1 | // Protocol Buffers - Google's data interchange format |
2 | // Copyright 2008 Google Inc. All rights reserved. |
3 | // https://developers.google.com/protocol-buffers/ |
4 | // |
5 | // Redistribution and use in source and binary forms, with or without |
6 | // modification, are permitted provided that the following conditions are |
7 | // met: |
8 | // |
9 | // * Redistributions of source code must retain the above copyright |
10 | // notice, this list of conditions and the following disclaimer. |
11 | // * Redistributions in binary form must reproduce the above |
12 | // copyright notice, this list of conditions and the following disclaimer |
13 | // in the documentation and/or other materials provided with the |
14 | // distribution. |
15 | // * Neither the name of Google Inc. nor the names of its |
16 | // contributors may be used to endorse or promote products derived from |
17 | // this software without specific prior written permission. |
18 | // |
19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
30 | |
31 | // Author: kenton@google.com (Kenton Varda) |
32 | // Based on original Protocol Buffers design by |
33 | // Sanjay Ghemawat, Jeff Dean, and others. |
34 | // |
35 | // Defines Message, the abstract interface implemented by non-lite |
36 | // protocol message objects. Although it's possible to implement this |
37 | // interface manually, most users will use the protocol compiler to |
38 | // generate implementations. |
39 | // |
40 | // Example usage: |
41 | // |
42 | // Say you have a message defined as: |
43 | // |
44 | // message Foo { |
45 | // optional string text = 1; |
46 | // repeated int32 numbers = 2; |
47 | // } |
48 | // |
49 | // Then, if you used the protocol compiler to generate a class from the above |
50 | // definition, you could use it like so: |
51 | // |
52 | // std::string data; // Will store a serialized version of the message. |
53 | // |
54 | // { |
55 | // // Create a message and serialize it. |
56 | // Foo foo; |
57 | // foo.set_text("Hello World!"); |
58 | // foo.add_numbers(1); |
59 | // foo.add_numbers(5); |
60 | // foo.add_numbers(42); |
61 | // |
62 | // foo.SerializeToString(&data); |
63 | // } |
64 | // |
65 | // { |
66 | // // Parse the serialized message and check that it contains the |
67 | // // correct data. |
68 | // Foo foo; |
69 | // foo.ParseFromString(data); |
70 | // |
71 | // assert(foo.text() == "Hello World!"); |
72 | // assert(foo.numbers_size() == 3); |
73 | // assert(foo.numbers(0) == 1); |
74 | // assert(foo.numbers(1) == 5); |
75 | // assert(foo.numbers(2) == 42); |
76 | // } |
77 | // |
78 | // { |
79 | // // Same as the last block, but do it dynamically via the Message |
80 | // // reflection interface. |
81 | // Message* foo = new Foo; |
82 | // const Descriptor* descriptor = foo->GetDescriptor(); |
83 | // |
84 | // // Get the descriptors for the fields we're interested in and verify |
85 | // // their types. |
86 | // const FieldDescriptor* text_field = descriptor->FindFieldByName("text"); |
87 | // assert(text_field != nullptr); |
88 | // assert(text_field->type() == FieldDescriptor::TYPE_STRING); |
89 | // assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL); |
90 | // const FieldDescriptor* numbers_field = descriptor-> |
91 | // FindFieldByName("numbers"); |
92 | // assert(numbers_field != nullptr); |
93 | // assert(numbers_field->type() == FieldDescriptor::TYPE_INT32); |
94 | // assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED); |
95 | // |
96 | // // Parse the message. |
97 | // foo->ParseFromString(data); |
98 | // |
99 | // // Use the reflection interface to examine the contents. |
100 | // const Reflection* reflection = foo->GetReflection(); |
101 | // assert(reflection->GetString(*foo, text_field) == "Hello World!"); |
102 | // assert(reflection->FieldSize(*foo, numbers_field) == 3); |
103 | // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1); |
104 | // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5); |
105 | // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42); |
106 | // |
107 | // delete foo; |
108 | // } |
109 | |
110 | #ifndef GOOGLE_PROTOBUF_MESSAGE_H__ |
111 | #define GOOGLE_PROTOBUF_MESSAGE_H__ |
112 | |
113 | |
114 | #include <iosfwd> |
115 | #include <string> |
116 | #include <type_traits> |
117 | #include <vector> |
118 | |
119 | #include <google/protobuf/stubs/casts.h> |
120 | #include <google/protobuf/stubs/common.h> |
121 | #include <google/protobuf/arena.h> |
122 | #include <google/protobuf/port.h> |
123 | #include <google/protobuf/descriptor.h> |
124 | #include <google/protobuf/generated_message_reflection.h> |
125 | #include <google/protobuf/generated_message_util.h> |
126 | #include <google/protobuf/map.h> // TODO(b/211442718): cleanup |
127 | #include <google/protobuf/message_lite.h> |
128 | |
129 | |
130 | // Must be included last. |
131 | #include <google/protobuf/port_def.inc> |
132 | |
133 | #ifdef SWIG |
134 | #error "You cannot SWIG proto headers" |
135 | #endif |
136 | |
137 | namespace google { |
138 | namespace protobuf { |
139 | |
140 | // Defined in this file. |
141 | class Message; |
142 | class Reflection; |
143 | class MessageFactory; |
144 | |
145 | // Defined in other files. |
146 | class AssignDescriptorsHelper; |
147 | class DynamicMessageFactory; |
148 | class GeneratedMessageReflectionTestHelper; |
149 | class MapKey; |
150 | class MapValueConstRef; |
151 | class MapValueRef; |
152 | class MapIterator; |
153 | class MapReflectionTester; |
154 | |
155 | namespace internal { |
156 | struct DescriptorTable; |
157 | class MapFieldBase; |
158 | class SwapFieldHelper; |
159 | class CachedSize; |
160 | } // namespace internal |
161 | class UnknownFieldSet; // unknown_field_set.h |
162 | namespace io { |
163 | class ZeroCopyInputStream; // zero_copy_stream.h |
164 | class ZeroCopyOutputStream; // zero_copy_stream.h |
165 | class CodedInputStream; // coded_stream.h |
166 | class CodedOutputStream; // coded_stream.h |
167 | } // namespace io |
168 | namespace python { |
169 | class MapReflectionFriend; // scalar_map_container.h |
170 | class MessageReflectionFriend; |
171 | } // namespace python |
172 | namespace expr { |
173 | class CelMapReflectionFriend; // field_backed_map_impl.cc |
174 | } |
175 | |
176 | namespace internal { |
177 | class MapFieldPrinterHelper; // text_format.cc |
178 | } |
179 | namespace util { |
180 | class MessageDifferencer; |
181 | } |
182 | |
183 | |
184 | namespace internal { |
185 | class ReflectionAccessor; // message.cc |
186 | class ReflectionOps; // reflection_ops.h |
187 | class MapKeySorter; // wire_format.cc |
188 | class WireFormat; // wire_format.h |
189 | class MapFieldReflectionTest; // map_test.cc |
190 | } // namespace internal |
191 | |
192 | template <typename T> |
193 | class RepeatedField; // repeated_field.h |
194 | |
195 | template <typename T> |
196 | class RepeatedPtrField; // repeated_field.h |
197 | |
198 | // A container to hold message metadata. |
199 | struct Metadata { |
200 | const Descriptor* descriptor; |
201 | const Reflection* reflection; |
202 | }; |
203 | |
204 | namespace internal { |
205 | template <class To> |
206 | inline To* GetPointerAtOffset(Message* message, uint32_t offset) { |
207 | return reinterpret_cast<To*>(reinterpret_cast<char*>(message) + offset); |
208 | } |
209 | |
210 | template <class To> |
211 | const To* GetConstPointerAtOffset(const Message* message, uint32_t offset) { |
212 | return reinterpret_cast<const To*>(reinterpret_cast<const char*>(message) + |
213 | offset); |
214 | } |
215 | |
216 | template <class To> |
217 | const To& GetConstRefAtOffset(const Message& message, uint32_t offset) { |
218 | return *GetConstPointerAtOffset<To>(&message, offset); |
219 | } |
220 | |
221 | bool CreateUnknownEnumValues(const FieldDescriptor* field); |
222 | |
223 | // Returns true if "message" is a descendant of "root". |
224 | PROTOBUF_EXPORT bool IsDescendant(Message& root, const Message& message); |
225 | } // namespace internal |
226 | |
227 | // Abstract interface for protocol messages. |
228 | // |
229 | // See also MessageLite, which contains most every-day operations. Message |
230 | // adds descriptors and reflection on top of that. |
231 | // |
232 | // The methods of this class that are virtual but not pure-virtual have |
233 | // default implementations based on reflection. Message classes which are |
234 | // optimized for speed will want to override these with faster implementations, |
235 | // but classes optimized for code size may be happy with keeping them. See |
236 | // the optimize_for option in descriptor.proto. |
237 | // |
238 | // Users must not derive from this class. Only the protocol compiler and |
239 | // the internal library are allowed to create subclasses. |
240 | class PROTOBUF_EXPORT Message : public MessageLite { |
241 | public: |
242 | constexpr Message() {} |
243 | |
244 | // Basic Operations ------------------------------------------------ |
245 | |
246 | // Construct a new instance of the same type. Ownership is passed to the |
247 | // caller. (This is also defined in MessageLite, but is defined again here |
248 | // for return-type covariance.) |
249 | Message* New() const { return New(arena: nullptr); } |
250 | |
251 | // Construct a new instance on the arena. Ownership is passed to the caller |
