rhs, true); |
4289 | } |
4290 | |
4291 | // Creates a matcher that matches any double argument approximately equal to |
4292 | // rhs, up to the specified max absolute error bound, where two NANs are |
4293 | // considered unequal. The max absolute error bound must be non-negative. |
4294 | inline internal::FloatingEqMatcher<double> DoubleNear(double rhs, |
4295 | double max_abs_error) { |
4296 | return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); |
4297 | } |
4298 | |
4299 | // Creates a matcher that matches any double argument approximately equal to |
4300 | // rhs, up to the specified max absolute error bound, including NaN values when |
4301 | // rhs is NaN. The max absolute error bound must be non-negative. |
4302 | inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( |
4303 | double rhs, double max_abs_error) { |
4304 | return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); |
4305 | } |
4306 | |
4307 | // Creates a matcher that matches any float argument approximately |
4308 | // equal to rhs, where two NANs are considered unequal. |
4309 | inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { |
4310 | return internal::FloatingEqMatcher<float>(rhs, false); |
4311 | } |
4312 | |
4313 | // Creates a matcher that matches any float argument approximately |
4314 | // equal to rhs, including NaN values when rhs is NaN. |
4315 | inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { |
4316 | return internal::FloatingEqMatcher<float>(rhs, true); |
4317 | } |
4318 | |
4319 | // Creates a matcher that matches any float argument approximately equal to |
4320 | // rhs, up to the specified max absolute error bound, where two NANs are |
4321 | // considered unequal. The max absolute error bound must be non-negative. |
4322 | inline internal::FloatingEqMatcher<float> FloatNear(float rhs, |
4323 | float max_abs_error) { |
4324 | return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); |
4325 | } |
4326 | |
4327 | // Creates a matcher that matches any float argument approximately equal to |
4328 | // rhs, up to the specified max absolute error bound, including NaN values when |
4329 | // rhs is NaN. The max absolute error bound must be non-negative. |
4330 | inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( |
4331 | float rhs, float max_abs_error) { |
4332 | return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); |
4333 | } |
4334 | |
4335 | // Creates a matcher that matches a pointer (raw or smart) that points |
4336 | // to a value that matches inner_matcher. |
4337 | template <typename InnerMatcher> |
4338 | inline internal::PointeeMatcher<InnerMatcher> Pointee( |
4339 | const InnerMatcher& inner_matcher) { |
4340 | return internal::PointeeMatcher<InnerMatcher>(inner_matcher); |
4341 | } |
4342 | |
4343 | #if GTEST_HAS_RTTI |
4344 | // Creates a matcher that matches a pointer or reference that matches |
4345 | // inner_matcher when dynamic_cast<To> is applied. |
4346 | // The result of dynamic_cast<To> is forwarded to the inner matcher. |
4347 | // If To is a pointer and the cast fails, the inner matcher will receive NULL. |
4348 | // If To is a reference and the cast fails, this matcher returns false |
4349 | // immediately. |
4350 | template <typename To> |
4351 | inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To>> |
4352 | WhenDynamicCastTo(const Matcher<To>& inner_matcher) { |
4353 | return MakePolymorphicMatcher( |
4354 | internal::WhenDynamicCastToMatcher<To>(inner_matcher)); |
4355 | } |
4356 | #endif // GTEST_HAS_RTTI |
4357 | |
4358 | // Creates a matcher that matches an object whose given field matches |
4359 | // 'matcher'. For example, |
4360 | // Field(&Foo::number, Ge(5)) |
4361 | // matches a Foo object x if and only if x.number >= 5. |
4362 | template <typename Class, typename FieldType, typename FieldMatcher> |
4363 | inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field( |
4364 | FieldType Class::*field, const FieldMatcher& matcher) { |
4365 | return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( |
4366 | field, MatcherCast<const FieldType&>(matcher))); |
4367 | // The call to MatcherCast() is required for supporting inner |
4368 | // matchers of compatible types. For example, it allows |
4369 | // Field(&Foo::bar, m) |
4370 | // to compile where bar is an int32 and m is a matcher for int64. |
4371 | } |
4372 | |
4373 | // Same as Field() but also takes the name of the field to provide better error |
4374 | // messages. |
4375 | template <typename Class, typename FieldType, typename FieldMatcher> |
4376 | inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field( |
4377 | const std::string& field_name, FieldType Class::*field, |
4378 | const FieldMatcher& matcher) { |
4379 | return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( |
4380 | field_name, field, MatcherCast<const FieldType&>(matcher))); |
4381 | } |
4382 | |
4383 | // Creates a matcher that matches an object whose given property |
4384 | // matches 'matcher'. For example, |
4385 | // Property(&Foo::str, StartsWith("hi")) |
4386 | // matches a Foo object x if and only if x.str() starts with "hi". |
4387 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
4388 | inline PolymorphicMatcher<internal::PropertyMatcher< |
4389 | Class, PropertyType, PropertyType (Class::*)() const>> |
4390 | Property(PropertyType (Class::*property)() const, |
4391 | const PropertyMatcher& matcher) { |
4392 | return MakePolymorphicMatcher( |
4393 | internal::PropertyMatcher<Class, PropertyType, |
4394 | PropertyType (Class::*)() const>( |
4395 | property, MatcherCast<const PropertyType&>(matcher))); |
4396 | // The call to MatcherCast() is required for supporting inner |
4397 | // matchers of compatible types. For example, it allows |
4398 | // Property(&Foo::bar, m) |
4399 | // to compile where bar() returns an int32 and m is a matcher for int64. |
4400 | } |
4401 | |
4402 | // Same as Property() above, but also takes the name of the property to provide |
4403 | // better error messages. |
4404 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
4405 | inline PolymorphicMatcher<internal::PropertyMatcher< |
4406 | Class, PropertyType, PropertyType (Class::*)() const>> |
4407 | Property(const std::string& property_name, |
4408 | PropertyType (Class::*property)() const, |
4409 | const PropertyMatcher& matcher) { |
4410 | return MakePolymorphicMatcher( |
4411 | internal::PropertyMatcher<Class, PropertyType, |
4412 | PropertyType (Class::*)() const>( |
4413 | property_name, property, MatcherCast<const PropertyType&>(matcher))); |
4414 | } |
4415 | |
4416 | // The same as above but for reference-qualified member functions. |
4417 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
4418 | inline PolymorphicMatcher<internal::PropertyMatcher< |
4419 | Class, PropertyType, PropertyType (Class::*)() const&>> |
4420 | Property(PropertyType (Class::*property)() const&, |
4421 | const PropertyMatcher& matcher) { |
4422 | return MakePolymorphicMatcher( |
4423 | internal::PropertyMatcher<Class, PropertyType, |
4424 | PropertyType (Class::*)() const&>( |
4425 | property, MatcherCast<const PropertyType&>(matcher))); |
4426 | } |
4427 | |
4428 | // Three-argument form for reference-qualified member functions. |
4429 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
4430 | inline PolymorphicMatcher<internal::PropertyMatcher< |
4431 | Class, PropertyType, PropertyType (Class::*)() const&>> |
4432 | Property(const std::string& property_name, |
4433 | PropertyType (Class::*property)() const&, |
4434 | const PropertyMatcher& matcher) { |
4435 | return MakePolymorphicMatcher( |
4436 | internal::PropertyMatcher<Class, PropertyType, |
4437 | PropertyType (Class::*)() const&>( |
