| 1 | // Protocol Buffers - Google's data interchange format |
| 2 | // Copyright 2008 Google Inc. All rights reserved. |
| 3 | // https://developers.google.com/protocol-buffers/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are |
| 7 | // met: |
| 8 | // |
| 9 | // * Redistributions of source code must retain the above copyright |
| 10 | // notice, this list of conditions and the following disclaimer. |
| 11 | // * Redistributions in binary form must reproduce the above |
| 12 | // copyright notice, this list of conditions and the following disclaimer |
| 13 | // in the documentation and/or other materials provided with the |
| 14 | // distribution. |
| 15 | // * Neither the name of Google Inc. nor the names of its |
| 16 | // contributors may be used to endorse or promote products derived from |
| 17 | // this software without specific prior written permission. |
| 18 | // |
| 19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | |
| 31 | // Author: kenton@google.com (Kenton Varda) |
| 32 | // Based on original Protocol Buffers design by |
| 33 | // Sanjay Ghemawat, Jeff Dean, and others. |
| 34 | // |
| 35 | // RepeatedField and RepeatedPtrField are used by generated protocol message |
| 36 | // classes to manipulate repeated fields. These classes are very similar to |
| 37 | // STL's vector, but include a number of optimizations found to be useful |
| 38 | // specifically in the case of Protocol Buffers. RepeatedPtrField is |
| 39 | // particularly different from STL vector as it manages ownership of the |
| 40 | // pointers that it contains. |
| 41 | // |
| 42 | // This header covers RepeatedField. |
| 43 | |
| 44 | #ifndef GOOGLE_PROTOBUF_REPEATED_FIELD_H__ |
| 45 | #define GOOGLE_PROTOBUF_REPEATED_FIELD_H__ |
| 46 | |
| 47 | |
| 48 | #include <algorithm> |
| 49 | #include <iterator> |
| 50 | #include <limits> |
| 51 | #include <string> |
| 52 | #include <type_traits> |
| 53 | #include <utility> |
| 54 | |
| 55 | #include <google/protobuf/stubs/logging.h> |
| 56 | #include <google/protobuf/stubs/common.h> |
| 57 | #include <google/protobuf/arena.h> |
| 58 | #include <google/protobuf/port.h> |
| 59 | #include <google/protobuf/message_lite.h> |
| 60 | #include <google/protobuf/repeated_ptr_field.h> |
| 61 | |
| 62 | |
| 63 | // Must be included last. |
| 64 | #include <google/protobuf/port_def.inc> |
| 65 | |
| 66 | #ifdef SWIG |
| 67 | #error "You cannot SWIG proto headers" |
| 68 | #endif |
| 69 | |
| 70 | namespace google { |
| 71 | namespace protobuf { |
| 72 | |
| 73 | class Message; |
| 74 | |
| 75 | namespace internal { |
| 76 | |
| 77 | template <typename T, int kRepHeaderSize> |
| 78 | constexpr int RepeatedFieldLowerClampLimit() { |
| 79 | // The header is padded to be at least `sizeof(T)` when it would be smaller |
| 80 | // otherwise. |
| 81 | static_assert(sizeof(T) <= kRepHeaderSize, "" ); |
| 82 | // We want to pad the minimum size to be a power of two bytes, including the |
| 83 | // header. |
| 84 | // The first allocation is kRepHeaderSize bytes worth of elements for a total |
| 85 | // of 2*kRepHeaderSize bytes. |
| 86 | // For an 8-byte header, we allocate 8 bool, 2 ints, or 1 int64. |
| 87 | return kRepHeaderSize / sizeof(T); |
| 88 | } |
| 89 | |
| 90 | // kRepeatedFieldUpperClampLimit is the lowest signed integer value that |
| 91 | // overflows when multiplied by 2 (which is undefined behavior). Sizes above |
| 92 | // this will clamp to the maximum int value instead of following exponential |
| 93 | // growth when growing a repeated field. |
| 94 | constexpr int kRepeatedFieldUpperClampLimit = |
| 95 | (std::numeric_limits<int>::max() / 2) + 1; |
| 96 | |
| 97 | template <typename Iter> |
| 98 | inline int CalculateReserve(Iter begin, Iter end, std::forward_iterator_tag) { |
| 99 | return static_cast<int>(std::distance(begin, end)); |
| 100 | } |
| 101 | |
| 102 | template <typename Iter> |
| 103 | inline int CalculateReserve(Iter /*begin*/, Iter /*end*/, |
| 104 | std::input_iterator_tag /*unused*/) { |
| 105 | return -1; |
| 106 | } |
| 107 | |
| 108 | template <typename Iter> |
| 109 | inline int CalculateReserve(Iter begin, Iter end) { |
| 110 | typedef typename std::iterator_traits<Iter>::iterator_category Category; |
| 111 | return CalculateReserve(begin, end, Category()); |
| 112 | } |
| 113 | |
| 114 | // Swaps two blocks of memory of size sizeof(T). |
| 115 | template <typename T> |
| 116 | inline void SwapBlock(char* p, char* q) { |
| 117 | T tmp; |
| 118 | memcpy(&tmp, p, sizeof(T)); |
| 119 | memcpy(dest: p, src: q, n: sizeof(T)); |
| 120 | memcpy(q, &tmp, sizeof(T)); |
| 121 | } |
| 122 | |
| 123 | // Swaps two blocks of memory of size kSize: |
| 124 | // template <int kSize> void memswap(char* p, char* q); |
| 125 | template <int kSize> |
| 126 | inline typename std::enable_if<(kSize == 0), void>::type memswap(char*, char*) { |
| 127 | } |
| 128 | |
| 129 | #define PROTO_MEMSWAP_DEF_SIZE(reg_type, max_size) \ |
| 130 | template <int kSize> \ |
| 131 | typename std::enable_if<(kSize >= sizeof(reg_type) && kSize < (max_size)), \ |
| 132 | void>::type \ |
| 133 | memswap(char* p, char* q) { \ |
| 134 | SwapBlock<reg_type>(p, q); \ |
| 135 | memswap<kSize - sizeof(reg_type)>(p + sizeof(reg_type), \ |
| 136 | q + sizeof(reg_type)); \ |
| 137 | } |
| 138 | |
| 139 | PROTO_MEMSWAP_DEF_SIZE(uint8_t, 2) |
| 140 | PROTO_MEMSWAP_DEF_SIZE(uint16_t, 4) |
| 141 | PROTO_MEMSWAP_DEF_SIZE(uint32_t, 8) |
| 142 | |
| 143 | #ifdef __SIZEOF_INT128__ |
| 144 | PROTO_MEMSWAP_DEF_SIZE(uint64_t, 16) |
| 145 | PROTO_MEMSWAP_DEF_SIZE(__uint128_t, (1u << 31)) |
| 146 | #else |
| 147 | PROTO_MEMSWAP_DEF_SIZE(uint64_t, (1u << 31)) |
| 148 | #endif |
| 149 | |
| 150 | #undef PROTO_MEMSWAP_DEF_SIZE |
| 151 | |
| 152 | template <typename Element> |
| 153 | class RepeatedIterator; |
| 154 | |
| 155 | } // namespace internal |
| 156 | |
| 157 | // RepeatedField is used to represent repeated fields of a primitive type (in |
| 158 | // other words, everything except strings and nested Messages). Most users will |
| 159 | // not ever use a RepeatedField directly; they will use the get-by-index, |
| 160 | // set-by-index, and add accessors that are generated for all repeated fields. |
| 161 | template <typename Element> |
| 162 | class RepeatedField final { |
| 163 | static_assert( |
| 164 | alignof(Arena) >= alignof(Element), |
| 165 | "We only support types that have an alignment smaller than Arena" ); |
