1 | // Protocol Buffers - Google's data interchange format |
2 | // Copyright 2008 Google Inc. All rights reserved. |
3 | // https://developers.google.com/protocol-buffers/ |
4 | // |
5 | // Redistribution and use in source and binary forms, with or without |
6 | // modification, are permitted provided that the following conditions are |
7 | // met: |
8 | // |
9 | // * Redistributions of source code must retain the above copyright |
10 | // notice, this list of conditions and the following disclaimer. |
11 | // * Redistributions in binary form must reproduce the above |
12 | // copyright notice, this list of conditions and the following disclaimer |
13 | // in the documentation and/or other materials provided with the |
14 | // distribution. |
15 | // * Neither the name of Google Inc. nor the names of its |
16 | // contributors may be used to endorse or promote products derived from |
17 | // this software without specific prior written permission. |
18 | // |
19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
30 | |
31 | // Author: kenton@google.com (Kenton Varda) |
32 | // Based on original Protocol Buffers design by |
33 | // Sanjay Ghemawat, Jeff Dean, and others. |
34 | // |
35 | // RepeatedField and RepeatedPtrField are used by generated protocol message |
36 | // classes to manipulate repeated fields. These classes are very similar to |
37 | // STL's vector, but include a number of optimizations found to be useful |
38 | // specifically in the case of Protocol Buffers. RepeatedPtrField is |
39 | // particularly different from STL vector as it manages ownership of the |
40 | // pointers that it contains. |
41 | // |
42 | // This header covers RepeatedField. |
43 | |
44 | #ifndef GOOGLE_PROTOBUF_REPEATED_FIELD_H__ |
45 | #define GOOGLE_PROTOBUF_REPEATED_FIELD_H__ |
46 | |
47 | |
48 | #include <algorithm> |
49 | #include <iterator> |
50 | #include <limits> |
51 | #include <string> |
52 | #include <type_traits> |
53 | #include <utility> |
54 | |
55 | #include <google/protobuf/stubs/logging.h> |
56 | #include <google/protobuf/stubs/common.h> |
57 | #include <google/protobuf/arena.h> |
58 | #include <google/protobuf/port.h> |
59 | #include <google/protobuf/message_lite.h> |
60 | #include <google/protobuf/repeated_ptr_field.h> |
61 | |
62 | |
63 | // Must be included last. |
64 | #include <google/protobuf/port_def.inc> |
65 | |
66 | #ifdef SWIG |
67 | #error "You cannot SWIG proto headers" |
68 | #endif |
69 | |
70 | namespace google { |
71 | namespace protobuf { |
72 | |
73 | class Message; |
74 | |
75 | namespace internal { |
76 | |
77 | template <typename T, int kRepHeaderSize> |
78 | constexpr int RepeatedFieldLowerClampLimit() { |
79 | // The header is padded to be at least `sizeof(T)` when it would be smaller |
80 | // otherwise. |
81 | static_assert(sizeof(T) <= kRepHeaderSize, "" ); |
82 | // We want to pad the minimum size to be a power of two bytes, including the |
83 | // header. |
84 | // The first allocation is kRepHeaderSize bytes worth of elements for a total |
85 | // of 2*kRepHeaderSize bytes. |
86 | // For an 8-byte header, we allocate 8 bool, 2 ints, or 1 int64. |
87 | return kRepHeaderSize / sizeof(T); |
88 | } |
89 | |
90 | // kRepeatedFieldUpperClampLimit is the lowest signed integer value that |
91 | // overflows when multiplied by 2 (which is undefined behavior). Sizes above |
92 | // this will clamp to the maximum int value instead of following exponential |
93 | // growth when growing a repeated field. |
94 | constexpr int kRepeatedFieldUpperClampLimit = |
95 | (std::numeric_limits<int>::max() / 2) + 1; |
96 | |
97 | template <typename Iter> |
98 | inline int CalculateReserve(Iter begin, Iter end, std::forward_iterator_tag) { |