252 | // if arena is a nullptr. |
253 | Message* New(Arena* arena) const override = 0; |
254 | |
255 | // Make this message into a copy of the given message. The given message |
256 | // must have the same descriptor, but need not necessarily be the same class. |
257 | // By default this is just implemented as "Clear(); MergeFrom(from);". |
258 | void CopyFrom(const Message& from); |
259 | |
260 | // Merge the fields from the given message into this message. Singular |
261 | // fields will be overwritten, if specified in from, except for embedded |
262 | // messages which will be merged. Repeated fields will be concatenated. |
263 | // The given message must be of the same type as this message (i.e. the |
264 | // exact same class). |
265 | virtual void MergeFrom(const Message& from); |
266 | |
267 | // Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with |
268 | // a nice error message. |
269 | void CheckInitialized() const; |
270 | |
271 | // Slowly build a list of all required fields that are not set. |
272 | // This is much, much slower than IsInitialized() as it is implemented |
273 | // purely via reflection. Generally, you should not call this unless you |
274 | // have already determined that an error exists by calling IsInitialized(). |
275 | void FindInitializationErrors(std::vector<std::string>* errors) const; |
276 | |
277 | // Like FindInitializationErrors, but joins all the strings, delimited by |
278 | // commas, and returns them. |
279 | std::string InitializationErrorString() const override; |
280 | |
281 | // Clears all unknown fields from this message and all embedded messages. |
282 | // Normally, if unknown tag numbers are encountered when parsing a message, |
283 | // the tag and value are stored in the message's UnknownFieldSet and |
284 | // then written back out when the message is serialized. This allows servers |
285 | // which simply route messages to other servers to pass through messages |
286 | // that have new field definitions which they don't yet know about. However, |
287 | // this behavior can have security implications. To avoid it, call this |
288 | // method after parsing. |
289 | // |
290 | // See Reflection::GetUnknownFields() for more on unknown fields. |
291 | void DiscardUnknownFields(); |
292 | |
293 | // Computes (an estimate of) the total number of bytes currently used for |
294 | // storing the message in memory. The default implementation calls the |
295 | // Reflection object's SpaceUsed() method. |
296 | // |
297 | // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented |
298 | // using reflection (rather than the generated code implementation for |
299 | // ByteSize()). Like ByteSize(), its CPU time is linear in the number of |
300 | // fields defined for the proto. |
301 | virtual size_t SpaceUsedLong() const; |
302 | |
303 | PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead" ) |
304 | int SpaceUsed() const { return internal::ToIntSize(size: SpaceUsedLong()); } |
305 | |
306 | // Debugging & Testing---------------------------------------------- |
307 | |
308 | // Generates a human-readable form of this message for debugging purposes. |
309 | // Note that the format and content of a debug string is not guaranteed, may |
310 | // change without notice, and should not be depended on. Code that does |
311 | // anything except display a string to assist in debugging should use |
312 | // TextFormat instead. |
313 | std::string DebugString() const; |
314 | // Like DebugString(), but with less whitespace. |
315 | std::string ShortDebugString() const; |
316 | // Like DebugString(), but do not escape UTF-8 byte sequences. |
317 | std::string Utf8DebugString() const; |
318 | // Convenience function useful in GDB. Prints DebugString() to stdout. |
319 | void PrintDebugString() const; |
320 | |
321 | // Reflection-based methods ---------------------------------------- |
322 | // These methods are pure-virtual in MessageLite, but Message provides |
323 | // reflection-based default implementations. |
324 | |
325 | std::string GetTypeName() const override; |
326 | void Clear() override; |
327 | |
328 | // Returns whether all required fields have been set. Note that required |
329 | // fields no longer exist starting in proto3. |
330 | bool IsInitialized() const override; |
331 | |
332 | void CheckTypeAndMergeFrom(const MessageLite& other) override; |
333 | // Reflective parser |
334 | const char* _InternalParse(const char* ptr, |
335 | internal::ParseContext* ctx) override; |
336 | size_t ByteSizeLong() const override; |
337 | uint8_t* _InternalSerialize(uint8_t* target, |
338 | io::EpsCopyOutputStream* stream) const override; |
339 | |
340 | private: |
341 | // This is called only by the default implementation of ByteSize(), to |
342 | // update the cached size. If you override ByteSize(), you do not need |
343 | // to override this. If you do not override ByteSize(), you MUST override |
344 | // this; the default implementation will crash. |
345 | // |
346 | // The method is private because subclasses should never call it; only |
347 | // override it. Yes, C++ lets you do that. Crazy, huh? |
348 | virtual void SetCachedSize(int size) const; |
349 | |
350 | public: |
351 | // Introspection --------------------------------------------------- |
352 | |
353 | |
354 | // Get a non-owning pointer to a Descriptor for this message's type. This |
355 | // describes what fields the message contains, the types of those fields, etc. |
356 | // This object remains property of the Message. |
357 | const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; } |
358 | |
359 | // Get a non-owning pointer to the Reflection interface for this Message, |
360 | // which can be used to read and modify the fields of the Message dynamically |
361 | // (in other words, without knowing the message type at compile time). This |
362 | // object remains property of the Message. |
363 | const Reflection* GetReflection() const { return GetMetadata().reflection; } |
364 | |
365 | protected: |
366 | // Get a struct containing the metadata for the Message, which is used in turn |
367 | // to implement GetDescriptor() and GetReflection() above. |
368 | virtual Metadata GetMetadata() const = 0; |
369 | |
370 | struct ClassData { |
371 | // Note: The order of arguments (to, then from) is chosen so that the ABI |
372 | // of this function is the same as the CopyFrom method. That is, the |
373 | // hidden "this" parameter comes first. |
374 | void (*copy_to_from)(Message& to, const Message& from_msg); |
375 | void (*merge_to_from)(Message& to, const Message& from_msg); |
376 | }; |
377 | // GetClassData() returns a pointer to a ClassData struct which |
378 | // exists in global memory and is unique to each subclass. This uniqueness |
379 | // property is used in order to quickly determine whether two messages are |
380 | // of the same type. |
381 | // TODO(jorg): change to pure virtual |
382 | virtual const ClassData* GetClassData() const { return nullptr; } |
383 | |
384 | // CopyWithSourceCheck calls Clear() and then MergeFrom(), and in debug |
385 | // builds, checks that calling Clear() on the destination message doesn't |
386 | // alter the source. It assumes the messages are known to be of the same |
387 | // type, and thus uses GetClassData(). |
388 | static void CopyWithSourceCheck(Message& to, const Message& from); |
389 | |
390 | // Fail if "from" is a descendant of "to" as such copy is not allowed. |
391 | static void FailIfCopyFromDescendant(Message& to, const Message& from); |
392 | |
393 | inline explicit Message(Arena* arena, bool is_message_owned = false) |
394 | : MessageLite(arena, is_message_owned) {} |
395 | size_t ComputeUnknownFieldsSize(size_t total_size, |
396 | internal::CachedSize* cached_size) const; |
397 | size_t MaybeComputeUnknownFieldsSize(size_t total_size, |
398 | internal::CachedSize* cached_size) const; |
399 | |
400 | |
401 | protected: |
402 | static uint64_t GetInvariantPerBuild(uint64_t salt); |
403 | |
404 | private: |
405 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message); |
406 | }; |
407 | |
408 | namespace internal { |
409 | // Forward-declare interfaces used to implement RepeatedFieldRef. |
410 | // These are protobuf internals that users shouldn't care about. |
411 | class RepeatedFieldAccessor; |
412 | } // namespace internal |
413 | |
414 | // Forward-declare RepeatedFieldRef templates. The second type parameter is |
415 | // used for SFINAE tricks. Users should ignore it. |
416 | template <typename T, typename Enable = void> |
417 | class RepeatedFieldRef; |
418 | |
419 | template <typename T, typename Enable = void> |
420 | class MutableRepeatedFieldRef; |
421 | |
422 | // This interface contains methods that can be used to dynamically access |
423 | // and modify the fields of a protocol message. Their semantics are |
424 | // similar to the accessors the protocol compiler generates. |
425 | // |
426 | // To get the Reflection for a given Message, call Message::GetReflection(). |
427 | // |
428 | // This interface is separate from Message only for efficiency reasons; |
429 | // the vast majority of implementations of Message will share the same |
430 | // implementation of Reflection (GeneratedMessageReflection, |