4438 | property_name, property, MatcherCast<const PropertyType&>(matcher))); |
4439 | } |
4440 | |
4441 | // Creates a matcher that matches an object if and only if the result of |
4442 | // applying a callable to x matches 'matcher'. For example, |
4443 | // ResultOf(f, StartsWith("hi")) |
4444 | // matches a Foo object x if and only if f(x) starts with "hi". |
4445 | // `callable` parameter can be a function, function pointer, or a functor. It is |
4446 | // required to keep no state affecting the results of the calls on it and make |
4447 | // no assumptions about how many calls will be made. Any state it keeps must be |
4448 | // protected from the concurrent access. |
4449 | template <typename Callable, typename InnerMatcher> |
4450 | internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( |
4451 | Callable callable, InnerMatcher matcher) { |
4452 | return internal::ResultOfMatcher<Callable, InnerMatcher>(std::move(callable), |
4453 | std::move(matcher)); |
4454 | } |
4455 | |
4456 | // Same as ResultOf() above, but also takes a description of the `callable` |
4457 | // result to provide better error messages. |
4458 | template <typename Callable, typename InnerMatcher> |
4459 | internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( |
4460 | const std::string& result_description, Callable callable, |
4461 | InnerMatcher matcher) { |
4462 | return internal::ResultOfMatcher<Callable, InnerMatcher>( |
4463 | result_description, std::move(callable), std::move(matcher)); |
4464 | } |
4465 | |
4466 | // String matchers. |
4467 | |
4468 | // Matches a string equal to str. |
4469 | template <typename T = std::string> |
4470 | PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrEq( |
4471 | const internal::StringLike<T>& str) { |
4472 | return MakePolymorphicMatcher( |
4473 | impl: internal::StrEqualityMatcher<std::string>(std::string(str), true, true)); |
4474 | } |
4475 | |
4476 | // Matches a string not equal to str. |
4477 | template <typename T = std::string> |
4478 | PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrNe( |
4479 | const internal::StringLike<T>& str) { |
4480 | return MakePolymorphicMatcher( |
4481 | impl: internal::StrEqualityMatcher<std::string>(std::string(str), false, true)); |
4482 | } |
4483 | |
4484 | // Matches a string equal to str, ignoring case. |
4485 | template <typename T = std::string> |
4486 | PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseEq( |
4487 | const internal::StringLike<T>& str) { |
4488 | return MakePolymorphicMatcher( |
4489 | impl: internal::StrEqualityMatcher<std::string>(std::string(str), true, false)); |
4490 | } |
4491 | |
4492 | // Matches a string not equal to str, ignoring case. |
4493 | template <typename T = std::string> |
4494 | PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseNe( |
4495 | const internal::StringLike<T>& str) { |
4496 | return MakePolymorphicMatcher(impl: internal::StrEqualityMatcher<std::string>( |
4497 | std::string(str), false, false)); |
4498 | } |
4499 | |
4500 | // Creates a matcher that matches any string, std::string, or C string |
4501 | // that contains the given substring. |
4502 | template <typename T = std::string> |
4503 | PolymorphicMatcher<internal::HasSubstrMatcher<std::string>> HasSubstr( |
4504 | const internal::StringLike<T>& substring) { |
4505 | return MakePolymorphicMatcher( |
4506 | impl: internal::HasSubstrMatcher<std::string>(std::string(substring))); |
4507 | } |
4508 | |
4509 | // Matches a string that starts with 'prefix' (case-sensitive). |
4510 | template <typename T = std::string> |
4511 | PolymorphicMatcher<internal::StartsWithMatcher<std::string>> StartsWith( |
4512 | const internal::StringLike<T>& prefix) { |
4513 | return MakePolymorphicMatcher( |
4514 | impl: internal::StartsWithMatcher<std::string>(std::string(prefix))); |
4515 | } |
4516 | |
4517 | // Matches a string that ends with 'suffix' (case-sensitive). |
4518 | template <typename T = std::string> |
4519 | PolymorphicMatcher<internal::EndsWithMatcher<std::string>> EndsWith( |
4520 | const internal::StringLike<T>& suffix) { |
4521 | return MakePolymorphicMatcher( |
4522 | impl: internal::EndsWithMatcher<std::string>(std::string(suffix))); |
4523 | } |
4524 | |
4525 | #if GTEST_HAS_STD_WSTRING |
4526 | // Wide string matchers. |
4527 | |
4528 | // Matches a string equal to str. |
4529 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrEq( |
4530 | const std::wstring& str) { |
4531 | return MakePolymorphicMatcher( |
4532 | impl: internal::StrEqualityMatcher<std::wstring>(str, true, true)); |
4533 | } |
4534 | |
4535 | // Matches a string not equal to str. |
4536 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrNe( |
4537 | const std::wstring& str) { |
4538 | return MakePolymorphicMatcher( |
4539 | impl: internal::StrEqualityMatcher<std::wstring>(str, false, true)); |
4540 | } |
4541 | |
4542 | // Matches a string equal to str, ignoring case. |
4543 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseEq( |
4544 | const std::wstring& str) { |
4545 | return MakePolymorphicMatcher( |
4546 | impl: internal::StrEqualityMatcher<std::wstring>(str, true, false)); |
4547 | } |
4548 | |
4549 | // Matches a string not equal to str, ignoring case. |
4550 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseNe( |
4551 | const std::wstring& str) { |
4552 | return MakePolymorphicMatcher( |
4553 | impl: internal::StrEqualityMatcher<std::wstring>(str, false, false)); |
4554 | } |
4555 | |
4556 | // Creates a matcher that matches any ::wstring, std::wstring, or C wide string |
4557 | // that contains the given substring. |
4558 | inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring>> HasSubstr( |
4559 | const std::wstring& substring) { |
4560 | return MakePolymorphicMatcher( |
4561 | impl: internal::HasSubstrMatcher<std::wstring>(substring)); |
4562 | } |
4563 | |
4564 | // Matches a string that starts with 'prefix' (case-sensitive). |
4565 | inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring>> StartsWith( |
4566 | const std::wstring& prefix) { |
4567 | return MakePolymorphicMatcher( |
4568 | impl: internal::StartsWithMatcher<std::wstring>(prefix)); |
4569 | } |
4570 | |
4571 | // Matches a string that ends with 'suffix' (case-sensitive). |
4572 | inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring>> EndsWith( |
4573 | const std::wstring& suffix) { |
4574 | return MakePolymorphicMatcher( |
4575 | impl: internal::EndsWithMatcher<std::wstring>(suffix)); |
4576 | } |
4577 | |
4578 | #endif // GTEST_HAS_STD_WSTRING |
4579 | |
4580 | // Creates a polymorphic matcher that matches a 2-tuple where the |
4581 | // first field == the second field. |
4582 | inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } |
4583 | |
4584 | // Creates a polymorphic matcher that matches a 2-tuple where the |
4585 | // first field >= the second field. |
4586 | inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } |
4587 | |
4588 | // Creates a polymorphic matcher that matches a 2-tuple where the |
4589 | // first field > the second field. |
4590 | inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } |
4591 | |
4592 | // Creates a polymorphic matcher that matches a 2-tuple where the |
4593 | // first field <= the second field. |
4594 | inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } |
4595 | |
4596 | // Creates a polymorphic matcher that matches a 2-tuple where the |
4597 | // first field < the second field. |
4598 | inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } |
4599 | |
4600 | // Creates a polymorphic matcher that matches a 2-tuple where the |
4601 | // first field != the second field. |
4602 | inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } |
4603 | |
4604 | // Creates a polymorphic matcher that matches a 2-tuple where |
4605 | // FloatEq(first field) matches the second field. |
4606 | inline internal::FloatingEq2Matcher<float> FloatEq() { |
4607 | return internal::FloatingEq2Matcher<float>(); |
4608 | } |
4609 | |
4610 | // Creates a polymorphic matcher that matches a 2-tuple where |
4611 | // DoubleEq(first field) matches the second field. |
4612 | inline internal::FloatingEq2Matcher<double> DoubleEq() { |
4613 | return internal::FloatingEq2Matcher<double>(); |
4614 | } |
4615 | |
4616 | // Creates a polymorphic matcher that matches a 2-tuple where |
4617 | // FloatEq(first field) matches the second field with NaN equality. |
4618 | inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() { |
4619 | return internal::FloatingEq2Matcher<float>(true); |
4620 | } |
4621 | |
4622 | // Creates a polymorphic matcher that matches a 2-tuple where |
4623 | // DoubleEq(first field) matches the second field with NaN equality. |
4624 | inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() { |
4625 | return internal::FloatingEq2Matcher<double>(true); |
4626 | } |
4627 | |
4628 | // Creates a polymorphic matcher that matches a 2-tuple where |
4629 | // FloatNear(first field, max_abs_error) matches the second field. |
4630 | inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) { |
4631 | return internal::FloatingEq2Matcher<float>(max_abs_error); |
4632 | } |
4633 | |
4634 | // Creates a polymorphic matcher that matches a 2-tuple where |
4635 | // DoubleNear(first field, max_abs_error) matches the second field. |
4636 | inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) { |
4637 | return internal::FloatingEq2Matcher<double>(max_abs_error); |
4638 | } |
4639 | |
4640 | // Creates a polymorphic matcher that matches a 2-tuple where |
4641 | // FloatNear(first field, max_abs_error) matches the second field with NaN |
4642 | // equality. |
4643 | inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear( |
4644 | float max_abs_error) { |
4645 | return internal::FloatingEq2Matcher<float>(max_abs_error, true); |
4646 | } |
4647 | |
4648 | // Creates a polymorphic matcher that matches a 2-tuple where |
4649 | // DoubleNear(first field, max_abs_error) matches the second field with NaN |
4650 | // equality. |
4651 | inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear( |
4652 | double max_abs_error) { |
4653 | return internal::FloatingEq2Matcher<double>(max_abs_error, true); |
4654 | } |
4655 | |
4656 | // Creates a matcher that matches any value of type T that m doesn't |
4657 | // match. |
4658 | template <typename InnerMatcher> |
4659 | inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { |
4660 | return internal::NotMatcher<InnerMatcher>(m); |
4661 | } |
4662 | |
4663 | // Returns a matcher that matches anything that satisfies the given |
4664 | // predicate. The predicate can be any unary function or functor |
4665 | // whose return type can be implicitly converted to bool. |
4666 | template <typename Predicate> |
4667 | inline PolymorphicMatcher<internal::TrulyMatcher<Predicate>> Truly( |
4668 | Predicate pred) { |
4669 | return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); |
4670 | } |
4671 | |
4672 | // Returns a matcher that matches the container size. The container must |
4673 | // support both size() and size_type which all STL-like containers provide. |
4674 | // Note that the parameter 'size' can be a value of type size_type as well as |
4675 | // matcher. For instance: |
4676 | // EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements. |
4677 | // EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2. |
4678 | template <typename SizeMatcher> |
4679 | inline internal::SizeIsMatcher<SizeMatcher> SizeIs( |
4680 | const SizeMatcher& size_matcher) { |
4681 | return internal::SizeIsMatcher<SizeMatcher>(size_matcher); |
4682 | } |
4683 | |
4684 | // Returns a matcher that matches the distance between the container's begin() |
4685 | // iterator and its end() iterator, i.e. the size of the container. This matcher |
4686 | // can be used instead of SizeIs with containers such as std::forward_list which |
4687 | // do not implement size(). The container must provide const_iterator (with |
4688 | // valid iterator_traits), begin() and end(). |
4689 | template <typename DistanceMatcher> |
4690 | inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> BeginEndDistanceIs( |
4691 | const DistanceMatcher& distance_matcher) { |
4692 | return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); |
4693 | } |
4694 | |
4695 | // Returns a matcher that matches an equal container. |
4696 | // This matcher behaves like Eq(), but in the event of mismatch lists the |
4697 | // values that are included in one container but not the other. (Duplicate |
4698 | // values and order differences are not explained.) |
4699 | template <typename Container> |
4700 | inline PolymorphicMatcher< |
4701 | internal::ContainerEqMatcher<typename std::remove_const<Container>::type>> |
4702 | ContainerEq(const Container& rhs) { |
4703 | return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs)); |
4704 | } |
4705 | |
4706 | // Returns a matcher that matches a container that, when sorted using |
4707 | // the given comparator, matches container_matcher. |
4708 | template <typename Comparator, typename ContainerMatcher> |
4709 | inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> WhenSortedBy( |
4710 | const Comparator& comparator, const ContainerMatcher& container_matcher) { |
4711 | return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( |
4712 | comparator, container_matcher); |
4713 | } |
4714 | |
4715 | // Returns a matcher that matches a container that, when sorted using |
4716 | // the < operator, matches container_matcher. |
4717 | template <typename ContainerMatcher> |
4718 | inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> |
4719 | WhenSorted(const ContainerMatcher& container_matcher) { |
4720 | return internal::WhenSortedByMatcher<internal::LessComparator, |
4721 | ContainerMatcher>( |
4722 | internal::LessComparator(), container_matcher); |
4723 | } |
4724 | |
4725 | // Matches an STL-style container or a native array that contains the |
4726 | // same number of elements as in rhs, where its i-th element and rhs's |
4727 | // i-th element (as a pair) satisfy the given pair matcher, for all i. |
4728 | // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const |
4729 | // T1&, const T2&> >, where T1 and T2 are the types of elements in the |
4730 | // LHS container and the RHS container respectively. |
4731 | template <typename TupleMatcher, typename Container> |
4732 | inline internal::PointwiseMatcher<TupleMatcher, |
4733 | typename std::remove_const<Container>::type> |
4734 | Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { |
4735 | return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher, |
4736 | rhs); |
4737 | } |
4738 | |
4739 | // Supports the Pointwise(m, {a, b, c}) syntax. |
4740 | template <typename TupleMatcher, typename T> |
4741 | inline internal::PointwiseMatcher<TupleMatcher, std::vector<T>> Pointwise( |
4742 | const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { |
4743 | return Pointwise(tuple_matcher, std::vector<T>(rhs)); |
4744 | } |
4745 | |
4746 | // UnorderedPointwise(pair_matcher, rhs) matches an STL-style |
4747 | // container or a native array that contains the same number of |
4748 | // elements as in rhs, where in some permutation of the container, its |
4749 | // i-th element and rhs's i-th element (as a pair) satisfy the given |
4750 | // pair matcher, for all i. Tuple2Matcher must be able to be safely |