99 | return static_cast<int>(std::distance(begin, end)); |
100 | } |
101 | |
102 | template <typename Iter> |
103 | inline int CalculateReserve(Iter /*begin*/, Iter /*end*/, |
104 | std::input_iterator_tag /*unused*/) { |
105 | return -1; |
106 | } |
107 | |
108 | template <typename Iter> |
109 | inline int CalculateReserve(Iter begin, Iter end) { |
110 | typedef typename std::iterator_traits<Iter>::iterator_category Category; |
111 | return CalculateReserve(begin, end, Category()); |
112 | } |
113 | |
114 | // Swaps two blocks of memory of size sizeof(T). |
115 | template <typename T> |
116 | inline void SwapBlock(char* p, char* q) { |
117 | T tmp; |
118 | memcpy(&tmp, p, sizeof(T)); |
119 | memcpy(dest: p, src: q, n: sizeof(T)); |
120 | memcpy(q, &tmp, sizeof(T)); |
121 | } |
122 | |
123 | // Swaps two blocks of memory of size kSize: |
124 | // template <int kSize> void memswap(char* p, char* q); |
125 | template <int kSize> |
126 | inline typename std::enable_if<(kSize == 0), void>::type memswap(char*, char*) { |
127 | } |
128 | |
129 | #define PROTO_MEMSWAP_DEF_SIZE(reg_type, max_size) \ |
130 | template <int kSize> \ |
131 | typename std::enable_if<(kSize >= sizeof(reg_type) && kSize < (max_size)), \ |
132 | void>::type \ |
133 | memswap(char* p, char* q) { \ |
134 | SwapBlock<reg_type>(p, q); \ |
135 | memswap<kSize - sizeof(reg_type)>(p + sizeof(reg_type), \ |
136 | q + sizeof(reg_type)); \ |
137 | } |
138 | |
139 | PROTO_MEMSWAP_DEF_SIZE(uint8_t, 2) |
140 | PROTO_MEMSWAP_DEF_SIZE(uint16_t, 4) |
141 | PROTO_MEMSWAP_DEF_SIZE(uint32_t, 8) |
142 | |
143 | #ifdef __SIZEOF_INT128__ |
144 | PROTO_MEMSWAP_DEF_SIZE(uint64_t, 16) |
145 | PROTO_MEMSWAP_DEF_SIZE(__uint128_t, (1u << 31)) |
146 | #else |
147 | PROTO_MEMSWAP_DEF_SIZE(uint64_t, (1u << 31)) |
148 | #endif |
149 | |
150 | #undef PROTO_MEMSWAP_DEF_SIZE |
151 | |
152 | template <typename Element> |
153 | class RepeatedIterator; |
154 | |
155 | } // namespace internal |
156 | |
157 | // RepeatedField is used to represent repeated fields of a primitive type (in |
158 | // other words, everything except strings and nested Messages). Most users will |
159 | // not ever use a RepeatedField directly; they will use the get-by-index, |
160 | // set-by-index, and add accessors that are generated for all repeated fields. |
161 | template <typename Element> |
162 | class RepeatedField final { |
163 | static_assert( |
164 | alignof(Arena) >= alignof(Element), |
165 | "We only support types that have an alignment smaller than Arena" ); |
166 | |
167 | public: |
168 | constexpr RepeatedField(); |
169 | explicit RepeatedField(Arena* arena); |
170 | |
171 | RepeatedField(const RepeatedField& other); |
172 | |
173 | template <typename Iter, |
174 | typename = typename std::enable_if<std::is_constructible< |
175 | Element, decltype(*std::declval<Iter>())>::value>::type> |
176 | RepeatedField(Iter begin, Iter end); |
177 | |
178 | ~RepeatedField(); |
179 | |
180 | RepeatedField& operator=(const RepeatedField& other); |
181 | |
182 | RepeatedField(RepeatedField&& other) noexcept; |
183 | RepeatedField& operator=(RepeatedField&& other) noexcept; |
184 | |
185 | bool empty() const; |
186 | int size() const; |
187 | |
188 | const Element& Get(int index) const; |
189 | Element* Mutable(int index); |
190 | |
191 | const Element& operator[](int index) const { return Get(index); } |
192 | Element& operator[](int index) { return *Mutable(index); } |
193 | |
194 | const Element& at(int index) const; |
195 | Element& at(int index); |
196 | |
197 | void Set(int index, const Element& value); |
198 | void Add(const Element& value); |
199 | // Appends a new element and returns a pointer to it. |