| 166 | |
| 167 | public: |
| 168 | constexpr RepeatedField(); |
| 169 | explicit RepeatedField(Arena* arena); |
| 170 | |
| 171 | RepeatedField(const RepeatedField& other); |
| 172 | |
| 173 | template <typename Iter, |
| 174 | typename = typename std::enable_if<std::is_constructible< |
| 175 | Element, decltype(*std::declval<Iter>())>::value>::type> |
| 176 | RepeatedField(Iter begin, Iter end); |
| 177 | |
| 178 | ~RepeatedField(); |
| 179 | |
| 180 | RepeatedField& operator=(const RepeatedField& other); |
| 181 | |
| 182 | RepeatedField(RepeatedField&& other) noexcept; |
| 183 | RepeatedField& operator=(RepeatedField&& other) noexcept; |
| 184 | |
| 185 | bool empty() const; |
| 186 | int size() const; |
| 187 | |
| 188 | const Element& Get(int index) const; |
| 189 | Element* Mutable(int index); |
| 190 | |
| 191 | const Element& operator[](int index) const { return Get(index); } |
| 192 | Element& operator[](int index) { return *Mutable(index); } |
| 193 | |
| 194 | const Element& at(int index) const; |
| 195 | Element& at(int index); |
| 196 | |
| 197 | void Set(int index, const Element& value); |
| 198 | void Add(const Element& value); |
| 199 | // Appends a new element and returns a pointer to it. |
| 200 | // The new element is uninitialized if |Element| is a POD type. |
| 201 | Element* Add(); |
| 202 | // Appends elements in the range [begin, end) after reserving |
| 203 | // the appropriate number of elements. |
| 204 | template <typename Iter> |
| 205 | void Add(Iter begin, Iter end); |
| 206 | |
| 207 | // Removes the last element in the array. |
| 208 | void RemoveLast(); |
| 209 | |
| 210 | // Extracts elements with indices in "[start .. start+num-1]". |
| 211 | // Copies them into "elements[0 .. num-1]" if "elements" is not nullptr. |
| 212 | // Caution: also moves elements with indices [start+num ..]. |
| 213 | // Calling this routine inside a loop can cause quadratic behavior. |
| 214 | void ExtractSubrange(int start, int num, Element* elements); |
| 215 | |
| 216 | PROTOBUF_ATTRIBUTE_REINITIALIZES void Clear(); |
| 217 | void MergeFrom(const RepeatedField& other); |
| 218 | PROTOBUF_ATTRIBUTE_REINITIALIZES void CopyFrom(const RepeatedField& other); |
| 219 | |
| 220 | // Replaces the contents with RepeatedField(begin, end). |
| 221 | template <typename Iter> |
| 222 | PROTOBUF_ATTRIBUTE_REINITIALIZES void Assign(Iter begin, Iter end); |
| 223 | |
| 224 | // Reserves space to expand the field to at least the given size. If the |
| 225 | // array is grown, it will always be at least doubled in size. |
| 226 | void Reserve(int new_size); |
| 227 | |
| 228 | // Resizes the RepeatedField to a new, smaller size. This is O(1). |
| 229 | void Truncate(int new_size); |
| 230 | |
| 231 | void AddAlreadyReserved(const Element& value); |
| 232 | // Appends a new element and return a pointer to it. |
| 233 | // The new element is uninitialized if |Element| is a POD type. |
| 234 | // Should be called only if Capacity() > Size(). |
| 235 | Element* AddAlreadyReserved(); |
| 236 | Element* AddNAlreadyReserved(int elements); |
| 237 | int Capacity() const; |
| 238 | |
| 239 | // Like STL resize. Uses value to fill appended elements. |
| 240 | // Like Truncate() if new_size <= size(), otherwise this is |
| 241 | // O(new_size - size()). |
| 242 | void Resize(int new_size, const Element& value); |
| 243 | |
| 244 | // Gets the underlying array. This pointer is possibly invalidated by |
| 245 | // any add or remove operation. |
| 246 | Element* mutable_data(); |
| 247 | const Element* data() const; |
| 248 | |
| 249 | // Swaps entire contents with "other". If they are separate arenas then, |
| 250 | // copies data between each other. |
| 251 | void Swap(RepeatedField* other); |
| 252 | |
| 253 | // Swaps entire contents with "other". Should be called only if the caller can |
| 254 | // guarantee that both repeated fields are on the same arena or are on the |
| 255 | // heap. Swapping between different arenas is disallowed and caught by a |
| 256 | // GOOGLE_DCHECK (see API docs for details). |
| 257 | void UnsafeArenaSwap(RepeatedField* other); |
| 258 | |
| 259 | // Swaps two elements. |
| 260 | void SwapElements(int index1, int index2); |
| 261 | |
| 262 | // STL-like iterator support |
| 263 | typedef internal::RepeatedIterator<Element> iterator; |
| 264 | typedef internal::RepeatedIterator<const Element> const_iterator; |
| 265 | typedef Element value_type; |
| 266 | typedef value_type& reference; |
| 267 | typedef const value_type& const_reference; |
| 268 | typedef value_type* pointer; |
| 269 | typedef const value_type* const_pointer; |
| 270 | typedef int size_type; |
| 271 | typedef ptrdiff_t difference_type; |
| 272 | |
| 273 | iterator begin(); |
| 274 | const_iterator begin() const; |
| 275 | const_iterator cbegin() const; |
| 276 | iterator end(); |
| 277 | const_iterator end() const; |
| 278 | const_iterator cend() const; |
| 279 | |
| 280 | // Reverse iterator support |
| 281 | typedef std::reverse_iterator<const_iterator> const_reverse_iterator; |
| 282 | typedef std::reverse_iterator<iterator> reverse_iterator; |
| 283 | reverse_iterator rbegin() { return reverse_iterator(end()); } |
| 284 | const_reverse_iterator rbegin() const { |
| 285 | return const_reverse_iterator(end()); |
| 286 | } |
| 287 | reverse_iterator rend() { return reverse_iterator(begin()); } |
| 288 | const_reverse_iterator rend() const { |
| 289 | return const_reverse_iterator(begin()); |
| 290 | } |
| 291 | |
| 292 | // Returns the number of bytes used by the repeated field, excluding |
| 293 | // sizeof(*this) |
| 294 | size_t SpaceUsedExcludingSelfLong() const; |
| 295 | |
| 296 | int SpaceUsedExcludingSelf() const { |
| 297 | return internal::ToIntSize(size: SpaceUsedExcludingSelfLong()); |
| 298 | } |
| 299 | |
| 300 | // Removes the element referenced by position. |
| 301 | // |
| 302 | // Returns an iterator to the element immediately following the removed |
| 303 | // element. |
| 304 | // |
| 305 | // Invalidates all iterators at or after the removed element, including end(). |
| 306 | iterator erase(const_iterator position); |
| 307 | |
| 308 | // Removes the elements in the range [first, last). |
| 309 | // |
| 310 | // Returns an iterator to the element immediately following the removed range. |
| 311 | // |
| 312 | // Invalidates all iterators at or after the removed range, including end(). |