431 | // defined in generated_message.h), and all Messages of a particular class |
432 | // should share the same Reflection object (though you should not rely on |
433 | // the latter fact). |
434 | // |
435 | // There are several ways that these methods can be used incorrectly. For |
436 | // example, any of the following conditions will lead to undefined |
437 | // results (probably assertion failures): |
438 | // - The FieldDescriptor is not a field of this message type. |
439 | // - The method called is not appropriate for the field's type. For |
440 | // each field type in FieldDescriptor::TYPE_*, there is only one |
441 | // Get*() method, one Set*() method, and one Add*() method that is |
442 | // valid for that type. It should be obvious which (except maybe |
443 | // for TYPE_BYTES, which are represented using strings in C++). |
444 | // - A Get*() or Set*() method for singular fields is called on a repeated |
445 | // field. |
446 | // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated |
447 | // field. |
448 | // - The Message object passed to any method is not of the right type for |
449 | // this Reflection object (i.e. message.GetReflection() != reflection). |
450 | // |
451 | // You might wonder why there is not any abstract representation for a field |
452 | // of arbitrary type. E.g., why isn't there just a "GetField()" method that |
453 | // returns "const Field&", where "Field" is some class with accessors like |
454 | // "GetInt32Value()". The problem is that someone would have to deal with |
455 | // allocating these Field objects. For generated message classes, having to |
456 | // allocate space for an additional object to wrap every field would at least |
457 | // double the message's memory footprint, probably worse. Allocating the |
458 | // objects on-demand, on the other hand, would be expensive and prone to |
459 | // memory leaks. So, instead we ended up with this flat interface. |
460 | class PROTOBUF_EXPORT Reflection final { |
461 | public: |
462 | // Get the UnknownFieldSet for the message. This contains fields which |
463 | // were seen when the Message was parsed but were not recognized according |
464 | // to the Message's definition. |
465 | const UnknownFieldSet& GetUnknownFields(const Message& message) const; |
466 | // Get a mutable pointer to the UnknownFieldSet for the message. This |
467 | // contains fields which were seen when the Message was parsed but were not |
468 | // recognized according to the Message's definition. |
469 | UnknownFieldSet* MutableUnknownFields(Message* message) const; |
470 | |
471 | // Estimate the amount of memory used by the message object. |
472 | size_t SpaceUsedLong(const Message& message) const; |
473 | |
474 | PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead" ) |
475 | int SpaceUsed(const Message& message) const { |
476 | return internal::ToIntSize(size: SpaceUsedLong(message)); |
477 | } |
478 | |
479 | // Check if the given non-repeated field is set. |
480 | bool HasField(const Message& message, const FieldDescriptor* field) const; |
481 | |
482 | // Get the number of elements of a repeated field. |
483 | int FieldSize(const Message& message, const FieldDescriptor* field) const; |
484 | |
485 | // Clear the value of a field, so that HasField() returns false or |
486 | // FieldSize() returns zero. |
487 | void ClearField(Message* message, const FieldDescriptor* field) const; |
488 | |
489 | // Check if the oneof is set. Returns true if any field in oneof |
490 | // is set, false otherwise. |
491 | bool HasOneof(const Message& message, |
492 | const OneofDescriptor* oneof_descriptor) const; |
493 | |
494 | void ClearOneof(Message* message, |
495 | const OneofDescriptor* oneof_descriptor) const; |
496 | |
497 | // Returns the field descriptor if the oneof is set. nullptr otherwise. |
498 | const FieldDescriptor* GetOneofFieldDescriptor( |
499 | const Message& message, const OneofDescriptor* oneof_descriptor) const; |
500 | |
501 | // Removes the last element of a repeated field. |
502 | // We don't provide a way to remove any element other than the last |
503 | // because it invites inefficient use, such as O(n^2) filtering loops |
504 | // that should have been O(n). If you want to remove an element other |
505 | // than the last, the best way to do it is to re-arrange the elements |
506 | // (using Swap()) so that the one you want removed is at the end, then |
507 | // call RemoveLast(). |
508 | void RemoveLast(Message* message, const FieldDescriptor* field) const; |
509 | // Removes the last element of a repeated message field, and returns the |
510 | // pointer to the caller. Caller takes ownership of the returned pointer. |
511 | PROTOBUF_NODISCARD Message* ReleaseLast(Message* message, |
512 | const FieldDescriptor* field) const; |
513 | |
514 | // Similar to ReleaseLast() without internal safety and ownershp checks. This |
515 | // method should only be used when the objects are on the same arena or paired |
516 | // with a call to `UnsafeArenaAddAllocatedMessage`. |
517 | Message* UnsafeArenaReleaseLast(Message* message, |
518 | const FieldDescriptor* field) const; |
519 | |
520 | // Swap the complete contents of two messages. |
521 | void Swap(Message* message1, Message* message2) const; |
522 | |
523 | // Swap fields listed in fields vector of two messages. |
524 | void SwapFields(Message* message1, Message* message2, |
525 | const std::vector<const FieldDescriptor*>& fields) const; |
526 | |
527 | // Swap two elements of a repeated field. |
528 | void SwapElements(Message* message, const FieldDescriptor* field, int index1, |
529 | int index2) const; |
530 | |
531 | // Swap without internal safety and ownership checks. This method should only |
532 | // be used when the objects are on the same arena. |
533 | void UnsafeArenaSwap(Message* lhs, Message* rhs) const; |
534 | |
535 | // SwapFields without internal safety and ownership checks. This method should |
536 | // only be used when the objects are on the same arena. |
537 | void UnsafeArenaSwapFields( |
538 | Message* lhs, Message* rhs, |
539 | const std::vector<const FieldDescriptor*>& fields) const; |
540 | |
541 | // List all fields of the message which are currently set, except for unknown |
542 | // fields, but including extension known to the parser (i.e. compiled in). |
543 | // Singular fields will only be listed if HasField(field) would return true |
544 | // and repeated fields will only be listed if FieldSize(field) would return |
545 | // non-zero. Fields (both normal fields and extension fields) will be listed |
546 | // ordered by field number. |
547 | // Use Reflection::GetUnknownFields() or message.unknown_fields() to also get |
548 | // access to fields/extensions unknown to the parser. |
549 | void ListFields(const Message& message, |
550 | std::vector<const FieldDescriptor*>* output) const; |
551 | |
552 | // Singular field getters ------------------------------------------ |
553 | // These get the value of a non-repeated field. They return the default |
554 | // value for fields that aren't set. |
555 | |
556 | int32_t GetInt32(const Message& message, const FieldDescriptor* field) const; |
557 | int64_t GetInt64(const Message& message, const FieldDescriptor* field) const; |
558 | uint32_t GetUInt32(const Message& message, |
559 | const FieldDescriptor* field) const; |
560 | uint64_t GetUInt64(const Message& message, |
561 | const FieldDescriptor* field) const; |
562 | float GetFloat(const Message& message, const FieldDescriptor* field) const; |
563 | double GetDouble(const Message& message, const FieldDescriptor* field) const; |
564 | bool GetBool(const Message& message, const FieldDescriptor* field) const; |
565 | std::string GetString(const Message& message, |
566 | const FieldDescriptor* field) const; |
567 | const EnumValueDescriptor* GetEnum(const Message& message, |
568 | const FieldDescriptor* field) const; |
569 | |
570 | // GetEnumValue() returns an enum field's value as an integer rather than |
571 | // an EnumValueDescriptor*. If the integer value does not correspond to a |
572 | // known value descriptor, a new value descriptor is created. (Such a value |
573 | // will only be present when the new unknown-enum-value semantics are enabled |
574 | // for a message.) |
575 | int GetEnumValue(const Message& message, const FieldDescriptor* field) const; |
576 | |
577 | // See MutableMessage() for the meaning of the "factory" parameter. |
578 | const Message& GetMessage(const Message& message, |
579 | const FieldDescriptor* field, |
580 | MessageFactory* factory = nullptr) const; |
581 | |
582 | // Get a string value without copying, if possible. |
583 | // |
584 | // GetString() necessarily returns a copy of the string. This can be |
585 | // inefficient when the std::string is already stored in a std::string object |
586 | // in the underlying message. GetStringReference() will return a reference to |
587 | // the underlying std::string in this case. Otherwise, it will copy the |
588 | // string into *scratch and return that. |
589 | // |
590 | // Note: It is perfectly reasonable and useful to write code like: |
591 | // str = reflection->GetStringReference(message, field, &str); |
592 | // This line would ensure that only one copy of the string is made |
