| 1 | // Protocol Buffers - Google's data interchange format |
| 2 | // Copyright 2008 Google Inc. All rights reserved. |
| 3 | // https://developers.google.com/protocol-buffers/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are |
| 7 | // met: |
| 8 | // |
| 9 | // * Redistributions of source code must retain the above copyright |
| 10 | // notice, this list of conditions and the following disclaimer. |
| 11 | // * Redistributions in binary form must reproduce the above |
| 12 | // copyright notice, this list of conditions and the following disclaimer |
| 13 | // in the documentation and/or other materials provided with the |
| 14 | // distribution. |
| 15 | // * Neither the name of Google Inc. nor the names of its |
| 16 | // contributors may be used to endorse or promote products derived from |
| 17 | // this software without specific prior written permission. |
| 18 | // |
| 19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | |
| 31 | // Author: kenton@google.com (Kenton Varda) |
| 32 | // Based on original Protocol Buffers design by |
| 33 | // Sanjay Ghemawat, Jeff Dean, and others. |
| 34 | // |
| 35 | // Defines Message, the abstract interface implemented by non-lite |
| 36 | // protocol message objects. Although it's possible to implement this |
| 37 | // interface manually, most users will use the protocol compiler to |
| 38 | // generate implementations. |
| 39 | // |
| 40 | // Example usage: |
| 41 | // |
| 42 | // Say you have a message defined as: |
| 43 | // |
| 44 | // message Foo { |
| 45 | // optional string text = 1; |
| 46 | // repeated int32 numbers = 2; |
| 47 | // } |
| 48 | // |
| 49 | // Then, if you used the protocol compiler to generate a class from the above |
| 50 | // definition, you could use it like so: |
| 51 | // |
| 52 | // std::string data; // Will store a serialized version of the message. |
| 53 | // |
| 54 | // { |
| 55 | // // Create a message and serialize it. |
| 56 | // Foo foo; |
| 57 | // foo.set_text("Hello World!"); |
| 58 | // foo.add_numbers(1); |
| 59 | // foo.add_numbers(5); |
| 60 | // foo.add_numbers(42); |
| 61 | // |
| 62 | // foo.SerializeToString(&data); |
| 63 | // } |
| 64 | // |
| 65 | // { |
| 66 | // // Parse the serialized message and check that it contains the |
| 67 | // // correct data. |
| 68 | // Foo foo; |
| 69 | // foo.ParseFromString(data); |
| 70 | // |
| 71 | // assert(foo.text() == "Hello World!"); |
| 72 | // assert(foo.numbers_size() == 3); |
| 73 | // assert(foo.numbers(0) == 1); |
| 74 | // assert(foo.numbers(1) == 5); |
| 75 | // assert(foo.numbers(2) == 42); |
| 76 | // } |
| 77 | // |
| 78 | // { |
| 79 | // // Same as the last block, but do it dynamically via the Message |
| 80 | // // reflection interface. |
| 81 | // Message* foo = new Foo; |
| 82 | // const Descriptor* descriptor = foo->GetDescriptor(); |
| 83 | // |
| 84 | // // Get the descriptors for the fields we're interested in and verify |
| 85 | // // their types. |
| 86 | // const FieldDescriptor* text_field = descriptor->FindFieldByName("text"); |
| 87 | // assert(text_field != nullptr); |
| 88 | // assert(text_field->type() == FieldDescriptor::TYPE_STRING); |
| 89 | // assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL); |
| 90 | // const FieldDescriptor* numbers_field = descriptor-> |
| 91 | // FindFieldByName("numbers"); |
| 92 | // assert(numbers_field != nullptr); |
| 93 | // assert(numbers_field->type() == FieldDescriptor::TYPE_INT32); |
| 94 | // assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED); |
| 95 | // |
| 96 | // // Parse the message. |
| 97 | // foo->ParseFromString(data); |
| 98 | // |
| 99 | // // Use the reflection interface to examine the contents. |
| 100 | // const Reflection* reflection = foo->GetReflection(); |
| 101 | // assert(reflection->GetString(*foo, text_field) == "Hello World!"); |
| 102 | // assert(reflection->FieldSize(*foo, numbers_field) == 3); |
| 103 | // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1); |
| 104 | // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5); |
| 105 | // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42); |
| 106 | // |
| 107 | // delete foo; |
| 108 | // } |
| 109 | |
| 110 | #ifndef GOOGLE_PROTOBUF_MESSAGE_H__ |
| 111 | #define GOOGLE_PROTOBUF_MESSAGE_H__ |
| 112 | |
| 113 | |
| 114 | #include <iosfwd> |
| 115 | #include <string> |
| 116 | #include <type_traits> |
| 117 | #include <vector> |
| 118 | |
| 119 | #include <google/protobuf/stubs/casts.h> |
| 120 | #include <google/protobuf/stubs/common.h> |
| 121 | #include <google/protobuf/arena.h> |
| 122 | #include <google/protobuf/port.h> |
| 123 | #include <google/protobuf/descriptor.h> |
| 124 | #include <google/protobuf/generated_message_reflection.h> |
| 125 | #include <google/protobuf/generated_message_util.h> |
| 126 | #include <google/protobuf/map.h> // TODO(b/211442718): cleanup |
| 127 | #include <google/protobuf/message_lite.h> |
| 128 | |
| 129 | |
| 130 | // Must be included last. |
| 131 | #include <google/protobuf/port_def.inc> |
| 132 | |
| 133 | #ifdef SWIG |
| 134 | #error "You cannot SWIG proto headers" |
| 135 | #endif |
| 136 | |
| 137 | namespace google { |
| 138 | namespace protobuf { |
| 139 | |
| 140 | // Defined in this file. |
| 141 | class Message; |
| 142 | class Reflection; |
| 143 | class MessageFactory; |
| 144 | |
| 145 | // Defined in other files. |
| 146 | class AssignDescriptorsHelper; |
| 147 | class DynamicMessageFactory; |
| 148 | class GeneratedMessageReflectionTestHelper; |
| 149 | class MapKey; |
| 150 | class MapValueConstRef; |
| 151 | class MapValueRef; |
| 152 | class MapIterator; |
| 153 | class MapReflectionTester; |
| 154 | |
| 155 | namespace internal { |
| 156 | struct DescriptorTable; |
| 157 | class MapFieldBase; |
| 158 | class SwapFieldHelper; |
| 159 | class CachedSize; |
| 160 | } // namespace internal |
| 161 | class UnknownFieldSet; // unknown_field_set.h |
| 162 | namespace io { |
| 163 | class ZeroCopyInputStream; // zero_copy_stream.h |
| 164 | class ZeroCopyOutputStream; // zero_copy_stream.h |
| 165 | class CodedInputStream; // coded_stream.h |
| 166 | class CodedOutputStream; // coded_stream.h |
| 167 | } // namespace io |
| 168 | namespace python { |
| 169 | class MapReflectionFriend; // scalar_map_container.h |
| 170 | class MessageReflectionFriend; |
| 171 | } // namespace python |
| 172 | namespace expr { |
| 173 | class CelMapReflectionFriend; // field_backed_map_impl.cc |
| 174 | } |
| 175 | |
| 176 | namespace internal { |
| 177 | class MapFieldPrinterHelper; // text_format.cc |
| 178 | } |
| 179 | namespace util { |
| 180 | class MessageDifferencer; |
| 181 | } |
| 182 | |
| 183 | |
| 184 | namespace internal { |
| 185 | class ReflectionAccessor; // message.cc |
| 186 | class ReflectionOps; // reflection_ops.h |
| 187 | class MapKeySorter; // wire_format.cc |
| 188 | class WireFormat; // wire_format.h |
| 189 | class MapFieldReflectionTest; // map_test.cc |
| 190 | } // namespace internal |
| 191 | |
| 192 | template <typename T> |
| 193 | class RepeatedField; // repeated_field.h |
| 194 | |
| 195 | template <typename T> |
| 196 | class RepeatedPtrField; // repeated_field.h |
| 197 | |
| 198 | // A container to hold message metadata. |
| 199 | struct Metadata { |
| 200 | const Descriptor* descriptor; |
| 201 | const Reflection* reflection; |
| 202 | }; |
| 203 | |
| 204 | namespace internal { |
| 205 | template <class To> |
| 206 | inline To* GetPointerAtOffset(Message* message, uint32_t offset) { |
| 207 | return reinterpret_cast<To*>(reinterpret_cast<char*>(message) + offset); |
| 208 | } |
| 209 | |
| 210 | template <class To> |
| 211 | const To* GetConstPointerAtOffset(const Message* message, uint32_t offset) { |
| 212 | return reinterpret_cast<const To*>(reinterpret_cast<const char*>(message) + |
| 213 | offset); |
| 214 | } |
| 215 | |
| 216 | template <class To> |
| 217 | const To& GetConstRefAtOffset(const Message& message, uint32_t offset) { |
| 218 | return *GetConstPointerAtOffset<To>(&message, offset); |
| 219 | } |
| 220 | |
| 221 | bool CreateUnknownEnumValues(const FieldDescriptor* field); |
| 222 | |
| 223 | // Returns true if "message" is a descendant of "root". |
| 224 | PROTOBUF_EXPORT bool IsDescendant(Message& root, const Message& message); |
| 225 | } // namespace internal |
| 226 | |
| 227 | // Abstract interface for protocol messages. |
| 228 | // |
| 229 | // See also MessageLite, which contains most every-day operations. Message |
| 230 | // adds descriptors and reflection on top of that. |
| 231 | // |
| 232 | // The methods of this class that are virtual but not pure-virtual have |
| 233 | // default implementations based on reflection. Message classes which are |
| 234 | // optimized for speed will want to override these with faster implementations, |
| 235 | // but classes optimized for code size may be happy with keeping them. See |
| 236 | // the optimize_for option in descriptor.proto. |
| 237 | // |
| 238 | // Users must not derive from this class. Only the protocol compiler and |
| 239 | // the internal library are allowed to create subclasses. |
| 240 | class PROTOBUF_EXPORT Message : public MessageLite { |
| 241 | public: |
| 242 | constexpr Message() {} |
| 243 | |
| 244 | // Basic Operations ------------------------------------------------ |
| 245 | |
| 246 | // Construct a new instance of the same type. Ownership is passed to the |
| 247 | // caller. (This is also defined in MessageLite, but is defined again here |
| 248 | // for return-type covariance.) |
| 249 | Message* New() const { return New(arena: nullptr); } |
| 250 | |
| 251 | // Construct a new instance on the arena. Ownership is passed to the caller |