| 313 | iterator erase(const_iterator first, const_iterator last); |
| 314 | |
| 315 | // Gets the Arena on which this RepeatedField stores its elements. |
| 316 | inline Arena* GetArena() const { |
| 317 | return GetOwningArena(); |
| 318 | } |
| 319 | |
| 320 | // For internal use only. |
| 321 | // |
| 322 | // This is public due to it being called by generated code. |
| 323 | inline void InternalSwap(RepeatedField* other); |
| 324 | |
| 325 | private: |
| 326 | template <typename T> friend class Arena::InternalHelper; |
| 327 | |
| 328 | // Gets the Arena on which this RepeatedField stores its elements. |
| 329 | inline Arena* GetOwningArena() const { |
| 330 | return (total_size_ == 0) ? static_cast<Arena*>(arena_or_elements_) |
| 331 | : rep()->arena; |
| 332 | } |
| 333 | |
| 334 | static constexpr int kInitialSize = 0; |
| 335 | // A note on the representation here (see also comment below for |
| 336 | // RepeatedPtrFieldBase's struct Rep): |
| 337 | // |
| 338 | // We maintain the same sizeof(RepeatedField) as before we added arena support |
| 339 | // so that we do not degrade performance by bloating memory usage. Directly |
| 340 | // adding an arena_ element to RepeatedField is quite costly. By using |
| 341 | // indirection in this way, we keep the same size when the RepeatedField is |
| 342 | // empty (common case), and add only an 8-byte header to the elements array |
| 343 | // when non-empty. We make sure to place the size fields directly in the |
| 344 | // RepeatedField class to avoid costly cache misses due to the indirection. |
| 345 | int current_size_; |
| 346 | int total_size_; |
| 347 | // Pad the Rep after arena allow for power-of-two byte sizes when |
| 348 | // sizeof(Element) > sizeof(Arena*). eg for 16-byte objects. |
| 349 | static PROTOBUF_CONSTEXPR const size_t = |
| 350 | sizeof(Arena*) < sizeof(Element) ? sizeof(Element) : sizeof(Arena*); |
| 351 | struct Rep { |
| 352 | Arena* arena; |
| 353 | Element* elements() { |
| 354 | return reinterpret_cast<Element*>(reinterpret_cast<char*>(this) + |
| 355 | kRepHeaderSize); |
| 356 | } |
| 357 | }; |
| 358 | |
| 359 | // If total_size_ == 0 this points to an Arena otherwise it points to the |
| 360 | // elements member of a Rep struct. Using this invariant allows the storage of |
| 361 | // the arena pointer without an extra allocation in the constructor. |
| 362 | void* arena_or_elements_; |
| 363 | |
| 364 | // Returns a pointer to elements array. |
| 365 | // pre-condition: the array must have been allocated. |
| 366 | Element* elements() const { |
| 367 | GOOGLE_DCHECK_GT(total_size_, 0); |
| 368 | // Because of above pre-condition this cast is safe. |
| 369 | return unsafe_elements(); |
| 370 | } |
| 371 | |
| 372 | // Returns a pointer to elements array if it exists; otherwise either null or |
| 373 | // an invalid pointer is returned. This only happens for empty repeated |
| 374 | // fields, where you can't dereference this pointer anyway (it's empty). |
| 375 | Element* unsafe_elements() const { |
| 376 | return static_cast<Element*>(arena_or_elements_); |
| 377 | } |
| 378 | |
| 379 | // Returns a pointer to the Rep struct. |
| 380 | // pre-condition: the Rep must have been allocated, ie elements() is safe. |
| 381 | Rep* rep() const { |
| 382 | return reinterpret_cast<Rep*>(reinterpret_cast<char*>(elements()) - |
| 383 | kRepHeaderSize); |
| 384 | } |
| 385 | |
| 386 | friend class Arena; |
| 387 | typedef void InternalArenaConstructable_; |
| 388 | |
| 389 | // Moves the contents of |from| into |to|, possibly clobbering |from| in the |
| 390 | // process. For primitive types this is just a memcpy(), but it could be |
| 391 | // specialized for non-primitive types to, say, swap each element instead. |
| 392 | void MoveArray(Element* to, Element* from, int size); |
| 393 | |
| 394 | // Copies the elements of |from| into |to|. |
| 395 | void CopyArray(Element* to, const Element* from, int size); |
| 396 | |
| 397 | // Internal helper to delete all elements and deallocate the storage. |
| 398 | void InternalDeallocate(Rep* rep, int size, bool in_destructor) { |
| 399 | if (rep != nullptr) { |
| 400 | Element* e = &rep->elements()[0]; |
| 401 | if (!std::is_trivial<Element>::value) { |
| 402 | Element* limit = &rep->elements()[size]; |
| 403 | for (; e < limit; e++) { |
| 404 | e->~Element(); |
| 405 | } |
| 406 | } |
| 407 | const size_t bytes = size * sizeof(*e) + kRepHeaderSize; |
| 408 | if (rep->arena == nullptr) { |
| 409 | internal::SizedDelete(p: rep, size: bytes); |
| 410 | } else if (!in_destructor) { |
| 411 | // If we are in the destructor, we might be being destroyed as part of |
| 412 | // the arena teardown. We can't try and return blocks to the arena then. |
| 413 | rep->arena->ReturnArrayMemory(rep, bytes); |
| 414 | } |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | // This class is a performance wrapper around RepeatedField::Add(const T&) |
| 419 | // function. In general unless a RepeatedField is a local stack variable LLVM |
| 420 | // has a hard time optimizing Add. The machine code tends to be |
| 421 | // loop: |
| 422 | // mov %size, dword ptr [%repeated_field] // load |
| 423 | // cmp %size, dword ptr [%repeated_field + 4] |
| 424 | // jae fallback |
| 425 | // mov %buffer, qword ptr [%repeated_field + 8] |
| 426 | // mov dword [%buffer + %size * 4], %value |
| 427 | // inc %size // increment |
| 428 | // mov dword ptr [%repeated_field], %size // store |
| 429 | // jmp loop |
| 430 | // |
| 431 | // This puts a load/store in each iteration of the important loop variable |
| 432 | // size. It's a pretty bad compile that happens even in simple cases, but |
| 433 | // largely the presence of the fallback path disturbs the compilers mem-to-reg |
| 434 | // analysis. |
| 435 | // |
| 436 | // This class takes ownership of a repeated field for the duration of its |
| 437 | // lifetime. The repeated field should not be accessed during this time, ie. |
| 438 | // only access through this class is allowed. This class should always be a |
| 439 | // function local stack variable. Intended use |
| 440 | // |
| 441 | // void AddSequence(const int* begin, const int* end, RepeatedField<int>* out) |
| 442 | // { |
| 443 | // RepeatedFieldAdder<int> adder(out); // Take ownership of out |
| 444 | // for (auto it = begin; it != end; ++it) { |