593 | // regardless of the field's underlying representation. When initializing |
594 | // a newly-constructed string, though, it's just as fast and more |
595 | // readable to use code like: |
596 | // std::string str = reflection->GetString(message, field); |
597 | const std::string& GetStringReference(const Message& message, |
598 | const FieldDescriptor* field, |
599 | std::string* scratch) const; |
600 | |
601 | |
602 | // Singular field mutators ----------------------------------------- |
603 | // These mutate the value of a non-repeated field. |
604 | |
605 | void SetInt32(Message* message, const FieldDescriptor* field, |
606 | int32_t value) const; |
607 | void SetInt64(Message* message, const FieldDescriptor* field, |
608 | int64_t value) const; |
609 | void SetUInt32(Message* message, const FieldDescriptor* field, |
610 | uint32_t value) const; |
611 | void SetUInt64(Message* message, const FieldDescriptor* field, |
612 | uint64_t value) const; |
613 | void SetFloat(Message* message, const FieldDescriptor* field, |
614 | float value) const; |
615 | void SetDouble(Message* message, const FieldDescriptor* field, |
616 | double value) const; |
617 | void SetBool(Message* message, const FieldDescriptor* field, |
618 | bool value) const; |
619 | void SetString(Message* message, const FieldDescriptor* field, |
620 | std::string value) const; |
621 | void SetEnum(Message* message, const FieldDescriptor* field, |
622 | const EnumValueDescriptor* value) const; |
623 | // Set an enum field's value with an integer rather than EnumValueDescriptor. |
624 | // For proto3 this is just setting the enum field to the value specified, for |
625 | // proto2 it's more complicated. If value is a known enum value the field is |
626 | // set as usual. If the value is unknown then it is added to the unknown field |
627 | // set. Note this matches the behavior of parsing unknown enum values. |
628 | // If multiple calls with unknown values happen than they are all added to the |
629 | // unknown field set in order of the calls. |
630 | void SetEnumValue(Message* message, const FieldDescriptor* field, |
631 | int value) const; |
632 | |
633 | // Get a mutable pointer to a field with a message type. If a MessageFactory |
634 | // is provided, it will be used to construct instances of the sub-message; |
635 | // otherwise, the default factory is used. If the field is an extension that |
636 | // does not live in the same pool as the containing message's descriptor (e.g. |
637 | // it lives in an overlay pool), then a MessageFactory must be provided. |
638 | // If you have no idea what that meant, then you probably don't need to worry |
639 | // about it (don't provide a MessageFactory). WARNING: If the |
640 | // FieldDescriptor is for a compiled-in extension, then |
641 | // factory->GetPrototype(field->message_type()) MUST return an instance of |
642 | // the compiled-in class for this type, NOT DynamicMessage. |
643 | Message* MutableMessage(Message* message, const FieldDescriptor* field, |
644 | MessageFactory* factory = nullptr) const; |
645 | |
646 | // Replaces the message specified by 'field' with the already-allocated object |
647 | // sub_message, passing ownership to the message. If the field contained a |
648 | // message, that message is deleted. If sub_message is nullptr, the field is |
649 | // cleared. |
650 | void SetAllocatedMessage(Message* message, Message* sub_message, |
651 | const FieldDescriptor* field) const; |
652 | |
653 | // Similar to `SetAllocatedMessage`, but omits all internal safety and |
654 | // ownership checks. This method should only be used when the objects are on |
655 | // the same arena or paired with a call to `UnsafeArenaReleaseMessage`. |
656 | void UnsafeArenaSetAllocatedMessage(Message* message, Message* sub_message, |
657 | const FieldDescriptor* field) const; |
658 | |
659 | // Releases the message specified by 'field' and returns the pointer, |
660 | // ReleaseMessage() will return the message the message object if it exists. |
661 | // Otherwise, it may or may not return nullptr. In any case, if the return |
662 | // value is non-null, the caller takes ownership of the pointer. |
663 | // If the field existed (HasField() is true), then the returned pointer will |
664 | // be the same as the pointer returned by MutableMessage(). |
665 | // This function has the same effect as ClearField(). |
666 | PROTOBUF_NODISCARD Message* ReleaseMessage( |
667 | Message* message, const FieldDescriptor* field, |
668 | MessageFactory* factory = nullptr) const; |
669 | |
670 | // Similar to `ReleaseMessage`, but omits all internal safety and ownership |
671 | // checks. This method should only be used when the objects are on the same |
672 | // arena or paired with a call to `UnsafeArenaSetAllocatedMessage`. |
673 | Message* UnsafeArenaReleaseMessage(Message* message, |
674 | const FieldDescriptor* field, |
675 | MessageFactory* factory = nullptr) const; |
676 | |
677 | |
678 | // Repeated field getters ------------------------------------------ |
679 | // These get the value of one element of a repeated field. |
680 | |
681 | int32_t GetRepeatedInt32(const Message& message, const FieldDescriptor* field, |
682 | int index) const; |
683 | int64_t GetRepeatedInt64(const Message& message, const FieldDescriptor* field, |
684 | int index) const; |
685 | uint32_t GetRepeatedUInt32(const Message& message, |
686 | const FieldDescriptor* field, int index) const; |
687 | uint64_t GetRepeatedUInt64(const Message& message, |
688 | const FieldDescriptor* field, int index) const; |
689 | float GetRepeatedFloat(const Message& message, const FieldDescriptor* field, |
690 | int index) const; |
691 | double GetRepeatedDouble(const Message& message, const FieldDescriptor* field, |
692 | int index) const; |
693 | bool GetRepeatedBool(const Message& message, const FieldDescriptor* field, |
694 | int index) const; |
695 | std::string GetRepeatedString(const Message& message, |
696 | const FieldDescriptor* field, int index) const; |
697 | const EnumValueDescriptor* GetRepeatedEnum(const Message& message, |
698 | const FieldDescriptor* field, |
699 | int index) const; |
700 | // GetRepeatedEnumValue() returns an enum field's value as an integer rather |
701 | // than an EnumValueDescriptor*. If the integer value does not correspond to a |
702 | // known value descriptor, a new value descriptor is created. (Such a value |
703 | // will only be present when the new unknown-enum-value semantics are enabled |
704 | // for a message.) |
705 | int GetRepeatedEnumValue(const Message& message, const FieldDescriptor* field, |
706 | int index) const; |
707 | const Message& GetRepeatedMessage(const Message& message, |
708 | const FieldDescriptor* field, |
709 | int index) const; |
710 | |
711 | // See GetStringReference(), above. |
712 | const std::string& GetRepeatedStringReference(const Message& message, |
713 | const FieldDescriptor* field, |
714 | int index, |
715 | std::string* scratch) const; |
716 | |
717 | |
718 | // Repeated field mutators ----------------------------------------- |
719 | // These mutate the value of one element of a repeated field. |
720 | |
721 | void SetRepeatedInt32(Message* message, const FieldDescriptor* field, |
722 | int index, int32_t value) const; |
723 | void SetRepeatedInt64(Message* message, const FieldDescriptor* field, |
724 | int index, int64_t value) const; |
725 | void SetRepeatedUInt32(Message* message, const FieldDescriptor* field, |
726 | int index, uint32_t value) const; |
727 | void SetRepeatedUInt64(Message* message, const FieldDescriptor* field, |
728 | int index, uint64_t value) const; |
729 | void SetRepeatedFloat(Message* message, const FieldDescriptor* field, |
730 | int index, float value) const; |
731 | void SetRepeatedDouble(Message* message, const FieldDescriptor* field, |
732 | int index, double value) const; |
733 | void SetRepeatedBool(Message* message, const FieldDescriptor* field, |
734 | int index, bool value) const; |
735 | void SetRepeatedString(Message* message, const FieldDescriptor* field, |
736 | int index, std::string value) const; |
737 | void SetRepeatedEnum(Message* message, const FieldDescriptor* field, |
738 | int index, const EnumValueDescriptor* value) const; |
739 | // Set an enum field's value with an integer rather than EnumValueDescriptor. |
740 | // For proto3 this is just setting the enum field to the value specified, for |
741 | // proto2 it's more complicated. If value is a known enum value the field is |
742 | // set as usual. If the value is unknown then it is added to the unknown field |
743 | // set. Note this matches the behavior of parsing unknown enum values. |
744 | // If multiple calls with unknown values happen than they are all added to the |
745 | // unknown field set in order of the calls. |
746 | void SetRepeatedEnumValue(Message* message, const FieldDescriptor* field, |
747 | int index, int value) const; |
748 | // Get a mutable pointer to an element of a repeated field with a message |
749 | // type. |
750 | Message* MutableRepeatedMessage(Message* message, |
751 | const FieldDescriptor* field, |
752 | int index) const; |
753 | |
754 | |
755 | // Repeated field adders ------------------------------------------- |
756 | // These add an element to a repeated field. |