4751 | // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are |
4752 | // the types of elements in the LHS container and the RHS container |
4753 | // respectively. |
4754 | // |
4755 | // This is like Pointwise(pair_matcher, rhs), except that the element |
4756 | // order doesn't matter. |
4757 | template <typename Tuple2Matcher, typename RhsContainer> |
4758 | inline internal::UnorderedElementsAreArrayMatcher< |
4759 | typename internal::BoundSecondMatcher< |
4760 | Tuple2Matcher, |
4761 | typename internal::StlContainerView< |
4762 | typename std::remove_const<RhsContainer>::type>::type::value_type>> |
4763 | UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
4764 | const RhsContainer& rhs_container) { |
4765 | // RhsView allows the same code to handle RhsContainer being a |
4766 | // STL-style container and it being a native C-style array. |
4767 | typedef typename internal::StlContainerView<RhsContainer> RhsView; |
4768 | typedef typename RhsView::type RhsStlContainer; |
4769 | typedef typename RhsStlContainer::value_type Second; |
4770 | const RhsStlContainer& rhs_stl_container = |
4771 | RhsView::ConstReference(rhs_container); |
4772 | |
4773 | // Create a matcher for each element in rhs_container. |
4774 | ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second>> matchers; |
4775 | for (auto it = rhs_stl_container.begin(); it != rhs_stl_container.end(); |
4776 | ++it) { |
4777 | matchers.push_back(internal::MatcherBindSecond(tuple2_matcher, *it)); |
4778 | } |
4779 | |
4780 | // Delegate the work to UnorderedElementsAreArray(). |
4781 | return UnorderedElementsAreArray(matchers); |
4782 | } |
4783 | |
4784 | // Supports the UnorderedPointwise(m, {a, b, c}) syntax. |
4785 | template <typename Tuple2Matcher, typename T> |
4786 | inline internal::UnorderedElementsAreArrayMatcher< |
4787 | typename internal::BoundSecondMatcher<Tuple2Matcher, T>> |
4788 | UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
4789 | std::initializer_list<T> rhs) { |
4790 | return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); |
4791 | } |
4792 | |
4793 | // Matches an STL-style container or a native array that contains at |
4794 | // least one element matching the given value or matcher. |
4795 | // |
4796 | // Examples: |
4797 | // ::std::set<int> page_ids; |
4798 | // page_ids.insert(3); |
4799 | // page_ids.insert(1); |
4800 | // EXPECT_THAT(page_ids, Contains(1)); |
4801 | // EXPECT_THAT(page_ids, Contains(Gt(2))); |
4802 | // EXPECT_THAT(page_ids, Not(Contains(4))); // See below for Times(0) |
4803 | // |
4804 | // ::std::map<int, size_t> page_lengths; |
4805 | // page_lengths[1] = 100; |
4806 | // EXPECT_THAT(page_lengths, |
4807 | // Contains(::std::pair<const int, size_t>(1, 100))); |
4808 | // |
4809 | // const char* user_ids[] = { "joe", "mike", "tom" }; |
4810 | // EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); |
4811 | // |
4812 | // The matcher supports a modifier `Times` that allows to check for arbitrary |
4813 | // occurrences including testing for absence with Times(0). |
4814 | // |
4815 | // Examples: |
4816 | // ::std::vector<int> ids; |
4817 | // ids.insert(1); |
4818 | // ids.insert(1); |
4819 | // ids.insert(3); |
4820 | // EXPECT_THAT(ids, Contains(1).Times(2)); // 1 occurs 2 times |
4821 | // EXPECT_THAT(ids, Contains(2).Times(0)); // 2 is not present |
4822 | // EXPECT_THAT(ids, Contains(3).Times(Ge(1))); // 3 occurs at least once |
4823 | |
4824 | template <typename M> |
4825 | inline internal::ContainsMatcher<M> Contains(M matcher) { |
4826 | return internal::ContainsMatcher<M>(matcher); |
4827 | } |
4828 | |
4829 | // IsSupersetOf(iterator_first, iterator_last) |
4830 | // IsSupersetOf(pointer, count) |
4831 | // IsSupersetOf(array) |
4832 | // IsSupersetOf(container) |
4833 | // IsSupersetOf({e1, e2, ..., en}) |
4834 | // |
4835 | // IsSupersetOf() verifies that a surjective partial mapping onto a collection |
4836 | // of matchers exists. In other words, a container matches |
4837 | // IsSupersetOf({e1, ..., en}) if and only if there is a permutation |
4838 | // {y1, ..., yn} of some of the container's elements where y1 matches e1, |
4839 | // ..., and yn matches en. Obviously, the size of the container must be >= n |
4840 | // in order to have a match. Examples: |
4841 | // |
4842 | // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and |
4843 | // 1 matches Ne(0). |
4844 | // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches |
4845 | // both Eq(1) and Lt(2). The reason is that different matchers must be used |
4846 | // for elements in different slots of the container. |
4847 | // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches |
4848 | // Eq(1) and (the second) 1 matches Lt(2). |
4849 | // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first) |
4850 | // Gt(1) and 3 matches (the second) Gt(1). |
4851 | // |
4852 | // The matchers can be specified as an array, a pointer and count, a container, |
4853 | // an initializer list, or an STL iterator range. In each of these cases, the |
4854 | // underlying matchers can be either values or matchers. |
4855 | |
4856 | template <typename Iter> |
4857 | inline internal::UnorderedElementsAreArrayMatcher< |
4858 | typename ::std::iterator_traits<Iter>::value_type> |
4859 | IsSupersetOf(Iter first, Iter last) { |
4860 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
4861 | return internal::UnorderedElementsAreArrayMatcher<T>( |
4862 | internal::UnorderedMatcherRequire::Superset, first, last); |
4863 | } |
4864 | |
4865 | template <typename T> |
4866 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
4867 | const T* pointer, size_t count) { |
4868 | return IsSupersetOf(pointer, pointer + count); |
4869 | } |
4870 | |
4871 | template <typename T, size_t N> |
4872 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
4873 | const T (&array)[N]) { |
4874 | return IsSupersetOf(array, N); |
4875 | } |
4876 | |
4877 | template <typename Container> |
4878 | inline internal::UnorderedElementsAreArrayMatcher< |
4879 | typename Container::value_type> |
4880 | IsSupersetOf(const Container& container) { |
4881 | return IsSupersetOf(container.begin(), container.end()); |
4882 | } |
4883 | |
4884 | template <typename T> |
4885 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
4886 | ::std::initializer_list<T> xs) { |
4887 | return IsSupersetOf(xs.begin(), xs.end()); |
4888 | } |
4889 | |
4890 | // IsSubsetOf(iterator_first, iterator_last) |
4891 | // IsSubsetOf(pointer, count) |
4892 | // IsSubsetOf(array) |
4893 | // IsSubsetOf(container) |
4894 | // IsSubsetOf({e1, e2, ..., en}) |
4895 | // |
4896 | // IsSubsetOf() verifies that an injective mapping onto a collection of matchers |
4897 | // exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and |
4898 | // only if there is a subset of matchers {m1, ..., mk} which would match the |
4899 | // container using UnorderedElementsAre. Obviously, the size of the container |
4900 | // must be <= n in order to have a match. Examples: |
4901 | // |
4902 | // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0). |
4903 | // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1 |
4904 | // matches Lt(0). |
4905 | // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both |
4906 | // match Gt(0). The reason is that different matchers must be used for |
4907 | // elements in different slots of the container. |
4908 | // |
4909 | // The matchers can be specified as an array, a pointer and count, a container, |
4910 | // an initializer list, or an STL iterator range. In each of these cases, the |
4911 | // underlying matchers can be either values or matchers. |
4912 | |
4913 | template <typename Iter> |
4914 | inline internal::UnorderedElementsAreArrayMatcher< |