| 445 | // adder.Add(*it); |
| 446 | // } |
| 447 | // } |
| 448 | // |
| 449 | // Typically, due to the fact that adder is a local stack variable, the |
| 450 | // compiler will be successful in mem-to-reg transformation and the machine |
| 451 | // code will be loop: cmp %size, %capacity jae fallback mov dword ptr [%buffer |
| 452 | // + %size * 4], %val inc %size jmp loop |
| 453 | // |
| 454 | // The first version executes at 7 cycles per iteration while the second |
| 455 | // version executes at only 1 or 2 cycles. |
| 456 | template <int = 0, bool = std::is_trivial<Element>::value> |
| 457 | class FastAdderImpl { |
| 458 | public: |
| 459 | explicit FastAdderImpl(RepeatedField* rf) : repeated_field_(rf) { |
| 460 | index_ = repeated_field_->current_size_; |
| 461 | capacity_ = repeated_field_->total_size_; |
| 462 | buffer_ = repeated_field_->unsafe_elements(); |
| 463 | } |
| 464 | ~FastAdderImpl() { repeated_field_->current_size_ = index_; } |
| 465 | |
| 466 | void Add(Element val) { |
| 467 | if (index_ == capacity_) { |
| 468 | repeated_field_->current_size_ = index_; |
| 469 | repeated_field_->Reserve(index_ + 1); |
| 470 | capacity_ = repeated_field_->total_size_; |
| 471 | buffer_ = repeated_field_->unsafe_elements(); |
| 472 | } |
| 473 | buffer_[index_++] = val; |
| 474 | } |
| 475 | |
| 476 | private: |
| 477 | RepeatedField* repeated_field_; |
| 478 | int index_; |
| 479 | int capacity_; |
| 480 | Element* buffer_; |
| 481 | |
| 482 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FastAdderImpl); |
| 483 | }; |
| 484 | |
| 485 | // FastAdder is a wrapper for adding fields. The specialization above handles |
| 486 | // POD types more efficiently than RepeatedField. |
| 487 | template <int I> |
| 488 | class FastAdderImpl<I, false> { |
| 489 | public: |
| 490 | explicit FastAdderImpl(RepeatedField* rf) : repeated_field_(rf) {} |
| 491 | void Add(const Element& val) { repeated_field_->Add(val); } |
| 492 | |
| 493 | private: |
| 494 | RepeatedField* repeated_field_; |
| 495 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FastAdderImpl); |
| 496 | }; |
| 497 | |
| 498 | using FastAdder = FastAdderImpl<>; |
| 499 | |
| 500 | friend class TestRepeatedFieldHelper; |
| 501 | friend class ::google::protobuf::internal::ParseContext; |
| 502 | }; |
| 503 | |
| 504 | namespace internal { |
| 505 | |
| 506 | // This is a helper template to copy an array of elements efficiently when they |
| 507 | // have a trivial copy constructor, and correctly otherwise. This really |
| 508 | // shouldn't be necessary, but our compiler doesn't optimize std::copy very |
| 509 | // effectively. |
| 510 | template <typename Element, |
| 511 | bool HasTrivialCopy = std::is_trivial<Element>::value> |
| 512 | struct ElementCopier { |
| 513 | void operator()(Element* to, const Element* from, int array_size); |
| 514 | }; |
| 515 | |
| 516 | } // namespace internal |
| 517 | |
| 518 | // implementation ==================================================== |
| 519 | |
| 520 | template <typename Element> |
| 521 | constexpr RepeatedField<Element>::RepeatedField() |
| 522 | : current_size_(0), total_size_(0), arena_or_elements_(nullptr) {} |
| 523 | |
| 524 | template <typename Element> |
| 525 | inline RepeatedField<Element>::RepeatedField(Arena* arena) |
| 526 | : current_size_(0), total_size_(0), arena_or_elements_(arena) {} |
| 527 | |
| 528 | template <typename Element> |
| 529 | inline RepeatedField<Element>::RepeatedField(const RepeatedField& other) |
| 530 | : current_size_(0), total_size_(0), arena_or_elements_(nullptr) { |
| 531 | if (other.current_size_ != 0) { |
| 532 | Reserve(new_size: other.size()); |
| 533 | AddNAlreadyReserved(elements: other.size()); |
| 534 | CopyArray(to: Mutable(index: 0), from: &other.Get(0), size: other.size()); |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | template <typename Element> |
| 539 | template <typename Iter, typename> |
| 540 | RepeatedField<Element>::RepeatedField(Iter begin, Iter end) |
| 541 | : current_size_(0), total_size_(0), arena_or_elements_(nullptr) { |
| 542 | Add(begin, end); |
| 543 | } |
| 544 | |
| 545 | template <typename Element> |
| 546 | RepeatedField<Element>::~RepeatedField() { |
| 547 | #ifndef NDEBUG |
| 548 | // Try to trigger segfault / asan failure in non-opt builds if arena_ |
| 549 | // lifetime has ended before the destructor. |
| 550 | auto arena = GetOwningArena(); |
| 551 | if (arena) (void)arena->SpaceAllocated(); |
| 552 | #endif |
| 553 | if (total_size_ > 0) { |
| 554 | InternalDeallocate(rep: rep(), size: total_size_, in_destructor: true); |
| 555 | } |
| 556 | } |
| 557 | |
| 558 | template <typename Element> |
| 559 | inline RepeatedField<Element>& RepeatedField<Element>::operator=( |
| 560 | const RepeatedField& other) { |
| 561 | if (this != &other) CopyFrom(other); |
| 562 | return *this; |
| 563 | } |
| 564 | |
| 565 | template <typename Element> |
| 566 | inline RepeatedField<Element>::RepeatedField(RepeatedField&& other) noexcept |
| 567 | : RepeatedField() { |
| 568 | #ifdef PROTOBUF_FORCE_COPY_IN_MOVE |
| 569 | CopyFrom(other); |
| 570 | #else // PROTOBUF_FORCE_COPY_IN_MOVE |
| 571 | // We don't just call Swap(&other) here because it would perform 3 copies if |
| 572 | // other is on an arena. This field can't be on an arena because arena |
| 573 | // construction always uses the Arena* accepting constructor. |
| 574 | if (other.GetOwningArena()) { |
| 575 | CopyFrom(other); |
| 576 | } else { |
| 577 | InternalSwap(other: &other); |
| 578 | } |
| 579 | #endif // !PROTOBUF_FORCE_COPY_IN_MOVE |
| 580 | } |
| 581 | |
| 582 | template <typename Element> |
| 583 | inline RepeatedField<Element>& RepeatedField<Element>::operator=( |
| 584 | RepeatedField&& other) noexcept { |
| 585 | // We don't just call Swap(&other) here because it would perform 3 copies if |
| 586 | // the two fields are on different arenas. |
| 587 | if (this != &other) { |
| 588 | if (GetOwningArena() != other.GetOwningArena() |
| 589 | #ifdef PROTOBUF_FORCE_COPY_IN_MOVE |
| 590 | || GetOwningArena() == nullptr |
| 591 | #endif // !PROTOBUF_FORCE_COPY_IN_MOVE |
| 592 | ) { |
| 593 | CopyFrom(other); |
| 594 | } else { |
| 595 | InternalSwap(other: &other); |
| 596 | } |
| 597 | } |
| 598 | return *this; |
| 599 | } |
| 600 | |
| 601 | template <typename Element> |
| 602 | inline bool RepeatedField<Element>::empty() const { |