200 | // The new element is uninitialized if |Element| is a POD type. |
201 | Element* Add(); |
202 | // Appends elements in the range [begin, end) after reserving |
203 | // the appropriate number of elements. |
204 | template <typename Iter> |
205 | void Add(Iter begin, Iter end); |
206 | |
207 | // Removes the last element in the array. |
208 | void RemoveLast(); |
209 | |
210 | // Extracts elements with indices in "[start .. start+num-1]". |
211 | // Copies them into "elements[0 .. num-1]" if "elements" is not nullptr. |
212 | // Caution: also moves elements with indices [start+num ..]. |
213 | // Calling this routine inside a loop can cause quadratic behavior. |
214 | void ExtractSubrange(int start, int num, Element* elements); |
215 | |
216 | PROTOBUF_ATTRIBUTE_REINITIALIZES void Clear(); |
217 | void MergeFrom(const RepeatedField& other); |
218 | PROTOBUF_ATTRIBUTE_REINITIALIZES void CopyFrom(const RepeatedField& other); |
219 | |
220 | // Replaces the contents with RepeatedField(begin, end). |
221 | template <typename Iter> |
222 | PROTOBUF_ATTRIBUTE_REINITIALIZES void Assign(Iter begin, Iter end); |
223 | |
224 | // Reserves space to expand the field to at least the given size. If the |
225 | // array is grown, it will always be at least doubled in size. |
226 | void Reserve(int new_size); |
227 | |
228 | // Resizes the RepeatedField to a new, smaller size. This is O(1). |
229 | void Truncate(int new_size); |
230 | |
231 | void AddAlreadyReserved(const Element& value); |
232 | // Appends a new element and return a pointer to it. |
233 | // The new element is uninitialized if |Element| is a POD type. |
234 | // Should be called only if Capacity() > Size(). |
235 | Element* AddAlreadyReserved(); |
236 | Element* AddNAlreadyReserved(int elements); |
237 | int Capacity() const; |
238 | |
239 | // Like STL resize. Uses value to fill appended elements. |
240 | // Like Truncate() if new_size <= size(), otherwise this is |
241 | // O(new_size - size()). |
242 | void Resize(int new_size, const Element& value); |
243 | |
244 | // Gets the underlying array. This pointer is possibly invalidated by |
245 | // any add or remove operation. |
246 | Element* mutable_data(); |
247 | const Element* data() const; |
248 | |
249 | // Swaps entire contents with "other". If they are separate arenas then, |
250 | // copies data between each other. |
251 | void Swap(RepeatedField* other); |
252 | |
253 | // Swaps entire contents with "other". Should be called only if the caller can |
254 | // guarantee that both repeated fields are on the same arena or are on the |
255 | // heap. Swapping between different arenas is disallowed and caught by a |
256 | // GOOGLE_DCHECK (see API docs for details). |
257 | void UnsafeArenaSwap(RepeatedField* other); |
258 | |
259 | // Swaps two elements. |
260 | void SwapElements(int index1, int index2); |
261 | |
262 | // STL-like iterator support |
263 | typedef internal::RepeatedIterator<Element> iterator; |
264 | typedef internal::RepeatedIterator<const Element> const_iterator; |
265 | typedef Element value_type; |
266 | typedef value_type& reference; |
267 | typedef const value_type& const_reference; |
268 | typedef value_type* pointer; |
269 | typedef const value_type* const_pointer; |
270 | typedef int size_type; |
271 | typedef ptrdiff_t difference_type; |
272 | |
273 | iterator begin(); |
274 | const_iterator begin() const; |
275 | const_iterator cbegin() const; |
276 | iterator end(); |
277 | const_iterator end() const; |
278 | const_iterator cend() const; |
279 | |
280 | // Reverse iterator support |
281 | typedef std::reverse_iterator<const_iterator> const_reverse_iterator; |