| 252 | // if arena is a nullptr. |
| 253 | Message* New(Arena* arena) const override = 0; |
| 254 | |
| 255 | // Make this message into a copy of the given message. The given message |
| 256 | // must have the same descriptor, but need not necessarily be the same class. |
| 257 | // By default this is just implemented as "Clear(); MergeFrom(from);". |
| 258 | void CopyFrom(const Message& from); |
| 259 | |
| 260 | // Merge the fields from the given message into this message. Singular |
| 261 | // fields will be overwritten, if specified in from, except for embedded |
| 262 | // messages which will be merged. Repeated fields will be concatenated. |
| 263 | // The given message must be of the same type as this message (i.e. the |
| 264 | // exact same class). |
| 265 | virtual void MergeFrom(const Message& from); |
| 266 | |
| 267 | // Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with |
| 268 | // a nice error message. |
| 269 | void CheckInitialized() const; |
| 270 | |
| 271 | // Slowly build a list of all required fields that are not set. |
| 272 | // This is much, much slower than IsInitialized() as it is implemented |
| 273 | // purely via reflection. Generally, you should not call this unless you |
| 274 | // have already determined that an error exists by calling IsInitialized(). |
| 275 | void FindInitializationErrors(std::vector<std::string>* errors) const; |
| 276 | |
| 277 | // Like FindInitializationErrors, but joins all the strings, delimited by |
| 278 | // commas, and returns them. |
| 279 | std::string InitializationErrorString() const override; |
| 280 | |
| 281 | // Clears all unknown fields from this message and all embedded messages. |
| 282 | // Normally, if unknown tag numbers are encountered when parsing a message, |
| 283 | // the tag and value are stored in the message's UnknownFieldSet and |
| 284 | // then written back out when the message is serialized. This allows servers |
| 285 | // which simply route messages to other servers to pass through messages |
| 286 | // that have new field definitions which they don't yet know about. However, |
| 287 | // this behavior can have security implications. To avoid it, call this |
| 288 | // method after parsing. |
| 289 | // |
| 290 | // See Reflection::GetUnknownFields() for more on unknown fields. |
| 291 | void DiscardUnknownFields(); |
| 292 | |
| 293 | // Computes (an estimate of) the total number of bytes currently used for |
| 294 | // storing the message in memory. The default implementation calls the |
| 295 | // Reflection object's SpaceUsed() method. |
| 296 | // |
| 297 | // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented |
| 298 | // using reflection (rather than the generated code implementation for |
| 299 | // ByteSize()). Like ByteSize(), its CPU time is linear in the number of |
| 300 | // fields defined for the proto. |
| 301 | virtual size_t SpaceUsedLong() const; |
| 302 | |
| 303 | PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead" ) |
| 304 | int SpaceUsed() const { return internal::ToIntSize(size: SpaceUsedLong()); } |
| 305 | |
| 306 | // Debugging & Testing---------------------------------------------- |
| 307 | |
| 308 | // Generates a human-readable form of this message for debugging purposes. |
| 309 | // Note that the format and content of a debug string is not guaranteed, may |
| 310 | // change without notice, and should not be depended on. Code that does |
| 311 | // anything except display a string to assist in debugging should use |
| 312 | // TextFormat instead. |
| 313 | std::string DebugString() const; |
| 314 | // Like DebugString(), but with less whitespace. |
| 315 | std::string ShortDebugString() const; |
| 316 | // Like DebugString(), but do not escape UTF-8 byte sequences. |
| 317 | std::string Utf8DebugString() const; |
| 318 | // Convenience function useful in GDB. Prints DebugString() to stdout. |
| 319 | void PrintDebugString() const; |
| 320 | |
| 321 | // Reflection-based methods ---------------------------------------- |
| 322 | // These methods are pure-virtual in MessageLite, but Message provides |
| 323 | // reflection-based default implementations. |
| 324 | |
| 325 | std::string GetTypeName() const override; |
| 326 | void Clear() override; |
| 327 | |
| 328 | // Returns whether all required fields have been set. Note that required |
| 329 | // fields no longer exist starting in proto3. |
| 330 | bool IsInitialized() const override; |
| 331 | |
| 332 | void CheckTypeAndMergeFrom(const MessageLite& other) override; |
| 333 | // Reflective parser |
| 334 | const char* _InternalParse(const char* ptr, |
| 335 | internal::ParseContext* ctx) override; |
| 336 | size_t ByteSizeLong() const override; |
| 337 | uint8_t* _InternalSerialize(uint8_t* target, |
| 338 | io::EpsCopyOutputStream* stream) const override; |
| 339 | |
| 340 | private: |
| 341 | // This is called only by the default implementation of ByteSize(), to |
| 342 | // update the cached size. If you override ByteSize(), you do not need |
| 343 | // to override this. If you do not override ByteSize(), you MUST override |
| 344 | // this; the default implementation will crash. |
| 345 | // |
| 346 | // The method is private because subclasses should never call it; only |
| 347 | // override it. Yes, C++ lets you do that. Crazy, huh? |
| 348 | virtual void SetCachedSize(int size) const; |
| 349 | |
| 350 | public: |
| 351 | // Introspection --------------------------------------------------- |
| 352 | |
| 353 | |
| 354 | // Get a non-owning pointer to a Descriptor for this message's type. This |
| 355 | // describes what fields the message contains, the types of those fields, etc. |
| 356 | // This object remains property of the Message. |
| 357 | const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; } |
| 358 | |
| 359 | // Get a non-owning pointer to the Reflection interface for this Message, |
| 360 | // which can be used to read and modify the fields of the Message dynamically |
| 361 | // (in other words, without knowing the message type at compile time). This |
| 362 | // object remains property of the Message. |
| 363 | const Reflection* GetReflection() const { return GetMetadata().reflection; } |
| 364 | |
| 365 | protected: |
| 366 | // Get a struct containing the metadata for the Message, which is used in turn |
| 367 | // to implement GetDescriptor() and GetReflection() above. |
| 368 | virtual Metadata GetMetadata() const = 0; |
| 369 | |
| 370 | struct ClassData { |
| 371 | // Note: The order of arguments (to, then from) is chosen so that the ABI |
| 372 | // of this function is the same as the CopyFrom method. That is, the |
| 373 | // hidden "this" parameter comes first. |
| 374 | void (*copy_to_from)(Message& to, const Message& from_msg); |
| 375 | void (*merge_to_from)(Message& to, const Message& from_msg); |
| 376 | }; |
| 377 | // GetClassData() returns a pointer to a ClassData struct which |
| 378 | // exists in global memory and is unique to each subclass. This uniqueness |
| 379 | // property is used in order to quickly determine whether two messages are |
| 380 | // of the same type. |
| 381 | // TODO(jorg): change to pure virtual |
| 382 | virtual const ClassData* GetClassData() const { return nullptr; } |
| 383 | |
| 384 | // CopyWithSourceCheck calls Clear() and then MergeFrom(), and in debug |
| 385 | // builds, checks that calling Clear() on the destination message doesn't |
| 386 | // alter the source. It assumes the messages are known to be of the same |
| 387 | // type, and thus uses GetClassData(). |
| 388 | static void CopyWithSourceCheck(Message& to, const Message& from); |
| 389 | |
| 390 | // Fail if "from" is a descendant of "to" as such copy is not allowed. |
| 391 | static void FailIfCopyFromDescendant(Message& to, const Message& from); |
| 392 | |
| 393 | inline explicit Message(Arena* arena, bool is_message_owned = false) |
| 394 | : MessageLite(arena, is_message_owned) {} |
| 395 | size_t ComputeUnknownFieldsSize(size_t total_size, |
| 396 | internal::CachedSize* cached_size) const; |
| 397 | size_t MaybeComputeUnknownFieldsSize(size_t total_size, |
| 398 | internal::CachedSize* cached_size) const; |
| 399 | |
| 400 | |
| 401 | protected: |
| 402 | static uint64_t GetInvariantPerBuild(uint64_t salt); |
| 403 | |
| 404 | private: |
| 405 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message); |
| 406 | }; |
| 407 | |
| 408 | namespace internal { |
| 409 | // Forward-declare interfaces used to implement RepeatedFieldRef. |
| 410 | // These are protobuf internals that users shouldn't care about. |
| 411 | class RepeatedFieldAccessor; |
| 412 | } // namespace internal |
| 413 | |
| 414 | // Forward-declare RepeatedFieldRef templates. The second type parameter is |
| 415 | // used for SFINAE tricks. Users should ignore it. |
| 416 | template <typename T, typename Enable = void> |
| 417 | class RepeatedFieldRef; |
| 418 | |
| 419 | template <typename T, typename Enable = void> |
| 420 | class MutableRepeatedFieldRef; |
| 421 | |
| 422 | // This interface contains methods that can be used to dynamically access |
| 423 | // and modify the fields of a protocol message. Their semantics are |
| 424 | // similar to the accessors the protocol compiler generates. |
| 425 | // |
| 426 | // To get the Reflection for a given Message, call Message::GetReflection(). |
| 427 | // |
| 428 | // This interface is separate from Message only for efficiency reasons; |
| 429 | // the vast majority of implementations of Message will share the same |
| 430 | // implementation of Reflection (GeneratedMessageReflection, |