| 603 | return current_size_ == 0; |
| 604 | } |
| 605 | |
| 606 | template <typename Element> |
| 607 | inline int RepeatedField<Element>::size() const { |
| 608 | return current_size_; |
| 609 | } |
| 610 | |
| 611 | template <typename Element> |
| 612 | inline int RepeatedField<Element>::Capacity() const { |
| 613 | return total_size_; |
| 614 | } |
| 615 | |
| 616 | template <typename Element> |
| 617 | inline void RepeatedField<Element>::AddAlreadyReserved(const Element& value) { |
| 618 | GOOGLE_DCHECK_LT(current_size_, total_size_); |
| 619 | elements()[current_size_++] = value; |
| 620 | } |
| 621 | |
| 622 | template <typename Element> |
| 623 | inline Element* RepeatedField<Element>::AddAlreadyReserved() { |
| 624 | GOOGLE_DCHECK_LT(current_size_, total_size_); |
| 625 | return &elements()[current_size_++]; |
| 626 | } |
| 627 | |
| 628 | template <typename Element> |
| 629 | inline Element* RepeatedField<Element>::AddNAlreadyReserved(int elements) { |
| 630 | GOOGLE_DCHECK_GE(total_size_ - current_size_, elements) |
| 631 | << total_size_ << ", " << current_size_; |
| 632 | // Warning: sometimes people call this when elements == 0 and |
| 633 | // total_size_ == 0. In this case the return pointer points to a zero size |
| 634 | // array (n == 0). Hence we can just use unsafe_elements(), because the user |
| 635 | // cannot dereference the pointer anyway. |
| 636 | Element* ret = unsafe_elements() + current_size_; |
| 637 | current_size_ += elements; |
| 638 | return ret; |
| 639 | } |
| 640 | |
| 641 | template <typename Element> |
| 642 | inline void RepeatedField<Element>::Resize(int new_size, const Element& value) { |
| 643 | GOOGLE_DCHECK_GE(new_size, 0); |
| 644 | if (new_size > current_size_) { |
| 645 | Reserve(new_size); |
| 646 | std::fill(&elements()[current_size_], &elements()[new_size], value); |
| 647 | } |
| 648 | current_size_ = new_size; |
| 649 | } |
| 650 | |
| 651 | template <typename Element> |
| 652 | inline const Element& RepeatedField<Element>::Get(int index) const { |
| 653 | GOOGLE_DCHECK_GE(index, 0); |
| 654 | GOOGLE_DCHECK_LT(index, current_size_); |
| 655 | return elements()[index]; |
| 656 | } |
| 657 | |
| 658 | template <typename Element> |
| 659 | inline const Element& RepeatedField<Element>::at(int index) const { |
| 660 | GOOGLE_CHECK_GE(index, 0); |
| 661 | GOOGLE_CHECK_LT(index, current_size_); |
| 662 | return elements()[index]; |
| 663 | } |
| 664 | |
| 665 | template <typename Element> |
| 666 | inline Element& RepeatedField<Element>::at(int index) { |
| 667 | GOOGLE_CHECK_GE(index, 0); |
| 668 | GOOGLE_CHECK_LT(index, current_size_); |
| 669 | return elements()[index]; |
| 670 | } |
| 671 | |
| 672 | template <typename Element> |
| 673 | inline Element* RepeatedField<Element>::Mutable(int index) { |
| 674 | GOOGLE_DCHECK_GE(index, 0); |
| 675 | GOOGLE_DCHECK_LT(index, current_size_); |
| 676 | return &elements()[index]; |
| 677 | } |
| 678 | |
| 679 | template <typename Element> |
| 680 | inline void RepeatedField<Element>::Set(int index, const Element& value) { |
| 681 | GOOGLE_DCHECK_GE(index, 0); |
| 682 | GOOGLE_DCHECK_LT(index, current_size_); |
| 683 | elements()[index] = value; |
| 684 | } |
| 685 | |
| 686 | template <typename Element> |
| 687 | inline void RepeatedField<Element>::Add(const Element& value) { |
| 688 | uint32_t size = current_size_; |
| 689 | if (static_cast<int>(size) == total_size_) { |
| 690 | // value could reference an element of the array. Reserving new space will |
| 691 | // invalidate the reference. So we must make a copy first. |
| 692 | auto tmp = value; |
| 693 | Reserve(new_size: total_size_ + 1); |
| 694 | elements()[size] = std::move(tmp); |
| 695 | } else { |
| 696 | elements()[size] = value; |
| 697 | } |
| 698 | current_size_ = size + 1; |
| 699 | } |
| 700 | |
| 701 | template <typename Element> |
| 702 | inline Element* RepeatedField<Element>::Add() { |
| 703 | uint32_t size = current_size_; |
| 704 | if (static_cast<int>(size) == total_size_) Reserve(new_size: total_size_ + 1); |
| 705 | auto ptr = &elements()[size]; |
| 706 | current_size_ = size + 1; |
| 707 | return ptr; |
| 708 | } |
| 709 | |
| 710 | template <typename Element> |
| 711 | template <typename Iter> |
| 712 | inline void RepeatedField<Element>::Add(Iter begin, Iter end) { |
| 713 | int reserve = internal::CalculateReserve(begin, end); |
| 714 | if (reserve != -1) { |
| 715 | if (reserve == 0) { |
| 716 | return; |
| 717 | } |
| 718 | |
| 719 | Reserve(new_size: reserve + size()); |
| 720 | // TODO(ckennelly): The compiler loses track of the buffer freshly |
| 721 | // allocated by Reserve() by the time we call elements, so it cannot |
| 722 | // guarantee that elements does not alias [begin(), end()). |
| 723 | // |
| 724 | // If restrict is available, annotating the pointer obtained from elements() |
| 725 | // causes this to lower to memcpy instead of memmove. |
| 726 | std::copy(begin, end, elements() + size()); |
| 727 | current_size_ = reserve + size(); |
| 728 | } else { |
| 729 | FastAdder fast_adder(this); |
| 730 | for (; begin != end; ++begin) fast_adder.Add(*begin); |
| 731 | } |
| 732 | } |
| 733 | |
| 734 | template <typename Element> |
| 735 | inline void RepeatedField<Element>::RemoveLast() { |
| 736 | GOOGLE_DCHECK_GT(current_size_, 0); |
| 737 | current_size_--; |
| 738 | } |
| 739 | |
| 740 | template <typename Element> |
| 741 | void RepeatedField<Element>::(int start, int num, |
| 742 | Element* elements) { |
| 743 | GOOGLE_DCHECK_GE(start, 0); |
| 744 | GOOGLE_DCHECK_GE(num, 0); |
| 745 | GOOGLE_DCHECK_LE(start + num, this->current_size_); |
| 746 | |
| 747 | // Save the values of the removed elements if requested. |
| 748 | if (elements != nullptr) { |
| 749 | for (int i = 0; i < num; ++i) elements[i] = this->Get(i + start); |
| 750 | } |
| 751 | |
| 752 | // Slide remaining elements down to fill the gap. |
| 753 | if (num > 0) { |
| 754 | for (int i = start + num; i < this->current_size_; ++i) |
| 755 | this->Set(i - num, this->Get(i)); |
| 756 | this->Truncate(this->current_size_ - num); |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | template <typename Element> |
| 761 | inline void RepeatedField<Element>::Clear() { |
| 762 | current_size_ = 0; |
| 763 | } |
| 764 | |
| 765 | template <typename Element> |
| 766 | inline void RepeatedField<Element>::MergeFrom(const RepeatedField& other) { |