4915 | typename ::std::iterator_traits<Iter>::value_type> |
4916 | IsSubsetOf(Iter first, Iter last) { |
4917 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
4918 | return internal::UnorderedElementsAreArrayMatcher<T>( |
4919 | internal::UnorderedMatcherRequire::Subset, first, last); |
4920 | } |
4921 | |
4922 | template <typename T> |
4923 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
4924 | const T* pointer, size_t count) { |
4925 | return IsSubsetOf(pointer, pointer + count); |
4926 | } |
4927 | |
4928 | template <typename T, size_t N> |
4929 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
4930 | const T (&array)[N]) { |
4931 | return IsSubsetOf(array, N); |
4932 | } |
4933 | |
4934 | template <typename Container> |
4935 | inline internal::UnorderedElementsAreArrayMatcher< |
4936 | typename Container::value_type> |
4937 | IsSubsetOf(const Container& container) { |
4938 | return IsSubsetOf(container.begin(), container.end()); |
4939 | } |
4940 | |
4941 | template <typename T> |
4942 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
4943 | ::std::initializer_list<T> xs) { |
4944 | return IsSubsetOf(xs.begin(), xs.end()); |
4945 | } |
4946 | |
4947 | // Matches an STL-style container or a native array that contains only |
4948 | // elements matching the given value or matcher. |
4949 | // |
4950 | // Each(m) is semantically equivalent to `Not(Contains(Not(m)))`. Only |
4951 | // the messages are different. |
4952 | // |
4953 | // Examples: |
4954 | // ::std::set<int> page_ids; |
4955 | // // Each(m) matches an empty container, regardless of what m is. |
4956 | // EXPECT_THAT(page_ids, Each(Eq(1))); |
4957 | // EXPECT_THAT(page_ids, Each(Eq(77))); |
4958 | // |
4959 | // page_ids.insert(3); |
4960 | // EXPECT_THAT(page_ids, Each(Gt(0))); |
4961 | // EXPECT_THAT(page_ids, Not(Each(Gt(4)))); |
4962 | // page_ids.insert(1); |
4963 | // EXPECT_THAT(page_ids, Not(Each(Lt(2)))); |
4964 | // |
4965 | // ::std::map<int, size_t> page_lengths; |
4966 | // page_lengths[1] = 100; |
4967 | // page_lengths[2] = 200; |
4968 | // page_lengths[3] = 300; |
4969 | // EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); |
4970 | // EXPECT_THAT(page_lengths, Each(Key(Le(3)))); |
4971 | // |
4972 | // const char* user_ids[] = { "joe", "mike", "tom" }; |
4973 | // EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); |
4974 | template <typename M> |
4975 | inline internal::EachMatcher<M> Each(M matcher) { |
4976 | return internal::EachMatcher<M>(matcher); |
4977 | } |
4978 | |
4979 | // Key(inner_matcher) matches an std::pair whose 'first' field matches |
4980 | // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
4981 | // std::map that contains at least one element whose key is >= 5. |
4982 | template <typename M> |
4983 | inline internal::KeyMatcher<M> Key(M inner_matcher) { |
4984 | return internal::KeyMatcher<M>(inner_matcher); |
4985 | } |
4986 | |
4987 | // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field |
4988 | // matches first_matcher and whose 'second' field matches second_matcher. For |
4989 | // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used |
4990 | // to match a std::map<int, string> that contains exactly one element whose key |
4991 | // is >= 5 and whose value equals "foo". |
4992 | template <typename FirstMatcher, typename SecondMatcher> |
4993 | inline internal::PairMatcher<FirstMatcher, SecondMatcher> Pair( |
4994 | FirstMatcher first_matcher, SecondMatcher second_matcher) { |
4995 | return internal::PairMatcher<FirstMatcher, SecondMatcher>(first_matcher, |
4996 | second_matcher); |
4997 | } |
4998 | |
4999 | namespace no_adl { |
5000 | // Conditional() creates a matcher that conditionally uses either the first or |
5001 | // second matcher provided. For example, we could create an `equal if, and only |
5002 | // if' matcher using the Conditional wrapper as follows: |
5003 | // |
5004 | // EXPECT_THAT(result, Conditional(condition, Eq(expected), Ne(expected))); |
5005 | template <typename MatcherTrue, typename MatcherFalse> |
5006 | internal::ConditionalMatcher<MatcherTrue, MatcherFalse> Conditional( |
5007 | bool condition, MatcherTrue matcher_true, MatcherFalse matcher_false) { |
5008 | return internal::ConditionalMatcher<MatcherTrue, MatcherFalse>( |
5009 | condition, std::move(matcher_true), std::move(matcher_false)); |
5010 | } |
5011 | |
5012 | // FieldsAre(matchers...) matches piecewise the fields of compatible structs. |
5013 | // These include those that support `get<I>(obj)`, and when structured bindings |
5014 | // are enabled any class that supports them. |
5015 | // In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types. |
5016 | template <typename... M> |
5017 | internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre( |
5018 | M&&... matchers) { |
5019 | return internal::FieldsAreMatcher<typename std::decay<M>::type...>( |
5020 | std::forward<M>(matchers)...); |
5021 | } |
5022 | |
5023 | // Creates a matcher that matches a pointer (raw or smart) that matches |
5024 | // inner_matcher. |
5025 | template <typename InnerMatcher> |
5026 | inline internal::PointerMatcher<InnerMatcher> Pointer( |
5027 | const InnerMatcher& inner_matcher) { |
5028 | return internal::PointerMatcher<InnerMatcher>(inner_matcher); |
5029 | } |
5030 | |
5031 | // Creates a matcher that matches an object that has an address that matches |
5032 | // inner_matcher. |
5033 | template <typename InnerMatcher> |
5034 | inline internal::AddressMatcher<InnerMatcher> Address( |
5035 | const InnerMatcher& inner_matcher) { |
5036 | return internal::AddressMatcher<InnerMatcher>(inner_matcher); |
5037 | } |
5038 | |
5039 | // Matches a base64 escaped string, when the unescaped string matches the |
5040 | // internal matcher. |
5041 | template <typename MatcherType> |
5042 | internal::WhenBase64UnescapedMatcher WhenBase64Unescaped( |
5043 | const MatcherType& internal_matcher) { |
5044 | return internal::WhenBase64UnescapedMatcher(internal_matcher); |
5045 | } |
5046 | } // namespace no_adl |
5047 | |
5048 | // Returns a predicate that is satisfied by anything that matches the |
5049 | // given matcher. |
5050 | template <typename M> |
5051 | inline internal::MatcherAsPredicate<M> Matches(M matcher) { |
5052 | return internal::MatcherAsPredicate<M>(matcher); |
5053 | } |
5054 | |
5055 | // Returns true if and only if the value matches the matcher. |
5056 | template <typename T, typename M> |
5057 | inline bool Value(const T& value, M matcher) { |
5058 | return testing::Matches(matcher)(value); |
5059 | } |
5060 | |
5061 | // Matches the value against the given matcher and explains the match |
5062 | // result to listener. |
5063 | template <typename T, typename M> |
5064 | inline bool ExplainMatchResult(M matcher, const T& value, |
5065 | MatchResultListener* listener) { |
5066 | return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); |
5067 | } |
5068 | |
5069 | // Returns a string representation of the given matcher. Useful for description |
5070 | // strings of matchers defined using MATCHER_P* macros that accept matchers as |
5071 | // their arguments. For example: |
5072 | // |
5073 | // MATCHER_P(XAndYThat, matcher, |
5074 | // "X that " + DescribeMatcher<int>(matcher, negation) + |
5075 | // (negation ? " or" : " and") + " Y that " + |
5076 | // DescribeMatcher<double>(matcher, negation)) { |
5077 | // return ExplainMatchResult(matcher, arg.x(), result_listener) && |
5078 | // ExplainMatchResult(matcher, arg.y(), result_listener); |
5079 | // } |
5080 | template <typename T, typename M> |
5081 | std::string DescribeMatcher(const M& matcher, bool negation = false) { |
5082 | ::std::stringstream ss; |