| 431 | // defined in generated_message.h), and all Messages of a particular class |
| 432 | // should share the same Reflection object (though you should not rely on |
| 433 | // the latter fact). |
| 434 | // |
| 435 | // There are several ways that these methods can be used incorrectly. For |
| 436 | // example, any of the following conditions will lead to undefined |
| 437 | // results (probably assertion failures): |
| 438 | // - The FieldDescriptor is not a field of this message type. |
| 439 | // - The method called is not appropriate for the field's type. For |
| 440 | // each field type in FieldDescriptor::TYPE_*, there is only one |
| 441 | // Get*() method, one Set*() method, and one Add*() method that is |
| 442 | // valid for that type. It should be obvious which (except maybe |
| 443 | // for TYPE_BYTES, which are represented using strings in C++). |
| 444 | // - A Get*() or Set*() method for singular fields is called on a repeated |
| 445 | // field. |
| 446 | // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated |
| 447 | // field. |
| 448 | // - The Message object passed to any method is not of the right type for |
| 449 | // this Reflection object (i.e. message.GetReflection() != reflection). |
| 450 | // |
| 451 | // You might wonder why there is not any abstract representation for a field |
| 452 | // of arbitrary type. E.g., why isn't there just a "GetField()" method that |
| 453 | // returns "const Field&", where "Field" is some class with accessors like |
| 454 | // "GetInt32Value()". The problem is that someone would have to deal with |
| 455 | // allocating these Field objects. For generated message classes, having to |
| 456 | // allocate space for an additional object to wrap every field would at least |
| 457 | // double the message's memory footprint, probably worse. Allocating the |
| 458 | // objects on-demand, on the other hand, would be expensive and prone to |
| 459 | // memory leaks. So, instead we ended up with this flat interface. |
| 460 | class PROTOBUF_EXPORT Reflection final { |
| 461 | public: |
| 462 | // Get the UnknownFieldSet for the message. This contains fields which |
| 463 | // were seen when the Message was parsed but were not recognized according |
| 464 | // to the Message's definition. |
| 465 | const UnknownFieldSet& GetUnknownFields(const Message& message) const; |
| 466 | // Get a mutable pointer to the UnknownFieldSet for the message. This |
| 467 | // contains fields which were seen when the Message was parsed but were not |
| 468 | // recognized according to the Message's definition. |
| 469 | UnknownFieldSet* MutableUnknownFields(Message* message) const; |
| 470 | |
| 471 | // Estimate the amount of memory used by the message object. |
| 472 | size_t SpaceUsedLong(const Message& message) const; |
| 473 | |
| 474 | PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead" ) |
| 475 | int SpaceUsed(const Message& message) const { |
| 476 | return internal::ToIntSize(size: SpaceUsedLong(message)); |
| 477 | } |
| 478 | |
| 479 | // Check if the given non-repeated field is set. |
| 480 | bool HasField(const Message& message, const FieldDescriptor* field) const; |
| 481 | |
| 482 | // Get the number of elements of a repeated field. |
| 483 | int FieldSize(const Message& message, const FieldDescriptor* field) const; |
| 484 | |
| 485 | // Clear the value of a field, so that HasField() returns false or |
| 486 | // FieldSize() returns zero. |
| 487 | void ClearField(Message* message, const FieldDescriptor* field) const; |
| 488 | |
| 489 | // Check if the oneof is set. Returns true if any field in oneof |
| 490 | // is set, false otherwise. |
| 491 | bool HasOneof(const Message& message, |
| 492 | const OneofDescriptor* oneof_descriptor) const; |
| 493 | |
| 494 | void ClearOneof(Message* message, |
| 495 | const OneofDescriptor* oneof_descriptor) const; |
| 496 | |
| 497 | // Returns the field descriptor if the oneof is set. nullptr otherwise. |
| 498 | const FieldDescriptor* GetOneofFieldDescriptor( |
| 499 | const Message& message, const OneofDescriptor* oneof_descriptor) const; |
| 500 | |
| 501 | // Removes the last element of a repeated field. |
| 502 | // We don't provide a way to remove any element other than the last |
| 503 | // because it invites inefficient use, such as O(n^2) filtering loops |
| 504 | // that should have been O(n). If you want to remove an element other |
| 505 | // than the last, the best way to do it is to re-arrange the elements |
| 506 | // (using Swap()) so that the one you want removed is at the end, then |
| 507 | // call RemoveLast(). |
| 508 | void RemoveLast(Message* message, const FieldDescriptor* field) const; |
| 509 | // Removes the last element of a repeated message field, and returns the |
| 510 | // pointer to the caller. Caller takes ownership of the returned pointer. |
| 511 | PROTOBUF_NODISCARD Message* ReleaseLast(Message* message, |
| 512 | const FieldDescriptor* field) const; |
| 513 | |
| 514 | // Similar to ReleaseLast() without internal safety and ownershp checks. This |
| 515 | // method should only be used when the objects are on the same arena or paired |
| 516 | // with a call to `UnsafeArenaAddAllocatedMessage`. |
| 517 | Message* UnsafeArenaReleaseLast(Message* message, |
| 518 | const FieldDescriptor* field) const; |
| 519 | |
| 520 | // Swap the complete contents of two messages. |
| 521 | void Swap(Message* message1, Message* message2) const; |
| 522 | |
| 523 | // Swap fields listed in fields vector of two messages. |
| 524 | void SwapFields(Message* message1, Message* message2, |
| 525 | const std::vector<const FieldDescriptor*>& fields) const; |
| 526 | |
| 527 | // Swap two elements of a repeated field. |
| 528 | void SwapElements(Message* message, const FieldDescriptor* field, int index1, |
| 529 | int index2) const; |
| 530 | |
| 531 | // Swap without internal safety and ownership checks. This method should only |
| 532 | // be used when the objects are on the same arena. |
| 533 | void UnsafeArenaSwap(Message* lhs, Message* rhs) const; |
| 534 | |
| 535 | // SwapFields without internal safety and ownership checks. This method should |
| 536 | // only be used when the objects are on the same arena. |
| 537 | void UnsafeArenaSwapFields( |
| 538 | Message* lhs, Message* rhs, |
| 539 | const std::vector<const FieldDescriptor*>& fields) const; |
| 540 | |
| 541 | // List all fields of the message which are currently set, except for unknown |
| 542 | // fields, but including extension known to the parser (i.e. compiled in). |
| 543 | // Singular fields will only be listed if HasField(field) would return true |
| 544 | // and repeated fields will only be listed if FieldSize(field) would return |
| 545 | // non-zero. Fields (both normal fields and extension fields) will be listed |
| 546 | // ordered by field number. |
| 547 | // Use Reflection::GetUnknownFields() or message.unknown_fields() to also get |
| 548 | // access to fields/extensions unknown to the parser. |
| 549 | void ListFields(const Message& message, |
| 550 | std::vector<const FieldDescriptor*>* output) const; |
| 551 | |
| 552 | // Singular field getters ------------------------------------------ |
| 553 | // These get the value of a non-repeated field. They return the default |
| 554 | // value for fields that aren't set. |
| 555 | |
| 556 | int32_t GetInt32(const Message& message, const FieldDescriptor* field) const; |
| 557 | int64_t GetInt64(const Message& message, const FieldDescriptor* field) const; |
| 558 | uint32_t GetUInt32(const Message& message, |
| 559 | const FieldDescriptor* field) const; |
| 560 | uint64_t GetUInt64(const Message& message, |
| 561 | const FieldDescriptor* field) const; |
| 562 | float GetFloat(const Message& message, const FieldDescriptor* field) const; |
| 563 | double GetDouble(const Message& message, const FieldDescriptor* field) const; |
| 564 | bool GetBool(const Message& message, const FieldDescriptor* field) const; |
| 565 | std::string GetString(const Message& message, |
| 566 | const FieldDescriptor* field) const; |
| 567 | const EnumValueDescriptor* GetEnum(const Message& message, |
| 568 | const FieldDescriptor* field) const; |
| 569 | |
| 570 | // GetEnumValue() returns an enum field's value as an integer rather than |
| 571 | // an EnumValueDescriptor*. If the integer value does not correspond to a |
| 572 | // known value descriptor, a new value descriptor is created. (Such a value |
| 573 | // will only be present when the new unknown-enum-value semantics are enabled |
| 574 | // for a message.) |
| 575 | int GetEnumValue(const Message& message, const FieldDescriptor* field) const; |
| 576 | |
| 577 | // See MutableMessage() for the meaning of the "factory" parameter. |
| 578 | const Message& GetMessage(const Message& message, |
| 579 | const FieldDescriptor* field, |
| 580 | MessageFactory* factory = nullptr) const; |
| 581 | |
| 582 | // Get a string value without copying, if possible. |
| 583 | // |
| 584 | // GetString() necessarily returns a copy of the string. This can be |
| 585 | // inefficient when the std::string is already stored in a std::string object |
| 586 | // in the underlying message. GetStringReference() will return a reference to |
| 587 | // the underlying std::string in this case. Otherwise, it will copy the |
| 588 | // string into *scratch and return that. |
| 589 | // |
| 590 | // Note: It is perfectly reasonable and useful to write code like: |
| 591 | // str = reflection->GetStringReference(message, field, &str); |
| 592 | // This line would ensure that only one copy of the string is made |