282 | typedef std::reverse_iterator<iterator> reverse_iterator; |
283 | reverse_iterator rbegin() { return reverse_iterator(end()); } |
284 | const_reverse_iterator rbegin() const { |
285 | return const_reverse_iterator(end()); |
286 | } |
287 | reverse_iterator rend() { return reverse_iterator(begin()); } |
288 | const_reverse_iterator rend() const { |
289 | return const_reverse_iterator(begin()); |
290 | } |
291 | |
292 | // Returns the number of bytes used by the repeated field, excluding |
293 | // sizeof(*this) |
294 | size_t SpaceUsedExcludingSelfLong() const; |
295 | |
296 | int SpaceUsedExcludingSelf() const { |
297 | return internal::ToIntSize(size: SpaceUsedExcludingSelfLong()); |
298 | } |
299 | |
300 | // Removes the element referenced by position. |
301 | // |
302 | // Returns an iterator to the element immediately following the removed |
303 | // element. |
304 | // |
305 | // Invalidates all iterators at or after the removed element, including end(). |
306 | iterator erase(const_iterator position); |
307 | |
308 | // Removes the elements in the range [first, last). |
309 | // |
310 | // Returns an iterator to the element immediately following the removed range. |
311 | // |
312 | // Invalidates all iterators at or after the removed range, including end(). |
313 | iterator erase(const_iterator first, const_iterator last); |
314 | |
315 | // Gets the Arena on which this RepeatedField stores its elements. |
316 | inline Arena* GetArena() const { |
317 | return GetOwningArena(); |
318 | } |
319 | |
320 | // For internal use only. |
321 | // |
322 | // This is public due to it being called by generated code. |
323 | inline void InternalSwap(RepeatedField* other); |
324 | |
325 | private: |
326 | template <typename T> friend class Arena::InternalHelper; |
327 | |
328 | // Gets the Arena on which this RepeatedField stores its elements. |
329 | inline Arena* GetOwningArena() const { |
330 | return (total_size_ == 0) ? static_cast<Arena*>(arena_or_elements_) |
331 | : rep()->arena; |
332 | } |
333 | |
334 | static constexpr int kInitialSize = 0; |
335 | // A note on the representation here (see also comment below for |
336 | // RepeatedPtrFieldBase's struct Rep): |
337 | // |
338 | // We maintain the same sizeof(RepeatedField) as before we added arena support |
339 | // so that we do not degrade performance by bloating memory usage. Directly |
340 | // adding an arena_ element to RepeatedField is quite costly. By using |
341 | // indirection in this way, we keep the same size when the RepeatedField is |
342 | // empty (common case), and add only an 8-byte header to the elements array |
343 | // when non-empty. We make sure to place the size fields directly in the |
344 | // RepeatedField class to avoid costly cache misses due to the indirection. |
345 | int current_size_; |
346 | int total_size_; |
347 | // Pad the Rep after arena allow for power-of-two byte sizes when |
348 | // sizeof(Element) > sizeof(Arena*). eg for 16-byte objects. |
349 | static PROTOBUF_CONSTEXPR const size_t = |
350 | sizeof(Arena*) < sizeof(Element) ? sizeof(Element) : sizeof(Arena*); |
351 | struct Rep { |
352 | Arena* arena; |
353 | Element* elements() { |
354 | return reinterpret_cast<Element*>(reinterpret_cast<char*>(this) + |
355 | kRepHeaderSize); |
356 | } |
357 | }; |
358 | |
359 | // If total_size_ == 0 this points to an Arena otherwise it points to the |
360 | // elements member of a Rep struct. Using this invariant allows the storage of |
361 | // the arena pointer without an extra allocation in the constructor. |
362 | void* arena_or_elements_; |
363 | |
364 | // Returns a pointer to elements array. |
365 | // pre-condition: the array must have been allocated. |