757 | |
758 | void AddInt32(Message* message, const FieldDescriptor* field, |
759 | int32_t value) const; |
760 | void AddInt64(Message* message, const FieldDescriptor* field, |
761 | int64_t value) const; |
762 | void AddUInt32(Message* message, const FieldDescriptor* field, |
763 | uint32_t value) const; |
764 | void AddUInt64(Message* message, const FieldDescriptor* field, |
765 | uint64_t value) const; |
766 | void AddFloat(Message* message, const FieldDescriptor* field, |
767 | float value) const; |
768 | void AddDouble(Message* message, const FieldDescriptor* field, |
769 | double value) const; |
770 | void AddBool(Message* message, const FieldDescriptor* field, |
771 | bool value) const; |
772 | void AddString(Message* message, const FieldDescriptor* field, |
773 | std::string value) const; |
774 | void AddEnum(Message* message, const FieldDescriptor* field, |
775 | const EnumValueDescriptor* value) const; |
776 | // Add an integer value to a repeated enum field rather than |
777 | // EnumValueDescriptor. For proto3 this is just setting the enum field to the |
778 | // value specified, for proto2 it's more complicated. If value is a known enum |
779 | // value the field is set as usual. If the value is unknown then it is added |
780 | // to the unknown field set. Note this matches the behavior of parsing unknown |
781 | // enum values. If multiple calls with unknown values happen than they are all |
782 | // added to the unknown field set in order of the calls. |
783 | void AddEnumValue(Message* message, const FieldDescriptor* field, |
784 | int value) const; |
785 | // See MutableMessage() for comments on the "factory" parameter. |
786 | Message* AddMessage(Message* message, const FieldDescriptor* field, |
787 | MessageFactory* factory = nullptr) const; |
788 | |
789 | // Appends an already-allocated object 'new_entry' to the repeated field |
790 | // specified by 'field' passing ownership to the message. |
791 | void AddAllocatedMessage(Message* message, const FieldDescriptor* field, |
792 | Message* new_entry) const; |
793 | |
794 | // Similar to AddAllocatedMessage() without internal safety and ownership |
795 | // checks. This method should only be used when the objects are on the same |
796 | // arena or paired with a call to `UnsafeArenaReleaseLast`. |
797 | void UnsafeArenaAddAllocatedMessage(Message* message, |
798 | const FieldDescriptor* field, |
799 | Message* new_entry) const; |
800 | |
801 | |
802 | // Get a RepeatedFieldRef object that can be used to read the underlying |
803 | // repeated field. The type parameter T must be set according to the |
804 | // field's cpp type. The following table shows the mapping from cpp type |
805 | // to acceptable T. |
806 | // |
807 | // field->cpp_type() T |
808 | // CPPTYPE_INT32 int32_t |
809 | // CPPTYPE_UINT32 uint32_t |
810 | // CPPTYPE_INT64 int64_t |
811 | // CPPTYPE_UINT64 uint64_t |
812 | // CPPTYPE_DOUBLE double |
813 | // CPPTYPE_FLOAT float |
814 | // CPPTYPE_BOOL bool |
815 | // CPPTYPE_ENUM generated enum type or int32_t |
816 | // CPPTYPE_STRING std::string |
817 | // CPPTYPE_MESSAGE generated message type or google::protobuf::Message |
818 | // |
819 | // A RepeatedFieldRef object can be copied and the resulted object will point |
820 | // to the same repeated field in the same message. The object can be used as |
821 | // long as the message is not destroyed. |
822 | // |
823 | // Note that to use this method users need to include the header file |
824 | // "reflection.h" (which defines the RepeatedFieldRef class templates). |
825 | template <typename T> |
826 | RepeatedFieldRef<T> GetRepeatedFieldRef(const Message& message, |
827 | const FieldDescriptor* field) const; |
828 | |
829 | // Like GetRepeatedFieldRef() but return an object that can also be used |
830 | // manipulate the underlying repeated field. |
831 | template <typename T> |
832 | MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef( |
833 | Message* message, const FieldDescriptor* field) const; |
834 | |
835 | // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field |
836 | // access. The following repeated field accessors will be removed in the |
837 | // future. |
838 | // |
839 | // Repeated field accessors ------------------------------------------------- |
840 | // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular |
841 | // access to the data in a RepeatedField. The methods below provide aggregate |
842 | // access by exposing the RepeatedField object itself with the Message. |
843 | // Applying these templates to inappropriate types will lead to an undefined |
844 | // reference at link time (e.g. GetRepeatedField<***double>), or possibly a |
845 | // template matching error at compile time (e.g. GetRepeatedPtrField<File>). |
846 | // |
847 | // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd); |
848 | |
849 | // DEPRECATED. Please use GetRepeatedFieldRef(). |
850 | // |
851 | // for T = Cord and all protobuf scalar types except enums. |
852 | template <typename T> |
853 | PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead" ) |
854 | const RepeatedField<T>& GetRepeatedField(const Message& msg, |
855 | const FieldDescriptor* d) const { |
856 | return GetRepeatedFieldInternal<T>(msg, d); |
857 | } |
858 | |
859 | // DEPRECATED. Please use GetMutableRepeatedFieldRef(). |
860 | // |
861 | // for T = Cord and all protobuf scalar types except enums. |
862 | template <typename T> |
863 | PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead" ) |
864 | RepeatedField<T>* MutableRepeatedField(Message* msg, |
865 | const FieldDescriptor* d) const { |
866 | return MutableRepeatedFieldInternal<T>(msg, d); |
867 | } |
868 | |
869 | // DEPRECATED. Please use GetRepeatedFieldRef(). |
870 | // |
871 | // for T = std::string, google::protobuf::internal::StringPieceField |
872 | // google::protobuf::Message & descendants. |
873 | template <typename T> |
874 | PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead" ) |
875 | const RepeatedPtrField<T>& GetRepeatedPtrField( |
876 | const Message& msg, const FieldDescriptor* d) const { |
877 | return GetRepeatedPtrFieldInternal<T>(msg, d); |
878 | } |
879 | |
880 | // DEPRECATED. Please use GetMutableRepeatedFieldRef(). |
881 | // |
882 | // for T = std::string, google::protobuf::internal::StringPieceField |
883 | // google::protobuf::Message & descendants. |
884 | template <typename T> |
885 | PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead" ) |
886 | RepeatedPtrField<T>* MutableRepeatedPtrField(Message* msg, |
887 | const FieldDescriptor* d) const { |
888 | return MutableRepeatedPtrFieldInternal<T>(msg, d); |
889 | } |
890 | |
891 | // Extensions ---------------------------------------------------------------- |
892 | |
893 | // Try to find an extension of this message type by fully-qualified field |
894 | // name. Returns nullptr if no extension is known for this name or number. |
895 | const FieldDescriptor* FindKnownExtensionByName( |
896 | const std::string& name) const; |
897 | |
898 | // Try to find an extension of this message type by field number. |
899 | // Returns nullptr if no extension is known for this name or number. |
900 | const FieldDescriptor* FindKnownExtensionByNumber(int number) const; |
901 | |
902 | // Feature Flags ------------------------------------------------------------- |
903 | |
904 | // Does this message support storing arbitrary integer values in enum fields? |
905 | // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions |
906 | // take arbitrary integer values, and the legacy GetEnum() getter will |
907 | // dynamically create an EnumValueDescriptor for any integer value without |
908 | // one. If |false|, setting an unknown enum value via the integer-based |
909 | // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails). |
910 | // |
911 | // Generic code that uses reflection to handle messages with enum fields |
912 | // should check this flag before using the integer-based setter, and either |
913 | // downgrade to a compatible value or use the UnknownFieldSet if not. For |
914 | // example: |
915 | // |
916 | // int new_value = GetValueFromApplicationLogic(); |
917 | // if (reflection->SupportsUnknownEnumValues()) { |
918 | // reflection->SetEnumValue(message, field, new_value); |
919 | // } else { |
920 | // if (field_descriptor->enum_type()-> |
921 | // FindValueByNumber(new_value) != nullptr) { |
922 | // reflection->SetEnumValue(message, field, new_value); |
923 | // } else if (emit_unknown_enum_values) { |
924 | // reflection->MutableUnknownFields(message)->AddVarint( |
925 | // field->number(), new_value); |
926 | // } else { |
927 | // // convert value to a compatible/default value. |
928 | // new_value = CompatibleDowngrade(new_value); |
929 | // reflection->SetEnumValue(message, field, new_value); |
930 | // } |
931 | // } |
932 | bool SupportsUnknownEnumValues() const; |
933 | |
934 | // Returns the MessageFactory associated with this message. This can be |
935 | // useful for determining if a message is a generated message or not, for |
936 | // example: |
937 | // if (message->GetReflection()->GetMessageFactory() == |
938 | // google::protobuf::MessageFactory::generated_factory()) { |
939 | // // This is a generated message. |
940 | // } |