| 593 | // regardless of the field's underlying representation. When initializing |
| 594 | // a newly-constructed string, though, it's just as fast and more |
| 595 | // readable to use code like: |
| 596 | // std::string str = reflection->GetString(message, field); |
| 597 | const std::string& GetStringReference(const Message& message, |
| 598 | const FieldDescriptor* field, |
| 599 | std::string* scratch) const; |
| 600 | |
| 601 | |
| 602 | // Singular field mutators ----------------------------------------- |
| 603 | // These mutate the value of a non-repeated field. |
| 604 | |
| 605 | void SetInt32(Message* message, const FieldDescriptor* field, |
| 606 | int32_t value) const; |
| 607 | void SetInt64(Message* message, const FieldDescriptor* field, |
| 608 | int64_t value) const; |
| 609 | void SetUInt32(Message* message, const FieldDescriptor* field, |
| 610 | uint32_t value) const; |
| 611 | void SetUInt64(Message* message, const FieldDescriptor* field, |
| 612 | uint64_t value) const; |
| 613 | void SetFloat(Message* message, const FieldDescriptor* field, |
| 614 | float value) const; |
| 615 | void SetDouble(Message* message, const FieldDescriptor* field, |
| 616 | double value) const; |
| 617 | void SetBool(Message* message, const FieldDescriptor* field, |
| 618 | bool value) const; |
| 619 | void SetString(Message* message, const FieldDescriptor* field, |
| 620 | std::string value) const; |
| 621 | void SetEnum(Message* message, const FieldDescriptor* field, |
| 622 | const EnumValueDescriptor* value) const; |
| 623 | // Set an enum field's value with an integer rather than EnumValueDescriptor. |
| 624 | // For proto3 this is just setting the enum field to the value specified, for |
| 625 | // proto2 it's more complicated. If value is a known enum value the field is |
| 626 | // set as usual. If the value is unknown then it is added to the unknown field |
| 627 | // set. Note this matches the behavior of parsing unknown enum values. |
| 628 | // If multiple calls with unknown values happen than they are all added to the |
| 629 | // unknown field set in order of the calls. |
| 630 | void SetEnumValue(Message* message, const FieldDescriptor* field, |
| 631 | int value) const; |
| 632 | |
| 633 | // Get a mutable pointer to a field with a message type. If a MessageFactory |
| 634 | // is provided, it will be used to construct instances of the sub-message; |
| 635 | // otherwise, the default factory is used. If the field is an extension that |
| 636 | // does not live in the same pool as the containing message's descriptor (e.g. |
| 637 | // it lives in an overlay pool), then a MessageFactory must be provided. |
| 638 | // If you have no idea what that meant, then you probably don't need to worry |
| 639 | // about it (don't provide a MessageFactory). WARNING: If the |
| 640 | // FieldDescriptor is for a compiled-in extension, then |
| 641 | // factory->GetPrototype(field->message_type()) MUST return an instance of |
| 642 | // the compiled-in class for this type, NOT DynamicMessage. |
| 643 | Message* MutableMessage(Message* message, const FieldDescriptor* field, |
| 644 | MessageFactory* factory = nullptr) const; |
| 645 | |
| 646 | // Replaces the message specified by 'field' with the already-allocated object |
| 647 | // sub_message, passing ownership to the message. If the field contained a |
| 648 | // message, that message is deleted. If sub_message is nullptr, the field is |
| 649 | // cleared. |
| 650 | void SetAllocatedMessage(Message* message, Message* sub_message, |
| 651 | const FieldDescriptor* field) const; |
| 652 | |
| 653 | // Similar to `SetAllocatedMessage`, but omits all internal safety and |
| 654 | // ownership checks. This method should only be used when the objects are on |
| 655 | // the same arena or paired with a call to `UnsafeArenaReleaseMessage`. |
| 656 | void UnsafeArenaSetAllocatedMessage(Message* message, Message* sub_message, |
| 657 | const FieldDescriptor* field) const; |
| 658 | |
| 659 | // Releases the message specified by 'field' and returns the pointer, |
| 660 | // ReleaseMessage() will return the message the message object if it exists. |
| 661 | // Otherwise, it may or may not return nullptr. In any case, if the return |
| 662 | // value is non-null, the caller takes ownership of the pointer. |
| 663 | // If the field existed (HasField() is true), then the returned pointer will |
| 664 | // be the same as the pointer returned by MutableMessage(). |
| 665 | // This function has the same effect as ClearField(). |
| 666 | PROTOBUF_NODISCARD Message* ReleaseMessage( |
| 667 | Message* message, const FieldDescriptor* field, |
| 668 | MessageFactory* factory = nullptr) const; |
| 669 | |
| 670 | // Similar to `ReleaseMessage`, but omits all internal safety and ownership |
| 671 | // checks. This method should only be used when the objects are on the same |
| 672 | // arena or paired with a call to `UnsafeArenaSetAllocatedMessage`. |
| 673 | Message* UnsafeArenaReleaseMessage(Message* message, |
| 674 | const FieldDescriptor* field, |
| 675 | MessageFactory* factory = nullptr) const; |
| 676 | |
| 677 | |
| 678 | // Repeated field getters ------------------------------------------ |
| 679 | // These get the value of one element of a repeated field. |
| 680 | |
| 681 | int32_t GetRepeatedInt32(const Message& message, const FieldDescriptor* field, |
| 682 | int index) const; |
| 683 | int64_t GetRepeatedInt64(const Message& message, const FieldDescriptor* field, |
| 684 | int index) const; |
| 685 | uint32_t GetRepeatedUInt32(const Message& message, |
| 686 | const FieldDescriptor* field, int index) const; |
| 687 | uint64_t GetRepeatedUInt64(const Message& message, |
| 688 | const FieldDescriptor* field, int index) const; |
| 689 | float GetRepeatedFloat(const Message& message, const FieldDescriptor* field, |
| 690 | int index) const; |
| 691 | double GetRepeatedDouble(const Message& message, const FieldDescriptor* field, |
| 692 | int index) const; |
| 693 | bool GetRepeatedBool(const Message& message, const FieldDescriptor* field, |
| 694 | int index) const; |
| 695 | std::string GetRepeatedString(const Message& message, |
| 696 | const FieldDescriptor* field, int index) const; |
| 697 | const EnumValueDescriptor* GetRepeatedEnum(const Message& message, |
| 698 | const FieldDescriptor* field, |
| 699 | int index) const; |
| 700 | // GetRepeatedEnumValue() returns an enum field's value as an integer rather |
| 701 | // than an EnumValueDescriptor*. If the integer value does not correspond to a |
| 702 | // known value descriptor, a new value descriptor is created. (Such a value |
| 703 | // will only be present when the new unknown-enum-value semantics are enabled |
| 704 | // for a message.) |
| 705 | int GetRepeatedEnumValue(const Message& message, const FieldDescriptor* field, |
| 706 | int index) const; |
| 707 | const Message& GetRepeatedMessage(const Message& message, |
| 708 | const FieldDescriptor* field, |
| 709 | int index) const; |
| 710 | |
| 711 | // See GetStringReference(), above. |
| 712 | const std::string& GetRepeatedStringReference(const Message& message, |
| 713 | const FieldDescriptor* field, |
| 714 | int index, |
| 715 | std::string* scratch) const; |
| 716 | |
| 717 | |
| 718 | // Repeated field mutators ----------------------------------------- |
| 719 | // These mutate the value of one element of a repeated field. |
| 720 | |
| 721 | void SetRepeatedInt32(Message* message, const FieldDescriptor* field, |
| 722 | int index, int32_t value) const; |
| 723 | void SetRepeatedInt64(Message* message, const FieldDescriptor* field, |
| 724 | int index, int64_t value) const; |
| 725 | void SetRepeatedUInt32(Message* message, const FieldDescriptor* field, |
| 726 | int index, uint32_t value) const; |
| 727 | void SetRepeatedUInt64(Message* message, const FieldDescriptor* field, |
| 728 | int index, uint64_t value) const; |
| 729 | void SetRepeatedFloat(Message* message, const FieldDescriptor* field, |
| 730 | int index, float value) const; |
| 731 | void SetRepeatedDouble(Message* message, const FieldDescriptor* field, |
| 732 | int index, double value) const; |
| 733 | void SetRepeatedBool(Message* message, const FieldDescriptor* field, |
| 734 | int index, bool value) const; |
| 735 | void SetRepeatedString(Message* message, const FieldDescriptor* field, |
| 736 | int index, std::string value) const; |
| 737 | void SetRepeatedEnum(Message* message, const FieldDescriptor* field, |
| 738 | int index, const EnumValueDescriptor* value) const; |
| 739 | // Set an enum field's value with an integer rather than EnumValueDescriptor. |
| 740 | // For proto3 this is just setting the enum field to the value specified, for |
| 741 | // proto2 it's more complicated. If value is a known enum value the field is |
| 742 | // set as usual. If the value is unknown then it is added to the unknown field |
| 743 | // set. Note this matches the behavior of parsing unknown enum values. |
| 744 | // If multiple calls with unknown values happen than they are all added to the |
| 745 | // unknown field set in order of the calls. |
| 746 | void SetRepeatedEnumValue(Message* message, const FieldDescriptor* field, |
| 747 | int index, int value) const; |
| 748 | // Get a mutable pointer to an element of a repeated field with a message |
| 749 | // type. |
| 750 | Message* MutableRepeatedMessage(Message* message, |
| 751 | const FieldDescriptor* field, |
| 752 | int index) const; |
| 753 | |
| 754 | |
| 755 | // Repeated field adders ------------------------------------------- |
| 756 | // These add an element to a repeated field. |
| 757 | |
| 758 | void AddInt32(Message* message, const FieldDescriptor* field, |