| 767 | GOOGLE_DCHECK_NE(&other, this); |
| 768 | if (other.current_size_ != 0) { |
| 769 | int existing_size = size(); |
| 770 | Reserve(new_size: existing_size + other.size()); |
| 771 | AddNAlreadyReserved(elements: other.size()); |
| 772 | CopyArray(to: Mutable(index: existing_size), from: &other.Get(0), size: other.size()); |
| 773 | } |
| 774 | } |
| 775 | |
| 776 | template <typename Element> |
| 777 | inline void RepeatedField<Element>::CopyFrom(const RepeatedField& other) { |
| 778 | if (&other == this) return; |
| 779 | Clear(); |
| 780 | MergeFrom(other); |
| 781 | } |
| 782 | |
| 783 | template <typename Element> |
| 784 | template <typename Iter> |
| 785 | inline void RepeatedField<Element>::Assign(Iter begin, Iter end) { |
| 786 | Clear(); |
| 787 | Add(begin, end); |
| 788 | } |
| 789 | |
| 790 | template <typename Element> |
| 791 | inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase( |
| 792 | const_iterator position) { |
| 793 | return erase(position, position + 1); |
| 794 | } |
| 795 | |
| 796 | template <typename Element> |
| 797 | inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase( |
| 798 | const_iterator first, const_iterator last) { |
| 799 | size_type first_offset = first - cbegin(); |
| 800 | if (first != last) { |
| 801 | Truncate(new_size: std::copy(last, cend(), begin() + first_offset) - cbegin()); |
| 802 | } |
| 803 | return begin() + first_offset; |
| 804 | } |
| 805 | |
| 806 | template <typename Element> |
| 807 | inline Element* RepeatedField<Element>::mutable_data() { |
| 808 | return unsafe_elements(); |
| 809 | } |
| 810 | |
| 811 | template <typename Element> |
| 812 | inline const Element* RepeatedField<Element>::data() const { |
| 813 | return unsafe_elements(); |
| 814 | } |
| 815 | |
| 816 | template <typename Element> |
| 817 | inline void RepeatedField<Element>::InternalSwap(RepeatedField* other) { |
| 818 | GOOGLE_DCHECK(this != other); |
| 819 | |
| 820 | // Swap all fields at once. |
| 821 | static_assert(std::is_standard_layout<RepeatedField<Element>>::value, |
| 822 | "offsetof() requires standard layout before c++17" ); |
| 823 | internal::memswap<offsetof(RepeatedField, arena_or_elements_) + |
| 824 | sizeof(this->arena_or_elements_) - |
| 825 | offsetof(RepeatedField, current_size_)>( |
| 826 | reinterpret_cast<char*>(this) + offsetof(RepeatedField, current_size_), |
| 827 | reinterpret_cast<char*>(other) + offsetof(RepeatedField, current_size_)); |
| 828 | } |
| 829 | |
| 830 | template <typename Element> |
| 831 | void RepeatedField<Element>::Swap(RepeatedField* other) { |
| 832 | if (this == other) return; |
| 833 | #ifdef PROTOBUF_FORCE_COPY_IN_SWAP |
| 834 | if (GetOwningArena() != nullptr && |
| 835 | GetOwningArena() == other->GetOwningArena()) { |
| 836 | #else // PROTOBUF_FORCE_COPY_IN_SWAP |
| 837 | if (GetOwningArena() == other->GetOwningArena()) { |
| 838 | #endif // !PROTOBUF_FORCE_COPY_IN_SWAP |
| 839 | InternalSwap(other); |
| 840 | } else { |
| 841 | RepeatedField<Element> temp(other->GetOwningArena()); |
| 842 | temp.MergeFrom(*this); |
| 843 | CopyFrom(other: *other); |
| 844 | other->UnsafeArenaSwap(&temp); |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | template <typename Element> |
| 849 | void RepeatedField<Element>::UnsafeArenaSwap(RepeatedField* other) { |
| 850 | if (this == other) return; |
| 851 | GOOGLE_DCHECK_EQ(GetOwningArena(), other->GetOwningArena()); |
| 852 | InternalSwap(other); |
| 853 | } |
| 854 | |
| 855 | template <typename Element> |
| 856 | void RepeatedField<Element>::SwapElements(int index1, int index2) { |
| 857 | using std::swap; // enable ADL with fallback |
| 858 | swap(elements()[index1], elements()[index2]); |
| 859 | } |
| 860 | |
| 861 | template <typename Element> |
| 862 | inline typename RepeatedField<Element>::iterator |
| 863 | RepeatedField<Element>::begin() { |
| 864 | return iterator(unsafe_elements()); |
| 865 | } |
| 866 | template <typename Element> |
| 867 | inline typename RepeatedField<Element>::const_iterator |
| 868 | RepeatedField<Element>::begin() const { |
| 869 | return const_iterator(unsafe_elements()); |
| 870 | } |
| 871 | template <typename Element> |
| 872 | inline typename RepeatedField<Element>::const_iterator |
| 873 | RepeatedField<Element>::cbegin() const { |
| 874 | return const_iterator(unsafe_elements()); |
| 875 | } |
| 876 | template <typename Element> |
| 877 | inline typename RepeatedField<Element>::iterator RepeatedField<Element>::end() { |
| 878 | return iterator(unsafe_elements() + current_size_); |
| 879 | } |
| 880 | template <typename Element> |
| 881 | inline typename RepeatedField<Element>::const_iterator |
| 882 | RepeatedField<Element>::end() const { |
| 883 | return const_iterator(unsafe_elements() + current_size_); |
| 884 | } |
| 885 | template <typename Element> |
| 886 | inline typename RepeatedField<Element>::const_iterator |
| 887 | RepeatedField<Element>::cend() const { |
| 888 | return const_iterator(unsafe_elements() + current_size_); |
| 889 | } |
| 890 | |
| 891 | template <typename Element> |
| 892 | inline size_t RepeatedField<Element>::SpaceUsedExcludingSelfLong() const { |
| 893 | return total_size_ > 0 ? (total_size_ * sizeof(Element) + kRepHeaderSize) : 0; |
| 894 | } |
| 895 | |
| 896 | namespace internal { |
| 897 | // Returns the new size for a reserved field based on its 'total_size' and the |
| 898 | // requested 'new_size'. The result is clamped to the closed interval: |
| 899 | // [internal::kMinRepeatedFieldAllocationSize, |
| 900 | // std::numeric_limits<int>::max()] |
| 901 | // Requires: |
| 902 | // new_size > total_size && |
| 903 | // (total_size == 0 || |
| 904 | // total_size >= kRepeatedFieldLowerClampLimit) |
| 905 | template <typename T, int kRepHeaderSize> |
| 906 | inline int CalculateReserveSize(int total_size, int new_size) { |
| 907 | constexpr int lower_limit = RepeatedFieldLowerClampLimit<T, kRepHeaderSize>(); |
| 908 | if (new_size < lower_limit) { |
| 909 | // Clamp to smallest allowed size. |
| 910 | return lower_limit; |
| 911 | } |
| 912 | constexpr int kMaxSizeBeforeClamp = |
| 913 | (std::numeric_limits<int>::max() - kRepHeaderSize) / 2; |
| 914 | if (PROTOBUF_PREDICT_FALSE(total_size > kMaxSizeBeforeClamp)) { |
| 915 | return std::numeric_limits<int>::max(); |
| 916 | } |
| 917 | // We want to double the number of bytes, not the number of elements, to try |