5083 | Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher); |
5084 | if (negation) { |
5085 | monomorphic_matcher.DescribeNegationTo(&ss); |
5086 | } else { |
5087 | monomorphic_matcher.DescribeTo(&ss); |
5088 | } |
5089 | return ss.str(); |
5090 | } |
5091 | |
5092 | template <typename... Args> |
5093 | internal::ElementsAreMatcher< |
5094 | std::tuple<typename std::decay<const Args&>::type...>> |
5095 | ElementsAre(const Args&... matchers) { |
5096 | return internal::ElementsAreMatcher< |
5097 | std::tuple<typename std::decay<const Args&>::type...>>( |
5098 | std::make_tuple(matchers...)); |
5099 | } |
5100 | |
5101 | template <typename... Args> |
5102 | internal::UnorderedElementsAreMatcher< |
5103 | std::tuple<typename std::decay<const Args&>::type...>> |
5104 | UnorderedElementsAre(const Args&... matchers) { |
5105 | return internal::UnorderedElementsAreMatcher< |
5106 | std::tuple<typename std::decay<const Args&>::type...>>( |
5107 | std::make_tuple(matchers...)); |
5108 | } |
5109 | |
5110 | // Define variadic matcher versions. |
5111 | template <typename... Args> |
5112 | internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf( |
5113 | const Args&... matchers) { |
5114 | return internal::AllOfMatcher<typename std::decay<const Args&>::type...>( |
5115 | matchers...); |
5116 | } |
5117 | |
5118 | template <typename... Args> |
5119 | internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf( |
5120 | const Args&... matchers) { |
5121 | return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>( |
5122 | matchers...); |
5123 | } |
5124 | |
5125 | // AnyOfArray(array) |
5126 | // AnyOfArray(pointer, count) |
5127 | // AnyOfArray(container) |
5128 | // AnyOfArray({ e1, e2, ..., en }) |
5129 | // AnyOfArray(iterator_first, iterator_last) |
5130 | // |
5131 | // AnyOfArray() verifies whether a given value matches any member of a |
5132 | // collection of matchers. |
5133 | // |
5134 | // AllOfArray(array) |
5135 | // AllOfArray(pointer, count) |
5136 | // AllOfArray(container) |
5137 | // AllOfArray({ e1, e2, ..., en }) |
5138 | // AllOfArray(iterator_first, iterator_last) |
5139 | // |
5140 | // AllOfArray() verifies whether a given value matches all members of a |
5141 | // collection of matchers. |
5142 | // |
5143 | // The matchers can be specified as an array, a pointer and count, a container, |
5144 | // an initializer list, or an STL iterator range. In each of these cases, the |
5145 | // underlying matchers can be either values or matchers. |
5146 | |
5147 | template <typename Iter> |
5148 | inline internal::AnyOfArrayMatcher< |
5149 | typename ::std::iterator_traits<Iter>::value_type> |
5150 | AnyOfArray(Iter first, Iter last) { |
5151 | return internal::AnyOfArrayMatcher< |
5152 | typename ::std::iterator_traits<Iter>::value_type>(first, last); |
5153 | } |
5154 | |
5155 | template <typename Iter> |
5156 | inline internal::AllOfArrayMatcher< |
5157 | typename ::std::iterator_traits<Iter>::value_type> |
5158 | AllOfArray(Iter first, Iter last) { |
5159 | return internal::AllOfArrayMatcher< |
5160 | typename ::std::iterator_traits<Iter>::value_type>(first, last); |
5161 | } |
5162 | |
5163 | template <typename T> |
5164 | inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) { |
5165 | return AnyOfArray(ptr, ptr + count); |
5166 | } |
5167 | |
5168 | template <typename T> |
5169 | inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) { |
5170 | return AllOfArray(ptr, ptr + count); |
5171 | } |
5172 | |
5173 | template <typename T, size_t N> |
5174 | inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) { |
5175 | return AnyOfArray(array, N); |
5176 | } |
5177 | |
5178 | template <typename T, size_t N> |
5179 | inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) { |
5180 | return AllOfArray(array, N); |
5181 | } |
5182 | |
5183 | template <typename Container> |
5184 | inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray( |
5185 | const Container& container) { |
5186 | return AnyOfArray(container.begin(), container.end()); |
5187 | } |
5188 | |
5189 | template <typename Container> |
5190 | inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray( |
5191 | const Container& container) { |
5192 | return AllOfArray(container.begin(), container.end()); |
5193 | } |
5194 | |
5195 | template <typename T> |
5196 | inline internal::AnyOfArrayMatcher<T> AnyOfArray( |
5197 | ::std::initializer_list<T> xs) { |
5198 | return AnyOfArray(xs.begin(), xs.end()); |
5199 | } |
5200 | |
5201 | template <typename T> |
5202 | inline internal::AllOfArrayMatcher<T> AllOfArray( |
5203 | ::std::initializer_list<T> xs) { |
5204 | return AllOfArray(xs.begin(), xs.end()); |
5205 | } |
5206 | |
5207 | // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected |
5208 | // fields of it matches a_matcher. C++ doesn't support default |
5209 | // arguments for function templates, so we have to overload it. |
5210 | template <size_t... k, typename InnerMatcher> |
5211 | internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args( |
5212 | InnerMatcher&& matcher) { |
5213 | return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>( |
5214 | std::forward<InnerMatcher>(matcher)); |
5215 | } |
5216 | |
5217 | // AllArgs(m) is a synonym of m. This is useful in |
5218 | // |
5219 | // EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); |
5220 | // |
5221 | // which is easier to read than |
5222 | // |
5223 | // EXPECT_CALL(foo, Bar(_, _)).With(Eq()); |
5224 | template <typename InnerMatcher> |
5225 | inline InnerMatcher AllArgs(const InnerMatcher& matcher) { |
5226 | return matcher; |
5227 | } |
5228 | |
5229 | // Returns a matcher that matches the value of an optional<> type variable. |
5230 | // The matcher implementation only uses '!arg' and requires that the optional<> |
5231 | // type has a 'value_type' member type and that '*arg' is of type 'value_type' |
5232 | // and is printable using 'PrintToString'. It is compatible with |
5233 | // std::optional/std::experimental::optional. |
5234 | // Note that to compare an optional type variable against nullopt you should |
5235 | // use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the |
5236 | // optional value contains an optional itself. |
5237 | template <typename ValueMatcher> |
5238 | inline internal::OptionalMatcher<ValueMatcher> Optional( |
5239 | const ValueMatcher& value_matcher) { |
5240 | return internal::OptionalMatcher<ValueMatcher>(value_matcher); |
5241 | } |
5242 | |
5243 | // Returns a matcher that matches the value of a absl::any type variable. |
5244 | template <typename T> |
5245 | PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T>> AnyWith( |
5246 | const Matcher<const T&>& matcher) { |
5247 | return MakePolymorphicMatcher( |
5248 | internal::any_cast_matcher::AnyCastMatcher<T>(matcher)); |
5249 | } |
5250 | |
5251 | // Returns a matcher that matches the value of a variant<> type variable. |
5252 | // The matcher implementation uses ADL to find the holds_alternative and get |
5253 | // functions. |
5254 | // It is compatible with std::variant. |
5255 | template <typename T> |
5256 | PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T>> VariantWith( |
5257 | const Matcher<const T&>& matcher) { |
5258 | return MakePolymorphicMatcher( |
5259 | internal::variant_matcher::VariantMatcher<T>(matcher)); |
5260 | } |
5261 | |
5262 | #if GTEST_HAS_EXCEPTIONS |
5263 | |
5264 | // Anything inside the `internal` namespace is internal to the implementation |
5265 | // and must not be used in user code! |
5266 | namespace internal { |
5267 | |
5268 | class WithWhatMatcherImpl { |
5269 | public: |
5270 | WithWhatMatcherImpl(Matcher<std::string> matcher) |
5271 | : matcher_(std::move(matcher)) {} |