| 759 | int32_t value) const; |
| 760 | void AddInt64(Message* message, const FieldDescriptor* field, |
| 761 | int64_t value) const; |
| 762 | void AddUInt32(Message* message, const FieldDescriptor* field, |
| 763 | uint32_t value) const; |
| 764 | void AddUInt64(Message* message, const FieldDescriptor* field, |
| 765 | uint64_t value) const; |
| 766 | void AddFloat(Message* message, const FieldDescriptor* field, |
| 767 | float value) const; |
| 768 | void AddDouble(Message* message, const FieldDescriptor* field, |
| 769 | double value) const; |
| 770 | void AddBool(Message* message, const FieldDescriptor* field, |
| 771 | bool value) const; |
| 772 | void AddString(Message* message, const FieldDescriptor* field, |
| 773 | std::string value) const; |
| 774 | void AddEnum(Message* message, const FieldDescriptor* field, |
| 775 | const EnumValueDescriptor* value) const; |
| 776 | // Add an integer value to a repeated enum field rather than |
| 777 | // EnumValueDescriptor. For proto3 this is just setting the enum field to the |
| 778 | // value specified, for proto2 it's more complicated. If value is a known enum |
| 779 | // value the field is set as usual. If the value is unknown then it is added |
| 780 | // to the unknown field set. Note this matches the behavior of parsing unknown |
| 781 | // enum values. If multiple calls with unknown values happen than they are all |
| 782 | // added to the unknown field set in order of the calls. |
| 783 | void AddEnumValue(Message* message, const FieldDescriptor* field, |
| 784 | int value) const; |
| 785 | // See MutableMessage() for comments on the "factory" parameter. |
| 786 | Message* AddMessage(Message* message, const FieldDescriptor* field, |
| 787 | MessageFactory* factory = nullptr) const; |
| 788 | |
| 789 | // Appends an already-allocated object 'new_entry' to the repeated field |
| 790 | // specified by 'field' passing ownership to the message. |
| 791 | void AddAllocatedMessage(Message* message, const FieldDescriptor* field, |
| 792 | Message* new_entry) const; |
| 793 | |
| 794 | // Similar to AddAllocatedMessage() without internal safety and ownership |
| 795 | // checks. This method should only be used when the objects are on the same |
| 796 | // arena or paired with a call to `UnsafeArenaReleaseLast`. |
| 797 | void UnsafeArenaAddAllocatedMessage(Message* message, |
| 798 | const FieldDescriptor* field, |
| 799 | Message* new_entry) const; |
| 800 | |
| 801 | |
| 802 | // Get a RepeatedFieldRef object that can be used to read the underlying |
| 803 | // repeated field. The type parameter T must be set according to the |
| 804 | // field's cpp type. The following table shows the mapping from cpp type |
| 805 | // to acceptable T. |
| 806 | // |
| 807 | // field->cpp_type() T |
| 808 | // CPPTYPE_INT32 int32_t |
| 809 | // CPPTYPE_UINT32 uint32_t |
| 810 | // CPPTYPE_INT64 int64_t |
| 811 | // CPPTYPE_UINT64 uint64_t |
| 812 | // CPPTYPE_DOUBLE double |
| 813 | // CPPTYPE_FLOAT float |
| 814 | // CPPTYPE_BOOL bool |
| 815 | // CPPTYPE_ENUM generated enum type or int32_t |
| 816 | // CPPTYPE_STRING std::string |
| 817 | // CPPTYPE_MESSAGE generated message type or google::protobuf::Message |
| 818 | // |
| 819 | // A RepeatedFieldRef object can be copied and the resulted object will point |
| 820 | // to the same repeated field in the same message. The object can be used as |
| 821 | // long as the message is not destroyed. |
| 822 | // |
| 823 | // Note that to use this method users need to include the header file |
| 824 | // "reflection.h" (which defines the RepeatedFieldRef class templates). |
| 825 | template <typename T> |
| 826 | RepeatedFieldRef<T> GetRepeatedFieldRef(const Message& message, |
| 827 | const FieldDescriptor* field) const; |
| 828 | |
| 829 | // Like GetRepeatedFieldRef() but return an object that can also be used |
| 830 | // manipulate the underlying repeated field. |
| 831 | template <typename T> |
| 832 | MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef( |
| 833 | Message* message, const FieldDescriptor* field) const; |
| 834 | |
| 835 | // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field |
| 836 | // access. The following repeated field accessors will be removed in the |
| 837 | // future. |
| 838 | // |
| 839 | // Repeated field accessors ------------------------------------------------- |
| 840 | // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular |
| 841 | // access to the data in a RepeatedField. The methods below provide aggregate |
| 842 | // access by exposing the RepeatedField object itself with the Message. |
| 843 | // Applying these templates to inappropriate types will lead to an undefined |
| 844 | // reference at link time (e.g. GetRepeatedField<***double>), or possibly a |
| 845 | // template matching error at compile time (e.g. GetRepeatedPtrField<File>). |
| 846 | // |
| 847 | // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd); |
| 848 | |
| 849 | // DEPRECATED. Please use GetRepeatedFieldRef(). |
| 850 | // |
| 851 | // for T = Cord and all protobuf scalar types except enums. |
| 852 | template <typename T> |
| 853 | PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead" ) |
| 854 | const RepeatedField<T>& GetRepeatedField(const Message& msg, |
| 855 | const FieldDescriptor* d) const { |
| 856 | return GetRepeatedFieldInternal<T>(msg, d); |
| 857 | } |
| 858 | |
| 859 | // DEPRECATED. Please use GetMutableRepeatedFieldRef(). |
| 860 | // |
| 861 | // for T = Cord and all protobuf scalar types except enums. |
| 862 | template <typename T> |
| 863 | PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead" ) |
| 864 | RepeatedField<T>* MutableRepeatedField(Message* msg, |
| 865 | const FieldDescriptor* d) const { |
| 866 | return MutableRepeatedFieldInternal<T>(msg, d); |
| 867 | } |
| 868 | |
| 869 | // DEPRECATED. Please use GetRepeatedFieldRef(). |
| 870 | // |
| 871 | // for T = std::string, google::protobuf::internal::StringPieceField |
| 872 | // google::protobuf::Message & descendants. |
| 873 | template <typename T> |
| 874 | PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead" ) |
| 875 | const RepeatedPtrField<T>& GetRepeatedPtrField( |
| 876 | const Message& msg, const FieldDescriptor* d) const { |
| 877 | return GetRepeatedPtrFieldInternal<T>(msg, d); |
| 878 | } |
| 879 | |
| 880 | // DEPRECATED. Please use GetMutableRepeatedFieldRef(). |
| 881 | // |
| 882 | // for T = std::string, google::protobuf::internal::StringPieceField |
| 883 | // google::protobuf::Message & descendants. |
| 884 | template <typename T> |
| 885 | PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead" ) |
| 886 | RepeatedPtrField<T>* MutableRepeatedPtrField(Message* msg, |
| 887 | const FieldDescriptor* d) const { |
| 888 | return MutableRepeatedPtrFieldInternal<T>(msg, d); |
| 889 | } |
| 890 | |
| 891 | // Extensions ---------------------------------------------------------------- |
| 892 | |
| 893 | // Try to find an extension of this message type by fully-qualified field |
| 894 | // name. Returns nullptr if no extension is known for this name or number. |
| 895 | const FieldDescriptor* FindKnownExtensionByName( |
| 896 | const std::string& name) const; |
| 897 | |
| 898 | // Try to find an extension of this message type by field number. |
| 899 | // Returns nullptr if no extension is known for this name or number. |
| 900 | const FieldDescriptor* FindKnownExtensionByNumber(int number) const; |
| 901 | |
| 902 | // Feature Flags ------------------------------------------------------------- |
| 903 | |
| 904 | // Does this message support storing arbitrary integer values in enum fields? |
| 905 | // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions |
| 906 | // take arbitrary integer values, and the legacy GetEnum() getter will |
| 907 | // dynamically create an EnumValueDescriptor for any integer value without |
| 908 | // one. If |false|, setting an unknown enum value via the integer-based |
| 909 | // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails). |
| 910 | // |
| 911 | // Generic code that uses reflection to handle messages with enum fields |
| 912 | // should check this flag before using the integer-based setter, and either |
| 913 | // downgrade to a compatible value or use the UnknownFieldSet if not. For |
| 914 | // example: |
| 915 | // |
| 916 | // int new_value = GetValueFromApplicationLogic(); |
| 917 | // if (reflection->SupportsUnknownEnumValues()) { |
| 918 | // reflection->SetEnumValue(message, field, new_value); |
| 919 | // } else { |
| 920 | // if (field_descriptor->enum_type()-> |
| 921 | // FindValueByNumber(new_value) != nullptr) { |
| 922 | // reflection->SetEnumValue(message, field, new_value); |
| 923 | // } else if (emit_unknown_enum_values) { |
| 924 | // reflection->MutableUnknownFields(message)->AddVarint( |
| 925 | // field->number(), new_value); |
| 926 | // } else { |
| 927 | // // convert value to a compatible/default value. |
| 928 | // new_value = CompatibleDowngrade(new_value); |
| 929 | // reflection->SetEnumValue(message, field, new_value); |
| 930 | // } |
| 931 | // } |
| 932 | bool SupportsUnknownEnumValues() const; |
| 933 | |
| 934 | // Returns the MessageFactory associated with this message. This can be |
| 935 | // useful for determining if a message is a generated message or not, for |
| 936 | // example: |
| 937 | // if (message->GetReflection()->GetMessageFactory() == |
| 938 | // google::protobuf::MessageFactory::generated_factory()) { |
| 939 | // // This is a generated message. |
| 940 | // } |
| 941 | // It can also be used to create more messages of this type, though |