941 | // It can also be used to create more messages of this type, though |
942 | // Message::New() is an easier way to accomplish this. |
943 | MessageFactory* GetMessageFactory() const; |
944 | |
945 | private: |
946 | template <typename T> |
947 | const RepeatedField<T>& GetRepeatedFieldInternal( |
948 | const Message& message, const FieldDescriptor* field) const; |
949 | template <typename T> |
950 | RepeatedField<T>* MutableRepeatedFieldInternal( |
951 | Message* message, const FieldDescriptor* field) const; |
952 | template <typename T> |
953 | const RepeatedPtrField<T>& GetRepeatedPtrFieldInternal( |
954 | const Message& message, const FieldDescriptor* field) const; |
955 | template <typename T> |
956 | RepeatedPtrField<T>* MutableRepeatedPtrFieldInternal( |
957 | Message* message, const FieldDescriptor* field) const; |
958 | // Obtain a pointer to a Repeated Field Structure and do some type checking: |
959 | // on field->cpp_type(), |
960 | // on field->field_option().ctype() (if ctype >= 0) |
961 | // of field->message_type() (if message_type != nullptr). |
962 | // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer). |
963 | void* MutableRawRepeatedField(Message* message, const FieldDescriptor* field, |
964 | FieldDescriptor::CppType, int ctype, |
965 | const Descriptor* message_type) const; |
966 | |
967 | const void* GetRawRepeatedField(const Message& message, |
968 | const FieldDescriptor* field, |
969 | FieldDescriptor::CppType cpptype, int ctype, |
970 | const Descriptor* message_type) const; |
971 | |
972 | // The following methods are used to implement (Mutable)RepeatedFieldRef. |
973 | // A Ref object will store a raw pointer to the repeated field data (obtained |
974 | // from RepeatedFieldData()) and a pointer to a Accessor (obtained from |
975 | // RepeatedFieldAccessor) which will be used to access the raw data. |
976 | |
977 | // Returns a raw pointer to the repeated field |
978 | // |
979 | // "cpp_type" and "message_type" are deduced from the type parameter T passed |
980 | // to Get(Mutable)RepeatedFieldRef. If T is a generated message type, |
981 | // "message_type" should be set to its descriptor. Otherwise "message_type" |
982 | // should be set to nullptr. Implementations of this method should check |
983 | // whether "cpp_type"/"message_type" is consistent with the actual type of the |
984 | // field. We use 1 routine rather than 2 (const vs mutable) because it is |
985 | // protected and it doesn't change the message. |
986 | void* RepeatedFieldData(Message* message, const FieldDescriptor* field, |
987 | FieldDescriptor::CppType cpp_type, |
988 | const Descriptor* message_type) const; |
989 | |
990 | // The returned pointer should point to a singleton instance which implements |
991 | // the RepeatedFieldAccessor interface. |
992 | const internal::RepeatedFieldAccessor* RepeatedFieldAccessor( |
993 | const FieldDescriptor* field) const; |
994 | |
995 | // Lists all fields of the message which are currently set, except for unknown |
996 | // fields and stripped fields. See ListFields for details. |
997 | void ListFieldsOmitStripped( |
998 | const Message& message, |
999 | std::vector<const FieldDescriptor*>* output) const; |
1000 | |
1001 | bool IsMessageStripped(const Descriptor* descriptor) const { |
1002 | return schema_.IsMessageStripped(descriptor); |
1003 | } |
1004 | |
1005 | friend class TextFormat; |
1006 | |
1007 | void ListFieldsMayFailOnStripped( |
1008 | const Message& message, bool should_fail, |
1009 | std::vector<const FieldDescriptor*>* output) const; |
1010 | |
1011 | // Returns true if the message field is backed by a LazyField. |
1012 | // |
1013 | // A message field may be backed by a LazyField without the user annotation |
1014 | // ([lazy = true]). While the user-annotated LazyField is lazily verified on |
1015 | // first touch (i.e. failure on access rather than parsing if the LazyField is |
1016 | // not initialized), the inferred LazyField is eagerly verified to avoid lazy |
1017 | // parsing error at the cost of lower efficiency. When reflecting a message |
1018 | // field, use this API instead of checking field->options().lazy(). |
1019 | bool IsLazyField(const FieldDescriptor* field) const { |
1020 | return IsLazilyVerifiedLazyField(field) || |
1021 | IsEagerlyVerifiedLazyField(field); |
1022 | } |
1023 | |
1024 | // Returns true if the field is lazy extension. It is meant to allow python |
1025 | // reparse lazy field until b/157559327 is fixed. |
1026 | bool IsLazyExtension(const Message& message, |
1027 | const FieldDescriptor* field) const; |
1028 | |
1029 | bool IsLazilyVerifiedLazyField(const FieldDescriptor* field) const; |
1030 | bool IsEagerlyVerifiedLazyField(const FieldDescriptor* field) const; |
1031 | |
1032 | friend class FastReflectionMessageMutator; |
1033 | friend bool internal::IsDescendant(Message& root, const Message& message); |
1034 | |
1035 | const Descriptor* const descriptor_; |
1036 | const internal::ReflectionSchema schema_; |
1037 | const DescriptorPool* const descriptor_pool_; |
1038 | MessageFactory* const message_factory_; |
1039 | |
1040 | // Last non weak field index. This is an optimization when most weak fields |
1041 | // are at the end of the containing message. If a message proto doesn't |
1042 | // contain weak fields, then this field equals descriptor_->field_count(). |
1043 | int last_non_weak_field_index_; |
1044 | |
1045 | template <typename T, typename Enable> |
1046 | friend class RepeatedFieldRef; |
1047 | template <typename T, typename Enable> |
1048 | friend class MutableRepeatedFieldRef; |
1049 | friend class ::PROTOBUF_NAMESPACE_ID::MessageLayoutInspector; |
1050 | friend class ::PROTOBUF_NAMESPACE_ID::AssignDescriptorsHelper; |
1051 | friend class DynamicMessageFactory; |
1052 | friend class GeneratedMessageReflectionTestHelper; |
1053 | friend class python::MapReflectionFriend; |
1054 | friend class python::MessageReflectionFriend; |
1055 | friend class util::MessageDifferencer; |
1056 | #define GOOGLE_PROTOBUF_HAS_CEL_MAP_REFLECTION_FRIEND |
1057 | friend class expr::CelMapReflectionFriend; |
1058 | friend class internal::MapFieldReflectionTest; |
1059 | friend class internal::MapKeySorter; |
1060 | friend class internal::WireFormat; |
1061 | friend class internal::ReflectionOps; |
1062 | friend class internal::SwapFieldHelper; |
1063 | // Needed for implementing text format for map. |
1064 | friend class internal::MapFieldPrinterHelper; |
1065 | |
1066 | Reflection(const Descriptor* descriptor, |
1067 | const internal::ReflectionSchema& schema, |
1068 | const DescriptorPool* pool, MessageFactory* factory); |
1069 | |
1070 | // Special version for specialized implementations of string. We can't |
1071 | // call MutableRawRepeatedField directly here because we don't have access to |
1072 | // FieldOptions::* which are defined in descriptor.pb.h. Including that |
1073 | // file here is not possible because it would cause a circular include cycle. |
1074 | // We use 1 routine rather than 2 (const vs mutable) because it is private |
1075 | // and mutable a repeated string field doesn't change the message. |
1076 | void* MutableRawRepeatedString(Message* message, const FieldDescriptor* field, |
1077 | bool is_string) const; |
1078 | |
1079 | friend class MapReflectionTester; |
1080 | // Returns true if key is in map. Returns false if key is not in map field. |
1081 | bool ContainsMapKey(const Message& message, const FieldDescriptor* field, |
1082 | const MapKey& key) const; |
1083 | |
1084 | // If key is in map field: Saves the value pointer to val and returns |
1085 | // false. If key in not in map field: Insert the key into map, saves |
1086 | // value pointer to val and returns true. Users are able to modify the |
1087 | // map value by MapValueRef. |
1088 | bool InsertOrLookupMapValue(Message* message, const FieldDescriptor* field, |
1089 | const MapKey& key, MapValueRef* val) const; |
1090 | |
1091 | // If key is in map field: Saves the value pointer to val and returns true. |
1092 | // Returns false if key is not in map field. Users are NOT able to modify |
1093 | // the value by MapValueConstRef. |
1094 | bool LookupMapValue(const Message& message, const FieldDescriptor* field, |
1095 | const MapKey& key, MapValueConstRef* val) const; |
1096 | bool LookupMapValue(const Message&, const FieldDescriptor*, const MapKey&, |
1097 | MapValueRef*) const = delete; |
1098 | |
1099 | // Delete and returns true if key is in the map field. Returns false |
1100 | // otherwise. |
1101 | bool DeleteMapValue(Message* message, const FieldDescriptor* field, |
1102 | const MapKey& key) const; |
1103 | |
1104 | // Returns a MapIterator referring to the first element in the map field. |
1105 | // If the map field is empty, this function returns the same as |
1106 | // reflection::MapEnd. Mutation to the field may invalidate the iterator. |
1107 | MapIterator MapBegin(Message* message, const FieldDescriptor* field) const; |
1108 | |
1109 | // Returns a MapIterator referring to the theoretical element that would |
1110 | // follow the last element in the map field. It does not point to any |
1111 | // real element. Mutation to the field may invalidate the iterator. |
1112 | MapIterator MapEnd(Message* message, const FieldDescriptor* field) const; |