5272 | |
5273 | void DescribeTo(std::ostream* os) const { |
5274 | *os << "contains .what() that " ; |
5275 | matcher_.DescribeTo(os); |
5276 | } |
5277 | |
5278 | void DescribeNegationTo(std::ostream* os) const { |
5279 | *os << "contains .what() that does not " ; |
5280 | matcher_.DescribeTo(os); |
5281 | } |
5282 | |
5283 | template <typename Err> |
5284 | bool MatchAndExplain(const Err& err, MatchResultListener* listener) const { |
5285 | *listener << "which contains .what() (of value = " << err.what() |
5286 | << ") that " ; |
5287 | return matcher_.MatchAndExplain(x: err.what(), listener); |
5288 | } |
5289 | |
5290 | private: |
5291 | const Matcher<std::string> matcher_; |
5292 | }; |
5293 | |
5294 | inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat( |
5295 | Matcher<std::string> m) { |
5296 | return MakePolymorphicMatcher(impl: WithWhatMatcherImpl(std::move(m))); |
5297 | } |
5298 | |
5299 | template <typename Err> |
5300 | class ExceptionMatcherImpl { |
5301 | class NeverThrown { |
5302 | public: |
5303 | const char* what() const noexcept { |
5304 | return "this exception should never be thrown" ; |
5305 | } |
5306 | }; |
5307 | |
5308 | // If the matchee raises an exception of a wrong type, we'd like to |
5309 | // catch it and print its message and type. To do that, we add an additional |
5310 | // catch clause: |
5311 | // |
5312 | // try { ... } |
5313 | // catch (const Err&) { /* an expected exception */ } |
5314 | // catch (const std::exception&) { /* exception of a wrong type */ } |
5315 | // |
5316 | // However, if the `Err` itself is `std::exception`, we'd end up with two |
5317 | // identical `catch` clauses: |
5318 | // |
5319 | // try { ... } |
5320 | // catch (const std::exception&) { /* an expected exception */ } |
5321 | // catch (const std::exception&) { /* exception of a wrong type */ } |
5322 | // |
5323 | // This can cause a warning or an error in some compilers. To resolve |
5324 | // the issue, we use a fake error type whenever `Err` is `std::exception`: |
5325 | // |
5326 | // try { ... } |
5327 | // catch (const std::exception&) { /* an expected exception */ } |
5328 | // catch (const NeverThrown&) { /* exception of a wrong type */ } |
5329 | using DefaultExceptionType = typename std::conditional< |
5330 | std::is_same<typename std::remove_cv< |
5331 | typename std::remove_reference<Err>::type>::type, |
5332 | std::exception>::value, |
5333 | const NeverThrown&, const std::exception&>::type; |
5334 | |
5335 | public: |
5336 | ExceptionMatcherImpl(Matcher<const Err&> matcher) |
5337 | : matcher_(std::move(matcher)) {} |
5338 | |
5339 | void DescribeTo(std::ostream* os) const { |
5340 | *os << "throws an exception which is a " << GetTypeName<Err>(); |
5341 | *os << " which " ; |
5342 | matcher_.DescribeTo(os); |
5343 | } |
5344 | |
5345 | void DescribeNegationTo(std::ostream* os) const { |
5346 | *os << "throws an exception which is not a " << GetTypeName<Err>(); |
5347 | *os << " which " ; |
5348 | matcher_.DescribeNegationTo(os); |
5349 | } |
5350 | |
5351 | template <typename T> |
5352 | bool MatchAndExplain(T&& x, MatchResultListener* listener) const { |
5353 | try { |
5354 | (void)(std::forward<T>(x)()); |
5355 | } catch (const Err& err) { |
5356 | *listener << "throws an exception which is a " << GetTypeName<Err>(); |
5357 | *listener << " " ; |
5358 | return matcher_.MatchAndExplain(err, listener); |
5359 | } catch (DefaultExceptionType err) { |
5360 | #if GTEST_HAS_RTTI |
5361 | *listener << "throws an exception of type " << GetTypeName(type: typeid(err)); |
5362 | *listener << " " ; |
5363 | #else |
5364 | *listener << "throws an std::exception-derived type " ; |
5365 | #endif |
5366 | *listener << "with description \"" << err.what() << "\"" ; |
5367 | return false; |
5368 | } catch (...) { |
5369 | *listener << "throws an exception of an unknown type" ; |
5370 | return false; |
5371 | } |
5372 | |
5373 | *listener << "does not throw any exception" ; |
5374 | return false; |
5375 | } |
5376 | |
5377 | private: |
5378 | const Matcher<const Err&> matcher_; |
5379 | }; |
5380 | |
5381 | } // namespace internal |
5382 | |
5383 | // Throws() |
5384 | // Throws(exceptionMatcher) |
5385 | // ThrowsMessage(messageMatcher) |
5386 | // |
5387 | // This matcher accepts a callable and verifies that when invoked, it throws |
5388 | // an exception with the given type and properties. |
5389 | // |
5390 | // Examples: |
5391 | // |
5392 | // EXPECT_THAT( |
5393 | // []() { throw std::runtime_error("message"); }, |
5394 | // Throws<std::runtime_error>()); |
5395 | // |
5396 | // EXPECT_THAT( |
5397 | // []() { throw std::runtime_error("message"); }, |
5398 | // ThrowsMessage<std::runtime_error>(HasSubstr("message"))); |
5399 | // |
5400 | // EXPECT_THAT( |
5401 | // []() { throw std::runtime_error("message"); }, |
5402 | // Throws<std::runtime_error>( |
5403 | // Property(&std::runtime_error::what, HasSubstr("message")))); |
5404 | |
5405 | template <typename Err> |
5406 | PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() { |
5407 | return MakePolymorphicMatcher( |
5408 | internal::ExceptionMatcherImpl<Err>(A<const Err&>())); |
5409 | } |
5410 | |
5411 | template <typename Err, typename ExceptionMatcher> |
5412 | PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws( |
5413 | const ExceptionMatcher& exception_matcher) { |
5414 | // Using matcher cast allows users to pass a matcher of a more broad type. |
5415 | // For example user may want to pass Matcher<std::exception> |
5416 | // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>. |
5417 | return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>( |
5418 | SafeMatcherCast<const Err&>(exception_matcher))); |
5419 | } |
5420 | |
5421 | template <typename Err, typename MessageMatcher> |
5422 | PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage( |
5423 | MessageMatcher&& message_matcher) { |
5424 | static_assert(std::is_base_of<std::exception, Err>::value, |
5425 | "expected an std::exception-derived type" ); |
5426 | return Throws<Err>(internal::WithWhat( |
5427 | m: MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher)))); |
5428 | } |
5429 | |
5430 | #endif // GTEST_HAS_EXCEPTIONS |
5431 | |
5432 | // These macros allow using matchers to check values in Google Test |
5433 | // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) |
5434 | // succeed if and only if the value matches the matcher. If the assertion |
5435 | // fails, the value and the description of the matcher will be printed. |
5436 | #define ASSERT_THAT(value, matcher) \ |
5437 | ASSERT_PRED_FORMAT1( \ |
5438 | ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
5439 | #define EXPECT_THAT(value, matcher) \ |
5440 | EXPECT_PRED_FORMAT1( \ |
5441 | ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
5442 | |
5443 | // MATCHER* macros itself are listed below. |
5444 | #define MATCHER(name, description) \ |
5445 | class name##Matcher \ |
5446 | : public ::testing::internal::MatcherBaseImpl<name##Matcher> { \ |
5447 | public: \ |
5448 | template <typename arg_type> \ |
5449 | class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ |
5450 | public: \ |
5451 | gmock_Impl() {} \ |
5452 | bool MatchAndExplain( \ |
5453 | const arg_type& arg, \ |
5454 | ::testing::MatchResultListener* result_listener) const override; \ |
5455 | void DescribeTo(::std::ostream* gmock_os) const override { \ |
5456 | *gmock_os << FormatDescription(false); \ |
5457 | } \ |
5458 | void DescribeNegationTo(::std::ostream* gmock_os) const override { \ |
5459 | *gmock_os << FormatDescription(true); \ |
5460 | } \ |
5461 | \ |
5462 | private: \ |
5463 | ::std::string FormatDescription(bool negation) const { \ |