| 942 | // Message::New() is an easier way to accomplish this. |
| 943 | MessageFactory* GetMessageFactory() const; |
| 944 | |
| 945 | private: |
| 946 | template <typename T> |
| 947 | const RepeatedField<T>& GetRepeatedFieldInternal( |
| 948 | const Message& message, const FieldDescriptor* field) const; |
| 949 | template <typename T> |
| 950 | RepeatedField<T>* MutableRepeatedFieldInternal( |
| 951 | Message* message, const FieldDescriptor* field) const; |
| 952 | template <typename T> |
| 953 | const RepeatedPtrField<T>& GetRepeatedPtrFieldInternal( |
| 954 | const Message& message, const FieldDescriptor* field) const; |
| 955 | template <typename T> |
| 956 | RepeatedPtrField<T>* MutableRepeatedPtrFieldInternal( |
| 957 | Message* message, const FieldDescriptor* field) const; |
| 958 | // Obtain a pointer to a Repeated Field Structure and do some type checking: |
| 959 | // on field->cpp_type(), |
| 960 | // on field->field_option().ctype() (if ctype >= 0) |
| 961 | // of field->message_type() (if message_type != nullptr). |
| 962 | // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer). |
| 963 | void* MutableRawRepeatedField(Message* message, const FieldDescriptor* field, |
| 964 | FieldDescriptor::CppType, int ctype, |
| 965 | const Descriptor* message_type) const; |
| 966 | |
| 967 | const void* GetRawRepeatedField(const Message& message, |
| 968 | const FieldDescriptor* field, |
| 969 | FieldDescriptor::CppType cpptype, int ctype, |
| 970 | const Descriptor* message_type) const; |
| 971 | |
| 972 | // The following methods are used to implement (Mutable)RepeatedFieldRef. |
| 973 | // A Ref object will store a raw pointer to the repeated field data (obtained |
| 974 | // from RepeatedFieldData()) and a pointer to a Accessor (obtained from |
| 975 | // RepeatedFieldAccessor) which will be used to access the raw data. |
| 976 | |
| 977 | // Returns a raw pointer to the repeated field |
| 978 | // |
| 979 | // "cpp_type" and "message_type" are deduced from the type parameter T passed |
| 980 | // to Get(Mutable)RepeatedFieldRef. If T is a generated message type, |
| 981 | // "message_type" should be set to its descriptor. Otherwise "message_type" |
| 982 | // should be set to nullptr. Implementations of this method should check |
| 983 | // whether "cpp_type"/"message_type" is consistent with the actual type of the |
| 984 | // field. We use 1 routine rather than 2 (const vs mutable) because it is |
| 985 | // protected and it doesn't change the message. |
| 986 | void* RepeatedFieldData(Message* message, const FieldDescriptor* field, |
| 987 | FieldDescriptor::CppType cpp_type, |
| 988 | const Descriptor* message_type) const; |
| 989 | |
| 990 | // The returned pointer should point to a singleton instance which implements |
| 991 | // the RepeatedFieldAccessor interface. |
| 992 | const internal::RepeatedFieldAccessor* RepeatedFieldAccessor( |
| 993 | const FieldDescriptor* field) const; |
| 994 | |
| 995 | // Lists all fields of the message which are currently set, except for unknown |
| 996 | // fields and stripped fields. See ListFields for details. |
| 997 | void ListFieldsOmitStripped( |
| 998 | const Message& message, |
| 999 | std::vector<const FieldDescriptor*>* output) const; |
| 1000 | |
| 1001 | bool IsMessageStripped(const Descriptor* descriptor) const { |
| 1002 | return schema_.IsMessageStripped(descriptor); |
| 1003 | } |
| 1004 | |
| 1005 | friend class TextFormat; |
| 1006 | |
| 1007 | void ListFieldsMayFailOnStripped( |
| 1008 | const Message& message, bool should_fail, |
| 1009 | std::vector<const FieldDescriptor*>* output) const; |
| 1010 | |
| 1011 | // Returns true if the message field is backed by a LazyField. |
| 1012 | // |
| 1013 | // A message field may be backed by a LazyField without the user annotation |
| 1014 | // ([lazy = true]). While the user-annotated LazyField is lazily verified on |
| 1015 | // first touch (i.e. failure on access rather than parsing if the LazyField is |
| 1016 | // not initialized), the inferred LazyField is eagerly verified to avoid lazy |
| 1017 | // parsing error at the cost of lower efficiency. When reflecting a message |
| 1018 | // field, use this API instead of checking field->options().lazy(). |
| 1019 | bool IsLazyField(const FieldDescriptor* field) const { |
| 1020 | return IsLazilyVerifiedLazyField(field) || |
| 1021 | IsEagerlyVerifiedLazyField(field); |
| 1022 | } |
| 1023 | |
| 1024 | // Returns true if the field is lazy extension. It is meant to allow python |
| 1025 | // reparse lazy field until b/157559327 is fixed. |
| 1026 | bool IsLazyExtension(const Message& message, |
| 1027 | const FieldDescriptor* field) const; |
| 1028 | |
| 1029 | bool IsLazilyVerifiedLazyField(const FieldDescriptor* field) const; |
| 1030 | bool IsEagerlyVerifiedLazyField(const FieldDescriptor* field) const; |
| 1031 | |
| 1032 | friend class FastReflectionMessageMutator; |
| 1033 | friend bool internal::IsDescendant(Message& root, const Message& message); |
| 1034 | |
| 1035 | const Descriptor* const descriptor_; |
| 1036 | const internal::ReflectionSchema schema_; |
| 1037 | const DescriptorPool* const descriptor_pool_; |
| 1038 | MessageFactory* const message_factory_; |
| 1039 | |
| 1040 | // Last non weak field index. This is an optimization when most weak fields |
| 1041 | // are at the end of the containing message. If a message proto doesn't |
| 1042 | // contain weak fields, then this field equals descriptor_->field_count(). |
| 1043 | int last_non_weak_field_index_; |
| 1044 | |
| 1045 | template <typename T, typename Enable> |
| 1046 | friend class RepeatedFieldRef; |
| 1047 | template <typename T, typename Enable> |
| 1048 | friend class MutableRepeatedFieldRef; |
| 1049 | friend class ::PROTOBUF_NAMESPACE_ID::MessageLayoutInspector; |
| 1050 | friend class ::PROTOBUF_NAMESPACE_ID::AssignDescriptorsHelper; |
| 1051 | friend class DynamicMessageFactory; |
| 1052 | friend class GeneratedMessageReflectionTestHelper; |
| 1053 | friend class python::MapReflectionFriend; |
| 1054 | friend class python::MessageReflectionFriend; |
| 1055 | friend class util::MessageDifferencer; |
| 1056 | #define GOOGLE_PROTOBUF_HAS_CEL_MAP_REFLECTION_FRIEND |
| 1057 | friend class expr::CelMapReflectionFriend; |
| 1058 | friend class internal::MapFieldReflectionTest; |
| 1059 | friend class internal::MapKeySorter; |
| 1060 | friend class internal::WireFormat; |
| 1061 | friend class internal::ReflectionOps; |
| 1062 | friend class internal::SwapFieldHelper; |
| 1063 | // Needed for implementing text format for map. |
| 1064 | friend class internal::MapFieldPrinterHelper; |
| 1065 | |
| 1066 | Reflection(const Descriptor* descriptor, |
| 1067 | const internal::ReflectionSchema& schema, |
| 1068 | const DescriptorPool* pool, MessageFactory* factory); |
| 1069 | |
| 1070 | // Special version for specialized implementations of string. We can't |
| 1071 | // call MutableRawRepeatedField directly here because we don't have access to |
| 1072 | // FieldOptions::* which are defined in descriptor.pb.h. Including that |
| 1073 | // file here is not possible because it would cause a circular include cycle. |
| 1074 | // We use 1 routine rather than 2 (const vs mutable) because it is private |
| 1075 | // and mutable a repeated string field doesn't change the message. |
| 1076 | void* MutableRawRepeatedString(Message* message, const FieldDescriptor* field, |
| 1077 | bool is_string) const; |
| 1078 | |
| 1079 | friend class MapReflectionTester; |
| 1080 | // Returns true if key is in map. Returns false if key is not in map field. |
| 1081 | bool ContainsMapKey(const Message& message, const FieldDescriptor* field, |
| 1082 | const MapKey& key) const; |
| 1083 | |
| 1084 | // If key is in map field: Saves the value pointer to val and returns |
| 1085 | // false. If key in not in map field: Insert the key into map, saves |
| 1086 | // value pointer to val and returns true. Users are able to modify the |
| 1087 | // map value by MapValueRef. |
| 1088 | bool InsertOrLookupMapValue(Message* message, const FieldDescriptor* field, |
| 1089 | const MapKey& key, MapValueRef* val) const; |
| 1090 | |
| 1091 | // If key is in map field: Saves the value pointer to val and returns true. |
| 1092 | // Returns false if key is not in map field. Users are NOT able to modify |
| 1093 | // the value by MapValueConstRef. |
| 1094 | bool LookupMapValue(const Message& message, const FieldDescriptor* field, |
| 1095 | const MapKey& key, MapValueConstRef* val) const; |
| 1096 | bool LookupMapValue(const Message&, const FieldDescriptor*, const MapKey&, |
| 1097 | MapValueRef*) const = delete; |
| 1098 | |
| 1099 | // Delete and returns true if key is in the map field. Returns false |
| 1100 | // otherwise. |
| 1101 | bool DeleteMapValue(Message* message, const FieldDescriptor* field, |
| 1102 | const MapKey& key) const; |
| 1103 | |
| 1104 | // Returns a MapIterator referring to the first element in the map field. |
| 1105 | // If the map field is empty, this function returns the same as |
| 1106 | // reflection::MapEnd. Mutation to the field may invalidate the iterator. |
| 1107 | MapIterator MapBegin(Message* message, const FieldDescriptor* field) const; |
| 1108 | |
| 1109 | // Returns a MapIterator referring to the theoretical element that would |
| 1110 | // follow the last element in the map field. It does not point to any |
| 1111 | // real element. Mutation to the field may invalidate the iterator. |
| 1112 | MapIterator MapEnd(Message* message, const FieldDescriptor* field) const; |
| 1113 | |
| 1114 | // Get the number of <key, value> pair of a map field. The result may be |