366 | Element* elements() const { |
367 | GOOGLE_DCHECK_GT(total_size_, 0); |
368 | // Because of above pre-condition this cast is safe. |
369 | return unsafe_elements(); |
370 | } |
371 | |
372 | // Returns a pointer to elements array if it exists; otherwise either null or |
373 | // an invalid pointer is returned. This only happens for empty repeated |
374 | // fields, where you can't dereference this pointer anyway (it's empty). |
375 | Element* unsafe_elements() const { |
376 | return static_cast<Element*>(arena_or_elements_); |
377 | } |
378 | |
379 | // Returns a pointer to the Rep struct. |
380 | // pre-condition: the Rep must have been allocated, ie elements() is safe. |
381 | Rep* rep() const { |
382 | return reinterpret_cast<Rep*>(reinterpret_cast<char*>(elements()) - |
383 | kRepHeaderSize); |
384 | } |
385 | |
386 | friend class Arena; |
387 | typedef void InternalArenaConstructable_; |
388 | |
389 | // Moves the contents of |from| into |to|, possibly clobbering |from| in the |
390 | // process. For primitive types this is just a memcpy(), but it could be |
391 | // specialized for non-primitive types to, say, swap each element instead. |
392 | void MoveArray(Element* to, Element* from, int size); |
393 | |
394 | // Copies the elements of |from| into |to|. |
395 | void CopyArray(Element* to, const Element* from, int size); |
396 | |
397 | // Internal helper to delete all elements and deallocate the storage. |
398 | void InternalDeallocate(Rep* rep, int size, bool in_destructor) { |
399 | if (rep != nullptr) { |
400 | Element* e = &rep->elements()[0]; |
401 | if (!std::is_trivial<Element>::value) { |
402 | Element* limit = &rep->elements()[size]; |
403 | for (; e < limit; e++) { |
404 | e->~Element(); |
405 | } |
406 | } |
407 | const size_t bytes = size * sizeof(*e) + kRepHeaderSize; |
408 | if (rep->arena == nullptr) { |
409 | internal::SizedDelete(p: rep, size: bytes); |
410 | } else if (!in_destructor) { |
411 | // If we are in the destructor, we might be being destroyed as part of |
412 | // the arena teardown. We can't try and return blocks to the arena then. |
413 | rep->arena->ReturnArrayMemory(rep, bytes); |
414 | } |
415 | } |
416 | } |
417 | |
418 | // This class is a performance wrapper around RepeatedField::Add(const T&) |
419 | // function. In general unless a RepeatedField is a local stack variable LLVM |
420 | // has a hard time optimizing Add. The machine code tends to be |
421 | // loop: |
422 | // mov %size, dword ptr [%repeated_field] // load |
423 | // cmp %size, dword ptr [%repeated_field + 4] |
424 | // jae fallback |
425 | // mov %buffer, qword ptr [%repeated_field + 8] |
426 | // mov dword [%buffer + %size * 4], %value |
427 | // inc %size // increment |
428 | // mov dword ptr [%repeated_field], %size // store |
429 | // jmp loop |
430 | // |
431 | // This puts a load/store in each iteration of the important loop variable |
432 | // size. It's a pretty bad compile that happens even in simple cases, but |
433 | // largely the presence of the fallback path disturbs the compilers mem-to-reg |
434 | // analysis. |
435 | // |
436 | // This class takes ownership of a repeated field for the duration of its |
437 | // lifetime. The repeated field should not be accessed during this time, ie. |
438 | // only access through this class is allowed. This class should always be a |
439 | // function local stack variable. Intended use |
440 | // |
441 | // void AddSequence(const int* begin, const int* end, RepeatedField<int>* out) |
442 | // { |
443 | // RepeatedFieldAdder<int> adder(out); // Take ownership of out |
444 | // for (auto it = begin; it != end; ++it) { |
445 | // adder.Add(*it); |
446 | // } |
447 | // } |