| 918 | // to stay within power-of-two allocations. |
| 919 | // The allocation has kRepHeaderSize + sizeof(T) * capacity. |
| 920 | int doubled_size = 2 * total_size + kRepHeaderSize / sizeof(T); |
| 921 | return std::max(doubled_size, new_size); |
| 922 | } |
| 923 | } // namespace internal |
| 924 | |
| 925 | // Avoid inlining of Reserve(): new, copy, and delete[] lead to a significant |
| 926 | // amount of code bloat. |
| 927 | template <typename Element> |
| 928 | void RepeatedField<Element>::Reserve(int new_size) { |
| 929 | if (total_size_ >= new_size) return; |
| 930 | Rep* old_rep = total_size_ > 0 ? rep() : nullptr; |
| 931 | Rep* new_rep; |
| 932 | Arena* arena = GetOwningArena(); |
| 933 | |
| 934 | new_size = internal::CalculateReserveSize<Element, kRepHeaderSize>( |
| 935 | total_size_, new_size); |
| 936 | |
| 937 | GOOGLE_DCHECK_LE( |
| 938 | static_cast<size_t>(new_size), |
| 939 | (std::numeric_limits<size_t>::max() - kRepHeaderSize) / sizeof(Element)) |
| 940 | << "Requested size is too large to fit into size_t." ; |
| 941 | size_t bytes = |
| 942 | kRepHeaderSize + sizeof(Element) * static_cast<size_t>(new_size); |
| 943 | if (arena == nullptr) { |
| 944 | new_rep = static_cast<Rep*>(::operator new(bytes)); |
| 945 | } else { |
| 946 | new_rep = reinterpret_cast<Rep*>(Arena::CreateArray<char>(arena, num_elements: bytes)); |
| 947 | } |
| 948 | new_rep->arena = arena; |
| 949 | int old_total_size = total_size_; |
| 950 | // Already known: new_size >= internal::kMinRepeatedFieldAllocationSize |
| 951 | // Maintain invariant: |
| 952 | // total_size_ == 0 || |
| 953 | // total_size_ >= internal::kMinRepeatedFieldAllocationSize |
| 954 | total_size_ = new_size; |
| 955 | arena_or_elements_ = new_rep->elements(); |
| 956 | // Invoke placement-new on newly allocated elements. We shouldn't have to do |
| 957 | // this, since Element is supposed to be POD, but a previous version of this |
| 958 | // code allocated storage with "new Element[size]" and some code uses |
| 959 | // RepeatedField with non-POD types, relying on constructor invocation. If |
| 960 | // Element has a trivial constructor (e.g., int32_t), gcc (tested with -O2) |
| 961 | // completely removes this loop because the loop body is empty, so this has no |
| 962 | // effect unless its side-effects are required for correctness. |
| 963 | // Note that we do this before MoveArray() below because Element's copy |
| 964 | // assignment implementation will want an initialized instance first. |
| 965 | Element* e = &elements()[0]; |
| 966 | Element* limit = e + total_size_; |
| 967 | for (; e < limit; e++) { |
| 968 | new (e) Element; |
| 969 | } |
| 970 | if (current_size_ > 0) { |
| 971 | MoveArray(to: &elements()[0], from: old_rep->elements(), size: current_size_); |
| 972 | } |
| 973 | |
| 974 | // Likewise, we need to invoke destructors on the old array. |
| 975 | InternalDeallocate(rep: old_rep, size: old_total_size, in_destructor: false); |
| 976 | |
| 977 | } |
| 978 | |
| 979 | template <typename Element> |
| 980 | inline void RepeatedField<Element>::Truncate(int new_size) { |
| 981 | GOOGLE_DCHECK_LE(new_size, current_size_); |
| 982 | if (current_size_ > 0) { |
| 983 | current_size_ = new_size; |
| 984 | } |
| 985 | } |
| 986 | |
| 987 | template <typename Element> |
| 988 | inline void RepeatedField<Element>::MoveArray(Element* to, Element* from, |
| 989 | int array_size) { |
| 990 | CopyArray(to, from, size: array_size); |
| 991 | } |
| 992 | |
| 993 | template <typename Element> |
| 994 | inline void RepeatedField<Element>::CopyArray(Element* to, const Element* from, |
| 995 | int array_size) { |
| 996 | internal::ElementCopier<Element>()(to, from, array_size); |
| 997 | } |
| 998 | |
| 999 | namespace internal { |
| 1000 | |
| 1001 | template <typename Element, bool HasTrivialCopy> |
| 1002 | void ElementCopier<Element, HasTrivialCopy>::operator()(Element* to, |
| 1003 | const Element* from, |
| 1004 | int array_size) { |
| 1005 | std::copy(from, from + array_size, to); |
| 1006 | } |
| 1007 | |
| 1008 | template <typename Element> |
| 1009 | struct ElementCopier<Element, true> { |
| 1010 | void operator()(Element* to, const Element* from, int array_size) { |
| 1011 | memcpy(to, from, static_cast<size_t>(array_size) * sizeof(Element)); |
| 1012 | } |
| 1013 | }; |
| 1014 | |
| 1015 | } // namespace internal |
| 1016 | |
| 1017 | |
| 1018 | // ------------------------------------------------------------------- |
| 1019 | |
| 1020 | // Iterators and helper functions that follow the spirit of the STL |
| 1021 | // std::back_insert_iterator and std::back_inserter but are tailor-made |
| 1022 | // for RepeatedField and RepeatedPtrField. Typical usage would be: |
| 1023 | // |
| 1024 | // std::copy(some_sequence.begin(), some_sequence.end(), |
| 1025 | // RepeatedFieldBackInserter(proto.mutable_sequence())); |
| 1026 | // |
| 1027 | // Ported by johannes from util/gtl/proto-array-iterators.h |
| 1028 | |
| 1029 | namespace internal { |
| 1030 | |
| 1031 | // STL-like iterator implementation for RepeatedField. You should not |
| 1032 | // refer to this class directly; use RepeatedField<T>::iterator instead. |
| 1033 | // |
| 1034 | // Note: All of the iterator operators *must* be inlined to avoid performance |
| 1035 | // regressions. This is caused by the extern template declarations below (which |
| 1036 | // are required because of the RepeatedField extern template declarations). If |
| 1037 | // any of these functions aren't explicitly inlined (e.g. defined in the class), |
| 1038 | // the compiler isn't allowed to inline them. |
| 1039 | template <typename Element> |
| 1040 | class RepeatedIterator { |
| 1041 | public: |
| 1042 | using iterator_category = std::random_access_iterator_tag; |
| 1043 | // Note: remove_const is necessary for std::partial_sum, which uses value_type |
| 1044 | // to determine the summation variable type. |
| 1045 | using value_type = typename std::remove_const<Element>::type; |
| 1046 | using difference_type = std::ptrdiff_t; |
| 1047 | using pointer = Element*; |
| 1048 | using reference = Element&; |
| 1049 | |
| 1050 | constexpr RepeatedIterator() noexcept : it_(nullptr) {} |
| 1051 | |
| 1052 | // Allows "upcasting" from RepeatedIterator<T**> to |
| 1053 | // RepeatedIterator<const T*const*>. |
| 1054 | template <typename OtherElement, |
| 1055 | typename std::enable_if<std::is_convertible< |