1113 | |
1114 | // Get the number of <key, value> pair of a map field. The result may be |
1115 | // different from FieldSize which can have duplicate keys. |
1116 | int MapSize(const Message& message, const FieldDescriptor* field) const; |
1117 | |
1118 | // Help method for MapIterator. |
1119 | friend class MapIterator; |
1120 | friend class WireFormatForMapFieldTest; |
1121 | internal::MapFieldBase* MutableMapData(Message* message, |
1122 | const FieldDescriptor* field) const; |
1123 | |
1124 | const internal::MapFieldBase* GetMapData(const Message& message, |
1125 | const FieldDescriptor* field) const; |
1126 | |
1127 | template <class T> |
1128 | const T& GetRawNonOneof(const Message& message, |
1129 | const FieldDescriptor* field) const; |
1130 | template <class T> |
1131 | T* MutableRawNonOneof(Message* message, const FieldDescriptor* field) const; |
1132 | |
1133 | template <typename Type> |
1134 | const Type& GetRaw(const Message& message, |
1135 | const FieldDescriptor* field) const; |
1136 | template <typename Type> |
1137 | inline Type* MutableRaw(Message* message, const FieldDescriptor* field) const; |
1138 | template <typename Type> |
1139 | const Type& DefaultRaw(const FieldDescriptor* field) const; |
1140 | |
1141 | const Message* GetDefaultMessageInstance(const FieldDescriptor* field) const; |
1142 | |
1143 | inline const uint32_t* GetHasBits(const Message& message) const; |
1144 | inline uint32_t* MutableHasBits(Message* message) const; |
1145 | inline uint32_t GetOneofCase(const Message& message, |
1146 | const OneofDescriptor* oneof_descriptor) const; |
1147 | inline uint32_t* MutableOneofCase( |
1148 | Message* message, const OneofDescriptor* oneof_descriptor) const; |
1149 | inline bool HasExtensionSet(const Message& /* message */) const { |
1150 | return schema_.HasExtensionSet(); |
1151 | } |
1152 | const internal::ExtensionSet& GetExtensionSet(const Message& message) const; |
1153 | internal::ExtensionSet* MutableExtensionSet(Message* message) const; |
1154 | |
1155 | const internal::InternalMetadata& GetInternalMetadata( |
1156 | const Message& message) const; |
1157 | |
1158 | internal::InternalMetadata* MutableInternalMetadata(Message* message) const; |
1159 | |
1160 | inline bool IsInlined(const FieldDescriptor* field) const; |
1161 | |
1162 | inline bool HasBit(const Message& message, |
1163 | const FieldDescriptor* field) const; |
1164 | inline void SetBit(Message* message, const FieldDescriptor* field) const; |
1165 | inline void ClearBit(Message* message, const FieldDescriptor* field) const; |
1166 | inline void SwapBit(Message* message1, Message* message2, |
1167 | const FieldDescriptor* field) const; |
1168 | |
1169 | inline const uint32_t* GetInlinedStringDonatedArray( |
1170 | const Message& message) const; |
1171 | inline uint32_t* MutableInlinedStringDonatedArray(Message* message) const; |
1172 | inline bool IsInlinedStringDonated(const Message& message, |
1173 | const FieldDescriptor* field) const; |
1174 | inline void SwapInlinedStringDonated(Message* lhs, Message* rhs, |
1175 | const FieldDescriptor* field) const; |
1176 | |
1177 | // Shallow-swap fields listed in fields vector of two messages. It is the |
1178 | // caller's responsibility to make sure shallow swap is safe. |
1179 | void UnsafeShallowSwapFields( |
1180 | Message* message1, Message* message2, |
1181 | const std::vector<const FieldDescriptor*>& fields) const; |
1182 | |
1183 | // This function only swaps the field. Should swap corresponding has_bit |
1184 | // before or after using this function. |
1185 | void SwapField(Message* message1, Message* message2, |
1186 | const FieldDescriptor* field) const; |
1187 | |
1188 | // Unsafe but shallow version of SwapField. |
1189 | void UnsafeShallowSwapField(Message* message1, Message* message2, |
1190 | const FieldDescriptor* field) const; |
1191 | |
1192 | template <bool unsafe_shallow_swap> |
1193 | void SwapFieldsImpl(Message* message1, Message* message2, |
1194 | const std::vector<const FieldDescriptor*>& fields) const; |
1195 | |
1196 | template <bool unsafe_shallow_swap> |
1197 | void SwapOneofField(Message* lhs, Message* rhs, |
1198 | const OneofDescriptor* oneof_descriptor) const; |
1199 | |
1200 | inline bool HasOneofField(const Message& message, |
1201 | const FieldDescriptor* field) const; |
1202 | inline void SetOneofCase(Message* message, |
1203 | const FieldDescriptor* field) const; |
1204 | inline void ClearOneofField(Message* message, |
1205 | const FieldDescriptor* field) const; |
1206 | |
1207 | template <typename Type> |
1208 | inline const Type& GetField(const Message& message, |
1209 | const FieldDescriptor* field) const; |
1210 | template <typename Type> |
1211 | inline void SetField(Message* message, const FieldDescriptor* field, |
1212 | const Type& value) const; |
1213 | template <typename Type> |
1214 | inline Type* MutableField(Message* message, |
1215 | const FieldDescriptor* field) const; |
1216 | template <typename Type> |
1217 | inline const Type& GetRepeatedField(const Message& message, |
1218 | const FieldDescriptor* field, |
1219 | int index) const; |
1220 | template <typename Type> |
1221 | inline const Type& GetRepeatedPtrField(const Message& message, |
1222 | const FieldDescriptor* field, |
1223 | int index) const; |
1224 | template <typename Type> |
1225 | inline void SetRepeatedField(Message* message, const FieldDescriptor* field, |
1226 | int index, Type value) const; |
1227 | template <typename Type> |
1228 | inline Type* MutableRepeatedField(Message* message, |
1229 | const FieldDescriptor* field, |
1230 | int index) const; |
1231 | template <typename Type> |
1232 | inline void AddField(Message* message, const FieldDescriptor* field, |
1233 | const Type& value) const; |
1234 | template <typename Type> |
1235 | inline Type* AddField(Message* message, const FieldDescriptor* field) const; |
1236 | |
1237 | int GetExtensionNumberOrDie(const Descriptor* type) const; |
1238 | |
1239 | // Internal versions of EnumValue API perform no checking. Called after checks |
1240 | // by public methods. |
1241 | void SetEnumValueInternal(Message* message, const FieldDescriptor* field, |
1242 | int value) const; |
1243 | void SetRepeatedEnumValueInternal(Message* message, |
1244 | const FieldDescriptor* field, int index, |
1245 | int value) const; |
1246 | void AddEnumValueInternal(Message* message, const FieldDescriptor* field, |
1247 | int value) const; |
1248 | |
1249 | friend inline // inline so nobody can call this function. |
1250 | void |
1251 | RegisterAllTypesInternal(const Metadata* file_level_metadata, int size); |
1252 | friend inline const char* ParseLenDelim(int field_number, |
1253 | const FieldDescriptor* field, |
1254 | Message* msg, |
1255 | const Reflection* reflection, |
1256 | const char* ptr, |
1257 | internal::ParseContext* ctx); |
1258 | friend inline const char* ParsePackedField(const FieldDescriptor* field, |
1259 | Message* msg, |
1260 | const Reflection* reflection, |
1261 | const char* ptr, |
1262 | internal::ParseContext* ctx); |
1263 | |
1264 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection); |
1265 | }; |
1266 | |
1267 | // Abstract interface for a factory for message objects. |
1268 | class PROTOBUF_EXPORT MessageFactory { |
1269 | public: |
1270 | inline MessageFactory() {} |
1271 | virtual ~MessageFactory(); |
1272 | |
1273 | // Given a Descriptor, gets or constructs the default (prototype) Message |
1274 | // of that type. You can then call that message's New() method to construct |
1275 | // a mutable message of that type. |
1276 | // |
1277 | // Calling this method twice with the same Descriptor returns the same |
1278 | // object. The returned object remains property of the factory. Also, any |
1279 | // objects created by calling the prototype's New() method share some data |
1280 | // with the prototype, so these must be destroyed before the MessageFactory |
1281 | // is destroyed. |
1282 | // |
1283 | // The given descriptor must outlive the returned message, and hence must |
1284 | // outlive the MessageFactory. |
1285 | // |
1286 | // Some implementations do not support all types. GetPrototype() will |
1287 | // return nullptr if the descriptor passed in is not supported. |
1288 | // |
1289 | // This method may or may not be thread-safe depending on the implementation. |
1290 | // Each implementation should document its own degree thread-safety. |
1291 | virtual const Message* GetPrototype(const Descriptor* type) = 0; |
1292 | |
1293 | // Gets a MessageFactory which supports all generated, compiled-in messages. |
1294 | // In other words, for any compiled-in type FooMessage, the following is true: |
1295 | // MessageFactory::generated_factory()->GetPrototype( |
1296 | // FooMessage::descriptor()) == FooMessage::default_instance() |
1297 | // This factory supports all types which are found in |
1298 | // DescriptorPool::generated_pool(). If given a descriptor from any other |
1299 | // pool, GetPrototype() will return nullptr. (You can also check if a |
1300 | // descriptor is for a generated message by checking if |
1301 | // descriptor->file()->pool() == DescriptorPool::generated_pool().) |
1302 | // |
1303 | // This factory is 100% thread-safe; calling GetPrototype() does not modify |
1304 | // any shared data. |