| 1115 | // different from FieldSize which can have duplicate keys. |
| 1116 | int MapSize(const Message& message, const FieldDescriptor* field) const; |
| 1117 | |
| 1118 | // Help method for MapIterator. |
| 1119 | friend class MapIterator; |
| 1120 | friend class WireFormatForMapFieldTest; |
| 1121 | internal::MapFieldBase* MutableMapData(Message* message, |
| 1122 | const FieldDescriptor* field) const; |
| 1123 | |
| 1124 | const internal::MapFieldBase* GetMapData(const Message& message, |
| 1125 | const FieldDescriptor* field) const; |
| 1126 | |
| 1127 | template <class T> |
| 1128 | const T& GetRawNonOneof(const Message& message, |
| 1129 | const FieldDescriptor* field) const; |
| 1130 | template <class T> |
| 1131 | T* MutableRawNonOneof(Message* message, const FieldDescriptor* field) const; |
| 1132 | |
| 1133 | template <typename Type> |
| 1134 | const Type& GetRaw(const Message& message, |
| 1135 | const FieldDescriptor* field) const; |
| 1136 | template <typename Type> |
| 1137 | inline Type* MutableRaw(Message* message, const FieldDescriptor* field) const; |
| 1138 | template <typename Type> |
| 1139 | const Type& DefaultRaw(const FieldDescriptor* field) const; |
| 1140 | |
| 1141 | const Message* GetDefaultMessageInstance(const FieldDescriptor* field) const; |
| 1142 | |
| 1143 | inline const uint32_t* GetHasBits(const Message& message) const; |
| 1144 | inline uint32_t* MutableHasBits(Message* message) const; |
| 1145 | inline uint32_t GetOneofCase(const Message& message, |
| 1146 | const OneofDescriptor* oneof_descriptor) const; |
| 1147 | inline uint32_t* MutableOneofCase( |
| 1148 | Message* message, const OneofDescriptor* oneof_descriptor) const; |
| 1149 | inline bool HasExtensionSet(const Message& /* message */) const { |
| 1150 | return schema_.HasExtensionSet(); |
| 1151 | } |
| 1152 | const internal::ExtensionSet& GetExtensionSet(const Message& message) const; |
| 1153 | internal::ExtensionSet* MutableExtensionSet(Message* message) const; |
| 1154 | |
| 1155 | const internal::InternalMetadata& GetInternalMetadata( |
| 1156 | const Message& message) const; |
| 1157 | |
| 1158 | internal::InternalMetadata* MutableInternalMetadata(Message* message) const; |
| 1159 | |
| 1160 | inline bool IsInlined(const FieldDescriptor* field) const; |
| 1161 | |
| 1162 | inline bool HasBit(const Message& message, |
| 1163 | const FieldDescriptor* field) const; |
| 1164 | inline void SetBit(Message* message, const FieldDescriptor* field) const; |
| 1165 | inline void ClearBit(Message* message, const FieldDescriptor* field) const; |
| 1166 | inline void SwapBit(Message* message1, Message* message2, |
| 1167 | const FieldDescriptor* field) const; |
| 1168 | |
| 1169 | inline const uint32_t* GetInlinedStringDonatedArray( |
| 1170 | const Message& message) const; |
| 1171 | inline uint32_t* MutableInlinedStringDonatedArray(Message* message) const; |
| 1172 | inline bool IsInlinedStringDonated(const Message& message, |
| 1173 | const FieldDescriptor* field) const; |
| 1174 | inline void SwapInlinedStringDonated(Message* lhs, Message* rhs, |
| 1175 | const FieldDescriptor* field) const; |
| 1176 | |
| 1177 | // Shallow-swap fields listed in fields vector of two messages. It is the |
| 1178 | // caller's responsibility to make sure shallow swap is safe. |
| 1179 | void UnsafeShallowSwapFields( |
| 1180 | Message* message1, Message* message2, |
| 1181 | const std::vector<const FieldDescriptor*>& fields) const; |
| 1182 | |
| 1183 | // This function only swaps the field. Should swap corresponding has_bit |
| 1184 | // before or after using this function. |
| 1185 | void SwapField(Message* message1, Message* message2, |
| 1186 | const FieldDescriptor* field) const; |
| 1187 | |
| 1188 | // Unsafe but shallow version of SwapField. |
| 1189 | void UnsafeShallowSwapField(Message* message1, Message* message2, |
| 1190 | const FieldDescriptor* field) const; |
| 1191 | |
| 1192 | template <bool unsafe_shallow_swap> |
| 1193 | void SwapFieldsImpl(Message* message1, Message* message2, |
| 1194 | const std::vector<const FieldDescriptor*>& fields) const; |
| 1195 | |
| 1196 | template <bool unsafe_shallow_swap> |
| 1197 | void SwapOneofField(Message* lhs, Message* rhs, |
| 1198 | const OneofDescriptor* oneof_descriptor) const; |
| 1199 | |
| 1200 | inline bool HasOneofField(const Message& message, |
| 1201 | const FieldDescriptor* field) const; |
| 1202 | inline void SetOneofCase(Message* message, |
| 1203 | const FieldDescriptor* field) const; |
| 1204 | inline void ClearOneofField(Message* message, |
| 1205 | const FieldDescriptor* field) const; |
| 1206 | |
| 1207 | template <typename Type> |
| 1208 | inline const Type& GetField(const Message& message, |
| 1209 | const FieldDescriptor* field) const; |
| 1210 | template <typename Type> |
| 1211 | inline void SetField(Message* message, const FieldDescriptor* field, |
| 1212 | const Type& value) const; |
| 1213 | template <typename Type> |
| 1214 | inline Type* MutableField(Message* message, |
| 1215 | const FieldDescriptor* field) const; |
| 1216 | template <typename Type> |
| 1217 | inline const Type& GetRepeatedField(const Message& message, |
| 1218 | const FieldDescriptor* field, |
| 1219 | int index) const; |
| 1220 | template <typename Type> |
| 1221 | inline const Type& GetRepeatedPtrField(const Message& message, |
| 1222 | const FieldDescriptor* field, |
| 1223 | int index) const; |
| 1224 | template <typename Type> |
| 1225 | inline void SetRepeatedField(Message* message, const FieldDescriptor* field, |
| 1226 | int index, Type value) const; |
| 1227 | template <typename Type> |
| 1228 | inline Type* MutableRepeatedField(Message* message, |
| 1229 | const FieldDescriptor* field, |
| 1230 | int index) const; |
| 1231 | template <typename Type> |
| 1232 | inline void AddField(Message* message, const FieldDescriptor* field, |
| 1233 | const Type& value) const; |
| 1234 | template <typename Type> |
| 1235 | inline Type* AddField(Message* message, const FieldDescriptor* field) const; |
| 1236 | |
| 1237 | int GetExtensionNumberOrDie(const Descriptor* type) const; |
| 1238 | |
| 1239 | // Internal versions of EnumValue API perform no checking. Called after checks |
| 1240 | // by public methods. |
| 1241 | void SetEnumValueInternal(Message* message, const FieldDescriptor* field, |
| 1242 | int value) const; |
| 1243 | void SetRepeatedEnumValueInternal(Message* message, |
| 1244 | const FieldDescriptor* field, int index, |
| 1245 | int value) const; |
| 1246 | void AddEnumValueInternal(Message* message, const FieldDescriptor* field, |
| 1247 | int value) const; |
| 1248 | |
| 1249 | friend inline // inline so nobody can call this function. |
| 1250 | void |
| 1251 | RegisterAllTypesInternal(const Metadata* file_level_metadata, int size); |
| 1252 | friend inline const char* ParseLenDelim(int field_number, |
| 1253 | const FieldDescriptor* field, |
| 1254 | Message* msg, |
| 1255 | const Reflection* reflection, |
| 1256 | const char* ptr, |
| 1257 | internal::ParseContext* ctx); |
| 1258 | friend inline const char* ParsePackedField(const FieldDescriptor* field, |
| 1259 | Message* msg, |
| 1260 | const Reflection* reflection, |
| 1261 | const char* ptr, |
| 1262 | internal::ParseContext* ctx); |
| 1263 | |
| 1264 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection); |
| 1265 | }; |
| 1266 | |
| 1267 | // Abstract interface for a factory for message objects. |
| 1268 | class PROTOBUF_EXPORT MessageFactory { |
| 1269 | public: |
| 1270 | inline MessageFactory() {} |
| 1271 | virtual ~MessageFactory(); |
| 1272 | |
| 1273 | // Given a Descriptor, gets or constructs the default (prototype) Message |
| 1274 | // of that type. You can then call that message's New() method to construct |
| 1275 | // a mutable message of that type. |
| 1276 | // |
| 1277 | // Calling this method twice with the same Descriptor returns the same |
| 1278 | // object. The returned object remains property of the factory. Also, any |
| 1279 | // objects created by calling the prototype's New() method share some data |
| 1280 | // with the prototype, so these must be destroyed before the MessageFactory |
| 1281 | // is destroyed. |
| 1282 | // |
| 1283 | // The given descriptor must outlive the returned message, and hence must |
| 1284 | // outlive the MessageFactory. |
| 1285 | // |
| 1286 | // Some implementations do not support all types. GetPrototype() will |
| 1287 | // return nullptr if the descriptor passed in is not supported. |
| 1288 | // |
| 1289 | // This method may or may not be thread-safe depending on the implementation. |
| 1290 | // Each implementation should document its own degree thread-safety. |
| 1291 | virtual const Message* GetPrototype(const Descriptor* type) = 0; |
| 1292 | |
| 1293 | // Gets a MessageFactory which supports all generated, compiled-in messages. |
| 1294 | // In other words, for any compiled-in type FooMessage, the following is true: |
| 1295 | // MessageFactory::generated_factory()->GetPrototype( |
| 1296 | // FooMessage::descriptor()) == FooMessage::default_instance() |
| 1297 | // This factory supports all types which are found in |
| 1298 | // DescriptorPool::generated_pool(). If given a descriptor from any other |
| 1299 | // pool, GetPrototype() will return nullptr. (You can also check if a |
| 1300 | // descriptor is for a generated message by checking if |
| 1301 | // descriptor->file()->pool() == DescriptorPool::generated_pool().) |
| 1302 | // |
| 1303 | // This factory is 100% thread-safe; calling GetPrototype() does not modify |
| 1304 | // any shared data. |
| 1305 | // |