| 1056 | OtherElement*, pointer>::value>::type* = nullptr> |
| 1057 | constexpr RepeatedIterator( |
| 1058 | const RepeatedIterator<OtherElement>& other) noexcept |
| 1059 | : it_(other.it_) {} |
| 1060 | |
| 1061 | // dereferenceable |
| 1062 | constexpr reference operator*() const noexcept { return *it_; } |
| 1063 | constexpr pointer operator->() const noexcept { return it_; } |
| 1064 | |
| 1065 | private: |
| 1066 | // Helper alias to hide the internal type. |
| 1067 | using iterator = RepeatedIterator<Element>; |
| 1068 | |
| 1069 | public: |
| 1070 | // {inc,dec}rementable |
| 1071 | iterator& operator++() noexcept { |
| 1072 | ++it_; |
| 1073 | return *this; |
| 1074 | } |
| 1075 | iterator operator++(int) noexcept { return iterator(it_++); } |
| 1076 | iterator& operator--() noexcept { |
| 1077 | --it_; |
| 1078 | return *this; |
| 1079 | } |
| 1080 | iterator operator--(int) noexcept { return iterator(it_--); } |
| 1081 | |
| 1082 | // equality_comparable |
| 1083 | friend constexpr bool operator==(const iterator& x, |
| 1084 | const iterator& y) noexcept { |
| 1085 | return x.it_ == y.it_; |
| 1086 | } |
| 1087 | friend constexpr bool operator!=(const iterator& x, |
| 1088 | const iterator& y) noexcept { |
| 1089 | return x.it_ != y.it_; |
| 1090 | } |
| 1091 | |
| 1092 | // less_than_comparable |
| 1093 | friend constexpr bool operator<(const iterator& x, |
| 1094 | const iterator& y) noexcept { |
| 1095 | return x.it_ < y.it_; |
| 1096 | } |
| 1097 | friend constexpr bool operator<=(const iterator& x, |
| 1098 | const iterator& y) noexcept { |
| 1099 | return x.it_ <= y.it_; |
| 1100 | } |
| 1101 | friend constexpr bool operator>(const iterator& x, |
| 1102 | const iterator& y) noexcept { |
| 1103 | return x.it_ > y.it_; |
| 1104 | } |
| 1105 | friend constexpr bool operator>=(const iterator& x, |
| 1106 | const iterator& y) noexcept { |
| 1107 | return x.it_ >= y.it_; |
| 1108 | } |
| 1109 | |
| 1110 | // addable, subtractable |
| 1111 | iterator& operator+=(difference_type d) noexcept { |
| 1112 | it_ += d; |
| 1113 | return *this; |
| 1114 | } |
| 1115 | constexpr iterator operator+(difference_type d) const noexcept { |
| 1116 | return iterator(it_ + d); |
| 1117 | } |
| 1118 | friend constexpr iterator operator+(const difference_type d, |
| 1119 | iterator it) noexcept { |
| 1120 | return it + d; |
| 1121 | } |
| 1122 | |
| 1123 | iterator& operator-=(difference_type d) noexcept { |
| 1124 | it_ -= d; |
| 1125 | return *this; |
| 1126 | } |
| 1127 | iterator constexpr operator-(difference_type d) const noexcept { |
| 1128 | return iterator(it_ - d); |
| 1129 | } |
| 1130 | |
| 1131 | // indexable |
| 1132 | constexpr reference operator[](difference_type d) const noexcept { |
| 1133 | return it_[d]; |
| 1134 | } |
| 1135 | |
| 1136 | // random access iterator |
| 1137 | friend constexpr difference_type operator-(iterator it1, |
| 1138 | iterator it2) noexcept { |
| 1139 | return it1.it_ - it2.it_; |
| 1140 | } |
| 1141 | |
| 1142 | private: |
| 1143 | template <typename OtherElement> |
| 1144 | friend class RepeatedIterator; |
| 1145 | |
| 1146 | // Allow construction from RepeatedField. |
| 1147 | friend class RepeatedField<value_type>; |
| 1148 | explicit RepeatedIterator(Element* it) noexcept : it_(it) {} |
| 1149 | |
| 1150 | // The internal iterator. |
| 1151 | Element* it_; |
| 1152 | }; |
| 1153 | |
| 1154 | // A back inserter for RepeatedField objects. |
| 1155 | template <typename T> |
| 1156 | class RepeatedFieldBackInsertIterator { |
| 1157 | public: |
| 1158 | using iterator_category = std::output_iterator_tag; |
| 1159 | using value_type = T; |
| 1160 | using pointer = void; |
| 1161 | using reference = void; |
| 1162 | using difference_type = std::ptrdiff_t; |
| 1163 | |
| 1164 | explicit RepeatedFieldBackInsertIterator( |
| 1165 | RepeatedField<T>* const mutable_field) |
| 1166 | : field_(mutable_field) {} |
| 1167 | RepeatedFieldBackInsertIterator<T>& operator=(const T& value) { |
| 1168 | field_->Add(value); |
| 1169 | return *this; |
| 1170 | } |
| 1171 | RepeatedFieldBackInsertIterator<T>& operator*() { return *this; } |
| 1172 | RepeatedFieldBackInsertIterator<T>& operator++() { return *this; } |
| 1173 | RepeatedFieldBackInsertIterator<T>& operator++(int /* unused */) { |
| 1174 | return *this; |
| 1175 | } |
| 1176 | |
| 1177 | private: |
| 1178 | RepeatedField<T>* field_; |
| 1179 | }; |
| 1180 | |
| 1181 | } // namespace internal |
| 1182 | |
| 1183 | // Provides a back insert iterator for RepeatedField instances, |
| 1184 | // similar to std::back_inserter(). |
| 1185 | template <typename T> |
| 1186 | internal::RepeatedFieldBackInsertIterator<T> RepeatedFieldBackInserter( |
| 1187 | RepeatedField<T>* const mutable_field) { |
| 1188 | return internal::RepeatedFieldBackInsertIterator<T>(mutable_field); |
| 1189 | } |
| 1190 | |
| 1191 | // Extern declarations of common instantiations to reduce library bloat. |
| 1192 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<bool>; |
| 1193 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<int32_t>; |
| 1194 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<uint32_t>; |
| 1195 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<int64_t>; |
| 1196 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<uint64_t>; |
| 1197 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<float>; |
| 1198 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<double>; |
| 1199 | |
| 1200 | namespace internal { |
| 1201 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedIterator<bool>; |
| 1202 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE |
| 1203 | RepeatedIterator<int32_t>; |
| 1204 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE |
| 1205 | RepeatedIterator<uint32_t>; |
| 1206 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE |
| 1207 | RepeatedIterator<int64_t>; |
| 1208 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE |
| 1209 | RepeatedIterator<uint64_t>; |
| 1210 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedIterator<float>; |
| 1211 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedIterator<double>; |
| 1212 | } // namespace internal |
| 1213 | |
| 1214 | } // namespace protobuf |
| 1215 | } // namespace google |
| 1216 | |
| 1217 | #include <google/protobuf/port_undef.inc> |
| 1218 | |
| 1219 | #endif // GOOGLE_PROTOBUF_REPEATED_FIELD_H__ |
| 1220 | |