1305 | // |
1306 | // This factory is a singleton. The caller must not delete the object. |
1307 | static MessageFactory* generated_factory(); |
1308 | |
1309 | // For internal use only: Registers a .proto file at static initialization |
1310 | // time, to be placed in generated_factory. The first time GetPrototype() |
1311 | // is called with a descriptor from this file, |register_messages| will be |
1312 | // called, with the file name as the parameter. It must call |
1313 | // InternalRegisterGeneratedMessage() (below) to register each message type |
1314 | // in the file. This strange mechanism is necessary because descriptors are |
1315 | // built lazily, so we can't register types by their descriptor until we |
1316 | // know that the descriptor exists. |filename| must be a permanent string. |
1317 | static void InternalRegisterGeneratedFile( |
1318 | const google::protobuf::internal::DescriptorTable* table); |
1319 | |
1320 | // For internal use only: Registers a message type. Called only by the |
1321 | // functions which are registered with InternalRegisterGeneratedFile(), |
1322 | // above. |
1323 | static void InternalRegisterGeneratedMessage(const Descriptor* descriptor, |
1324 | const Message* prototype); |
1325 | |
1326 | |
1327 | private: |
1328 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory); |
1329 | }; |
1330 | |
1331 | #define DECLARE_GET_REPEATED_FIELD(TYPE) \ |
1332 | template <> \ |
1333 | PROTOBUF_EXPORT const RepeatedField<TYPE>& \ |
1334 | Reflection::GetRepeatedFieldInternal<TYPE>( \ |
1335 | const Message& message, const FieldDescriptor* field) const; \ |
1336 | \ |
1337 | template <> \ |
1338 | PROTOBUF_EXPORT RepeatedField<TYPE>* \ |
1339 | Reflection::MutableRepeatedFieldInternal<TYPE>( \ |
1340 | Message * message, const FieldDescriptor* field) const; |
1341 | |
1342 | DECLARE_GET_REPEATED_FIELD(int32_t) |
1343 | DECLARE_GET_REPEATED_FIELD(int64_t) |
1344 | DECLARE_GET_REPEATED_FIELD(uint32_t) |
1345 | DECLARE_GET_REPEATED_FIELD(uint64_t) |
1346 | DECLARE_GET_REPEATED_FIELD(float) |
1347 | DECLARE_GET_REPEATED_FIELD(double) |
1348 | DECLARE_GET_REPEATED_FIELD(bool) |
1349 | |
1350 | #undef DECLARE_GET_REPEATED_FIELD |
1351 | |
1352 | // Tries to downcast this message to a generated message type. Returns nullptr |
1353 | // if this class is not an instance of T. This works even if RTTI is disabled. |
1354 | // |
1355 | // This also has the effect of creating a strong reference to T that will |
1356 | // prevent the linker from stripping it out at link time. This can be important |
1357 | // if you are using a DynamicMessageFactory that delegates to the generated |
1358 | // factory. |
1359 | template <typename T> |
1360 | const T* DynamicCastToGenerated(const Message* from) { |
1361 | // Compile-time assert that T is a generated type that has a |
1362 | // default_instance() accessor, but avoid actually calling it. |
1363 | const T& (*get_default_instance)() = &T::default_instance; |
1364 | (void)get_default_instance; |
1365 | |
1366 | // Compile-time assert that T is a subclass of google::protobuf::Message. |
1367 | const Message* unused = static_cast<T*>(nullptr); |
1368 | (void)unused; |
1369 | |
1370 | #if PROTOBUF_RTTI |
1371 | return dynamic_cast<const T*>(from); |
1372 | #else |
1373 | bool ok = from != nullptr && |
1374 | T::default_instance().GetReflection() == from->GetReflection(); |
1375 | return ok ? down_cast<const T*>(from) : nullptr; |
1376 | #endif |
1377 | } |
1378 | |
1379 | template <typename T> |
1380 | T* DynamicCastToGenerated(Message* from) { |
1381 | const Message* message_const = from; |
1382 | return const_cast<T*>(DynamicCastToGenerated<T>(message_const)); |
1383 | } |
1384 | |
1385 | // Call this function to ensure that this message's reflection is linked into |
1386 | // the binary: |
1387 | // |
1388 | // google::protobuf::LinkMessageReflection<pkg::FooMessage>(); |
1389 | // |
1390 | // This will ensure that the following lookup will succeed: |
1391 | // |
1392 | // DescriptorPool::generated_pool()->FindMessageTypeByName("pkg.FooMessage"); |
1393 | // |
1394 | // As a side-effect, it will also guarantee that anything else from the same |
1395 | // .proto file will also be available for lookup in the generated pool. |
1396 | // |
1397 | // This function does not actually register the message, so it does not need |
1398 | // to be called before the lookup. However it does need to occur in a function |
1399 | // that cannot be stripped from the binary (ie. it must be reachable from main). |
1400 | // |
1401 | // Best practice is to call this function as close as possible to where the |
1402 | // reflection is actually needed. This function is very cheap to call, so you |
1403 | // should not need to worry about its runtime overhead except in the tightest |
1404 | // of loops (on x86-64 it compiles into two "mov" instructions). |
1405 | template <typename T> |
1406 | void LinkMessageReflection() { |
1407 | internal::StrongReference(T::default_instance); |
1408 | } |
1409 | |
1410 | // ============================================================================= |
1411 | // Implementation details for {Get,Mutable}RawRepeatedPtrField. We provide |
1412 | // specializations for <std::string>, <StringPieceField> and <Message> and |
1413 | // handle everything else with the default template which will match any type |
1414 | // having a method with signature "static const google::protobuf::Descriptor* |
1415 | // descriptor()". Such a type presumably is a descendant of google::protobuf::Message. |
1416 | |
1417 | template <> |
1418 | inline const RepeatedPtrField<std::string>& |
1419 | Reflection::GetRepeatedPtrFieldInternal<std::string>( |
1420 | const Message& message, const FieldDescriptor* field) const { |
1421 | return *static_cast<RepeatedPtrField<std::string>*>( |
1422 | MutableRawRepeatedString(message: const_cast<Message*>(&message), field, is_string: true)); |
1423 | } |
1424 | |
1425 | template <> |
1426 | inline RepeatedPtrField<std::string>* |
1427 | Reflection::MutableRepeatedPtrFieldInternal<std::string>( |
1428 | Message* message, const FieldDescriptor* field) const { |
1429 | return static_cast<RepeatedPtrField<std::string>*>( |
1430 | MutableRawRepeatedString(message, field, is_string: true)); |
1431 | } |
1432 | |
1433 | |
1434 | // ----- |
1435 | |
1436 | template <> |
1437 | inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrFieldInternal( |
1438 | const Message& message, const FieldDescriptor* field) const { |
1439 | return *static_cast<const RepeatedPtrField<Message>*>(GetRawRepeatedField( |
1440 | message, field, cpptype: FieldDescriptor::CPPTYPE_MESSAGE, ctype: -1, message_type: nullptr)); |
1441 | } |
1442 | |
1443 | template <> |
1444 | inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrFieldInternal( |
1445 | Message* message, const FieldDescriptor* field) const { |
1446 | return static_cast<RepeatedPtrField<Message>*>(MutableRawRepeatedField( |
1447 | message, field, FieldDescriptor::CPPTYPE_MESSAGE, ctype: -1, message_type: nullptr)); |
1448 | } |
1449 | |
1450 | template <typename PB> |
1451 | inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrFieldInternal( |
1452 | const Message& message, const FieldDescriptor* field) const { |
1453 | return *static_cast<const RepeatedPtrField<PB>*>( |
1454 | GetRawRepeatedField(message, field, cpptype: FieldDescriptor::CPPTYPE_MESSAGE, ctype: -1, |
1455 | message_type: PB::default_instance().GetDescriptor())); |
1456 | } |
1457 | |
1458 | template <typename PB> |
1459 | inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrFieldInternal( |
1460 | Message* message, const FieldDescriptor* field) const { |
1461 | return static_cast<RepeatedPtrField<PB>*>( |
1462 | MutableRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, |
1463 | ctype: -1, message_type: PB::default_instance().GetDescriptor())); |
1464 | } |
1465 | |
1466 | template <typename Type> |
1467 | const Type& Reflection::DefaultRaw(const FieldDescriptor* field) const { |
1468 | return *reinterpret_cast<const Type*>(schema_.GetFieldDefault(field)); |
1469 | } |
1470 | |
1471 | uint32_t Reflection::GetOneofCase( |
1472 | const Message& message, const OneofDescriptor* oneof_descriptor) const { |
1473 | GOOGLE_DCHECK(!oneof_descriptor->is_synthetic()); |
1474 | return internal::GetConstRefAtOffset<uint32_t>( |
1475 | message, offset: schema_.GetOneofCaseOffset(oneof_descriptor)); |
1476 | } |
1477 | |
1478 | bool Reflection::HasOneofField(const Message& message, |
1479 | const FieldDescriptor* field) const { |
1480 | return (GetOneofCase(message, oneof_descriptor: field->containing_oneof()) == |
1481 | static_cast<uint32_t>(field->number())); |
1482 | } |
1483 | |
1484 | template <typename Type> |
1485 | const Type& Reflection::GetRaw(const Message& message, |
1486 | const FieldDescriptor* field) const { |
1487 | GOOGLE_DCHECK(!schema_.InRealOneof(field) || HasOneofField(message, field)) |
1488 | << "Field = " << field->full_name(); |
1489 | return internal::GetConstRefAtOffset<Type>(message, |
1490 | schema_.GetFieldOffset(field)); |
1491 | } |
1492 | } // namespace protobuf |
1493 | } // namespace google |
1494 | |
1495 | #include <google/protobuf/port_undef.inc> |
1496 | |
1497 | #endif // GOOGLE_PROTOBUF_MESSAGE_H__ |
1498 | |