5464 | /* NOLINTNEXTLINE readability-redundant-string-init */ \ |
5465 | ::std::string gmock_description = (description); \ |
5466 | if (!gmock_description.empty()) { \ |
5467 | return gmock_description; \ |
5468 | } \ |
5469 | return ::testing::internal::FormatMatcherDescription(negation, #name, \ |
5470 | {}, {}); \ |
5471 | } \ |
5472 | }; \ |
5473 | }; \ |
5474 | inline name##Matcher GMOCK_INTERNAL_WARNING_PUSH() \ |
5475 | GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-function") \ |
5476 | GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-member-function") \ |
5477 | name \ |
5478 | GMOCK_INTERNAL_WARNING_POP()() { \ |
5479 | return {}; \ |
5480 | } \ |
5481 | template <typename arg_type> \ |
5482 | bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \ |
5483 | const arg_type& arg, \ |
5484 | ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \ |
5485 | const |
5486 | |
5487 | #define MATCHER_P(name, p0, description) \ |
5488 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (#p0), (p0)) |
5489 | #define MATCHER_P2(name, p0, p1, description) \ |
5490 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (#p0, #p1), \ |
5491 | (p0, p1)) |
5492 | #define MATCHER_P3(name, p0, p1, p2, description) \ |
5493 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (#p0, #p1, #p2), \ |
5494 | (p0, p1, p2)) |
5495 | #define MATCHER_P4(name, p0, p1, p2, p3, description) \ |
5496 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, \ |
5497 | (#p0, #p1, #p2, #p3), (p0, p1, p2, p3)) |
5498 | #define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \ |
5499 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \ |
5500 | (#p0, #p1, #p2, #p3, #p4), (p0, p1, p2, p3, p4)) |
5501 | #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \ |
5502 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \ |
5503 | (#p0, #p1, #p2, #p3, #p4, #p5), \ |
5504 | (p0, p1, p2, p3, p4, p5)) |
5505 | #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \ |
5506 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \ |
5507 | (#p0, #p1, #p2, #p3, #p4, #p5, #p6), \ |
5508 | (p0, p1, p2, p3, p4, p5, p6)) |
5509 | #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \ |
5510 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \ |
5511 | (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7), \ |
5512 | (p0, p1, p2, p3, p4, p5, p6, p7)) |
5513 | #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \ |
5514 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \ |
5515 | (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8), \ |
5516 | (p0, p1, p2, p3, p4, p5, p6, p7, p8)) |
5517 | #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \ |
5518 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \ |
5519 | (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8, #p9), \ |
5520 | (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) |
5521 | |
5522 | #define GMOCK_INTERNAL_MATCHER(name, full_name, description, arg_names, args) \ |
5523 | template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
5524 | class full_name : public ::testing::internal::MatcherBaseImpl< \ |
5525 | full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \ |
5526 | public: \ |
5527 | using full_name::MatcherBaseImpl::MatcherBaseImpl; \ |
5528 | template <typename arg_type> \ |
5529 | class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ |
5530 | public: \ |
5531 | explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \ |
5532 | : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \ |
5533 | bool MatchAndExplain( \ |
5534 | const arg_type& arg, \ |
5535 | ::testing::MatchResultListener* result_listener) const override; \ |
5536 | void DescribeTo(::std::ostream* gmock_os) const override { \ |
5537 | *gmock_os << FormatDescription(false); \ |
5538 | } \ |
5539 | void DescribeNegationTo(::std::ostream* gmock_os) const override { \ |
5540 | *gmock_os << FormatDescription(true); \ |
5541 | } \ |
5542 | GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ |
5543 | \ |
5544 | private: \ |
5545 | ::std::string FormatDescription(bool negation) const { \ |
5546 | ::std::string gmock_description = (description); \ |
5547 | if (!gmock_description.empty()) { \ |
5548 | return gmock_description; \ |
5549 | } \ |
5550 | return ::testing::internal::FormatMatcherDescription( \ |
5551 | negation, #name, {GMOCK_PP_REMOVE_PARENS(arg_names)}, \ |
5552 | ::testing::internal::UniversalTersePrintTupleFieldsToStrings( \ |
5553 | ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ |
5554 | GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \ |
5555 | } \ |
5556 | }; \ |
5557 | }; \ |
5558 | template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
5559 | inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \ |
5560 | GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \ |
5561 | return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ |
5562 | GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \ |
5563 | } \ |
5564 | template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
5565 | template <typename arg_type> \ |
5566 | bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl< \ |
5567 | arg_type>::MatchAndExplain(const arg_type& arg, \ |
5568 | ::testing::MatchResultListener* \ |
5569 | result_listener GTEST_ATTRIBUTE_UNUSED_) \ |
5570 | const |
5571 | |
5572 | #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \ |
5573 | GMOCK_PP_TAIL( \ |
5574 | GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args)) |
5575 | #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \ |
5576 | , typename arg##_type |
5577 | |
5578 | #define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \ |
5579 | GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args)) |
5580 | #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \ |
5581 | , arg##_type |
5582 | |
5583 | #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \ |
5584 | GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \ |
5585 | GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args)) |
5586 | #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \ |
5587 | , arg##_type gmock_p##i |
5588 | |
5589 | #define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \ |
5590 | GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args)) |
5591 | #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \ |
5592 | , arg(::std::forward<arg##_type>(gmock_p##i)) |
5593 | |
5594 | #define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ |
5595 | GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args) |
5596 | #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \ |
5597 | const arg##_type arg; |
5598 | |
5599 | #define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \ |
5600 | GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args)) |
5601 | #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg |
5602 | |
5603 | #define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \ |
5604 | GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args)) |
5605 | #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \ |
5606 | , gmock_p##i |
5607 | |
5608 | // To prevent ADL on certain functions we put them on a separate namespace. |
5609 | using namespace no_adl; // NOLINT |
5610 | |
5611 | } // namespace testing |
5612 | |
5613 | GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046 |
5614 | |
5615 | // Include any custom callback matchers added by the local installation. |
5616 | // We must include this header at the end to make sure it can use the |
5617 | // declarations from this file. |
5618 | #include "gmock/internal/custom/gmock-matchers.h" |
5619 | |
5620 | #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
5621 | |