| 1306 | // This factory is a singleton. The caller must not delete the object. |
| 1307 | static MessageFactory* generated_factory(); |
| 1308 | |
| 1309 | // For internal use only: Registers a .proto file at static initialization |
| 1310 | // time, to be placed in generated_factory. The first time GetPrototype() |
| 1311 | // is called with a descriptor from this file, |register_messages| will be |
| 1312 | // called, with the file name as the parameter. It must call |
| 1313 | // InternalRegisterGeneratedMessage() (below) to register each message type |
| 1314 | // in the file. This strange mechanism is necessary because descriptors are |
| 1315 | // built lazily, so we can't register types by their descriptor until we |
| 1316 | // know that the descriptor exists. |filename| must be a permanent string. |
| 1317 | static void InternalRegisterGeneratedFile( |
| 1318 | const google::protobuf::internal::DescriptorTable* table); |
| 1319 | |
| 1320 | // For internal use only: Registers a message type. Called only by the |
| 1321 | // functions which are registered with InternalRegisterGeneratedFile(), |
| 1322 | // above. |
| 1323 | static void InternalRegisterGeneratedMessage(const Descriptor* descriptor, |
| 1324 | const Message* prototype); |
| 1325 | |
| 1326 | |
| 1327 | private: |
| 1328 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory); |
| 1329 | }; |
| 1330 | |
| 1331 | #define DECLARE_GET_REPEATED_FIELD(TYPE) \ |
| 1332 | template <> \ |
| 1333 | PROTOBUF_EXPORT const RepeatedField<TYPE>& \ |
| 1334 | Reflection::GetRepeatedFieldInternal<TYPE>( \ |
| 1335 | const Message& message, const FieldDescriptor* field) const; \ |
| 1336 | \ |
| 1337 | template <> \ |
| 1338 | PROTOBUF_EXPORT RepeatedField<TYPE>* \ |
| 1339 | Reflection::MutableRepeatedFieldInternal<TYPE>( \ |
| 1340 | Message * message, const FieldDescriptor* field) const; |
| 1341 | |
| 1342 | DECLARE_GET_REPEATED_FIELD(int32_t) |
| 1343 | DECLARE_GET_REPEATED_FIELD(int64_t) |
| 1344 | DECLARE_GET_REPEATED_FIELD(uint32_t) |
| 1345 | DECLARE_GET_REPEATED_FIELD(uint64_t) |
| 1346 | DECLARE_GET_REPEATED_FIELD(float) |
| 1347 | DECLARE_GET_REPEATED_FIELD(double) |
| 1348 | DECLARE_GET_REPEATED_FIELD(bool) |
| 1349 | |
| 1350 | #undef DECLARE_GET_REPEATED_FIELD |
| 1351 | |
| 1352 | // Tries to downcast this message to a generated message type. Returns nullptr |
| 1353 | // if this class is not an instance of T. This works even if RTTI is disabled. |
| 1354 | // |
| 1355 | // This also has the effect of creating a strong reference to T that will |
| 1356 | // prevent the linker from stripping it out at link time. This can be important |
| 1357 | // if you are using a DynamicMessageFactory that delegates to the generated |
| 1358 | // factory. |
| 1359 | template <typename T> |
| 1360 | const T* DynamicCastToGenerated(const Message* from) { |
| 1361 | // Compile-time assert that T is a generated type that has a |
| 1362 | // default_instance() accessor, but avoid actually calling it. |
| 1363 | const T& (*get_default_instance)() = &T::default_instance; |
| 1364 | (void)get_default_instance; |
| 1365 | |
| 1366 | // Compile-time assert that T is a subclass of google::protobuf::Message. |
| 1367 | const Message* unused = static_cast<T*>(nullptr); |
| 1368 | (void)unused; |
| 1369 | |
| 1370 | #if PROTOBUF_RTTI |
| 1371 | return dynamic_cast<const T*>(from); |
| 1372 | #else |
| 1373 | bool ok = from != nullptr && |
| 1374 | T::default_instance().GetReflection() == from->GetReflection(); |
| 1375 | return ok ? down_cast<const T*>(from) : nullptr; |
| 1376 | #endif |
| 1377 | } |
| 1378 | |
| 1379 | template <typename T> |
| 1380 | T* DynamicCastToGenerated(Message* from) { |
| 1381 | const Message* message_const = from; |
| 1382 | return const_cast<T*>(DynamicCastToGenerated<T>(message_const)); |
| 1383 | } |
| 1384 | |
| 1385 | // Call this function to ensure that this message's reflection is linked into |
| 1386 | // the binary: |
| 1387 | // |
| 1388 | // google::protobuf::LinkMessageReflection<pkg::FooMessage>(); |
| 1389 | // |
| 1390 | // This will ensure that the following lookup will succeed: |
| 1391 | // |
| 1392 | // DescriptorPool::generated_pool()->FindMessageTypeByName("pkg.FooMessage"); |
| 1393 | // |
| 1394 | // As a side-effect, it will also guarantee that anything else from the same |
| 1395 | // .proto file will also be available for lookup in the generated pool. |
| 1396 | // |
| 1397 | // This function does not actually register the message, so it does not need |
| 1398 | // to be called before the lookup. However it does need to occur in a function |
| 1399 | // that cannot be stripped from the binary (ie. it must be reachable from main). |
| 1400 | // |
| 1401 | // Best practice is to call this function as close as possible to where the |
| 1402 | // reflection is actually needed. This function is very cheap to call, so you |
| 1403 | // should not need to worry about its runtime overhead except in the tightest |
| 1404 | // of loops (on x86-64 it compiles into two "mov" instructions). |
| 1405 | template <typename T> |
| 1406 | void LinkMessageReflection() { |
| 1407 | internal::StrongReference(T::default_instance); |
| 1408 | } |
| 1409 | |
| 1410 | // ============================================================================= |
| 1411 | // Implementation details for {Get,Mutable}RawRepeatedPtrField. We provide |
| 1412 | // specializations for <std::string>, <StringPieceField> and <Message> and |
| 1413 | // handle everything else with the default template which will match any type |
| 1414 | // having a method with signature "static const google::protobuf::Descriptor* |
| 1415 | // descriptor()". Such a type presumably is a descendant of google::protobuf::Message. |
| 1416 | |
| 1417 | template <> |
| 1418 | inline const RepeatedPtrField<std::string>& |
| 1419 | Reflection::GetRepeatedPtrFieldInternal<std::string>( |
| 1420 | const Message& message, const FieldDescriptor* field) const { |
| 1421 | return *static_cast<RepeatedPtrField<std::string>*>( |
| 1422 | MutableRawRepeatedString(message: const_cast<Message*>(&message), field, is_string: true)); |
| 1423 | } |
| 1424 | |
| 1425 | template <> |
| 1426 | inline RepeatedPtrField<std::string>* |
| 1427 | Reflection::MutableRepeatedPtrFieldInternal<std::string>( |
| 1428 | Message* message, const FieldDescriptor* field) const { |
| 1429 | return static_cast<RepeatedPtrField<std::string>*>( |
| 1430 | MutableRawRepeatedString(message, field, is_string: true)); |
| 1431 | } |
| 1432 | |
| 1433 | |
| 1434 | // ----- |
| 1435 | |
| 1436 | template <> |
| 1437 | inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrFieldInternal( |
| 1438 | const Message& message, const FieldDescriptor* field) const { |
| 1439 | return *static_cast<const RepeatedPtrField<Message>*>(GetRawRepeatedField( |
| 1440 | message, field, cpptype: FieldDescriptor::CPPTYPE_MESSAGE, ctype: -1, message_type: nullptr)); |
| 1441 | } |
| 1442 | |
| 1443 | template <> |
| 1444 | inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrFieldInternal( |
| 1445 | Message* message, const FieldDescriptor* field) const { |
| 1446 | return static_cast<RepeatedPtrField<Message>*>(MutableRawRepeatedField( |
| 1447 | message, field, FieldDescriptor::CPPTYPE_MESSAGE, ctype: -1, message_type: nullptr)); |
| 1448 | } |
| 1449 | |
| 1450 | template <typename PB> |
| 1451 | inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrFieldInternal( |
| 1452 | const Message& message, const FieldDescriptor* field) const { |
| 1453 | return *static_cast<const RepeatedPtrField<PB>*>( |
| 1454 | GetRawRepeatedField(message, field, cpptype: FieldDescriptor::CPPTYPE_MESSAGE, ctype: -1, |
| 1455 | message_type: PB::default_instance().GetDescriptor())); |
| 1456 | } |
| 1457 | |
| 1458 | template <typename PB> |
| 1459 | inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrFieldInternal( |
| 1460 | Message* message, const FieldDescriptor* field) const { |
| 1461 | return static_cast<RepeatedPtrField<PB>*>( |
| 1462 | MutableRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, |
| 1463 | ctype: -1, message_type: PB::default_instance().GetDescriptor())); |
| 1464 | } |
| 1465 | |
| 1466 | template <typename Type> |
| 1467 | const Type& Reflection::DefaultRaw(const FieldDescriptor* field) const { |
| 1468 | return *reinterpret_cast<const Type*>(schema_.GetFieldDefault(field)); |
| 1469 | } |
| 1470 | |
| 1471 | uint32_t Reflection::GetOneofCase( |
| 1472 | const Message& message, const OneofDescriptor* oneof_descriptor) const { |
| 1473 | GOOGLE_DCHECK(!oneof_descriptor->is_synthetic()); |
| 1474 | return internal::GetConstRefAtOffset<uint32_t>( |
| 1475 | message, offset: schema_.GetOneofCaseOffset(oneof_descriptor)); |
| 1476 | } |
| 1477 | |
| 1478 | bool Reflection::HasOneofField(const Message& message, |
| 1479 | const FieldDescriptor* field) const { |
| 1480 | return (GetOneofCase(message, oneof_descriptor: field->containing_oneof()) == |
| 1481 | static_cast<uint32_t>(field->number())); |
| 1482 | } |
| 1483 | |
| 1484 | template <typename Type> |
| 1485 | const Type& Reflection::GetRaw(const Message& message, |
| 1486 | const FieldDescriptor* field) const { |
| 1487 | GOOGLE_DCHECK(!schema_.InRealOneof(field) || HasOneofField(message, field)) |
| 1488 | << "Field = " << field->full_name(); |
| 1489 | return internal::GetConstRefAtOffset<Type>(message, |
| 1490 | schema_.GetFieldOffset(field)); |
| 1491 | } |
| 1492 | } // namespace protobuf |
| 1493 | } // namespace google |
| 1494 | |
| 1495 | #include <google/protobuf/port_undef.inc> |
| 1496 | |
| 1497 | #endif // GOOGLE_PROTOBUF_MESSAGE_H__ |
| 1498 | |