448 | // |
449 | // Typically, due to the fact that adder is a local stack variable, the |
450 | // compiler will be successful in mem-to-reg transformation and the machine |
451 | // code will be loop: cmp %size, %capacity jae fallback mov dword ptr [%buffer |
452 | // + %size * 4], %val inc %size jmp loop |
453 | // |
454 | // The first version executes at 7 cycles per iteration while the second |
455 | // version executes at only 1 or 2 cycles. |
456 | template <int = 0, bool = std::is_trivial<Element>::value> |
457 | class FastAdderImpl { |
458 | public: |
459 | explicit FastAdderImpl(RepeatedField* rf) : repeated_field_(rf) { |
460 | index_ = repeated_field_->current_size_; |
461 | capacity_ = repeated_field_->total_size_; |
462 | buffer_ = repeated_field_->unsafe_elements(); |
463 | } |
464 | ~FastAdderImpl() { repeated_field_->current_size_ = index_; } |
465 | |
466 | void Add(Element val) { |
467 | if (index_ == capacity_) { |
468 | repeated_field_->current_size_ = index_; |
469 | repeated_field_->Reserve(index_ + 1); |
470 | capacity_ = repeated_field_->total_size_; |
471 | buffer_ = repeated_field_->unsafe_elements(); |
472 | } |
473 | buffer_[index_++] = val; |
474 | } |
475 | |
476 | private: |
477 | RepeatedField* repeated_field_; |
478 | int index_; |
479 | int capacity_; |
480 | Element* buffer_; |
481 | |
482 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FastAdderImpl); |
483 | }; |
484 | |
485 | // FastAdder is a wrapper for adding fields. The specialization above handles |
486 | // POD types more efficiently than RepeatedField. |
487 | template <int I> |
488 | class FastAdderImpl<I, false> { |
489 | public: |
490 | explicit FastAdderImpl(RepeatedField* rf) : repeated_field_(rf) {} |
491 | void Add(const Element& val) { repeated_field_->Add(val); } |
492 | |
493 | private: |
494 | RepeatedField* repeated_field_; |
495 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FastAdderImpl); |
496 | }; |
497 | |
498 | using FastAdder = FastAdderImpl<>; |
499 | |
500 | friend class TestRepeatedFieldHelper; |
501 | friend class ::google::protobuf::internal::ParseContext; |
502 | }; |
503 | |
504 | namespace internal { |
505 | |
506 | // This is a helper template to copy an array of elements efficiently when they |
507 | // have a trivial copy constructor, and correctly otherwise. This really |
508 | // shouldn't be necessary, but our compiler doesn't optimize std::copy very |
509 | // effectively. |
510 | template <typename Element, |
511 | bool HasTrivialCopy = std::is_trivial<Element>::value> |
512 | struct ElementCopier { |
513 | void operator()(Element* to, const Element* from, int array_size); |
514 | }; |
515 | |
516 | } // namespace internal |
517 | |
518 | // implementation ==================================================== |
519 | |
520 | template <typename Element> |
521 | constexpr RepeatedField<Element>::RepeatedField() |
522 | : current_size_(0), total_size_(0), arena_or_elements_(nullptr) {} |
523 | |
524 | template <typename Element> |
525 | inline RepeatedField<Element>::RepeatedField(Arena* arena) |
526 | : current_size_(0), total_size_(0), arena_or_elements_(arena) {} |
527 | |
528 | template <typename Element> |
529 | inline RepeatedField<Element>::RepeatedField(const RepeatedField& other) |
530 | : current_size_(0), total_size_(0), arena_or_elements_(nullptr) { |
531 | if (other.current_size_ != 0) { |
532 | Reserve(new_size: other.size()); |
533 | AddNAlreadyReserved(elements: other.size()); |
534 | CopyArray(to: Mutable(index: 0), from: &other.Get(0), size: other.size()); |
535 | } |
536 | } |
537 | |
538 | template <typename Element> |
539 | template <typename Iter, typename> |
540 | RepeatedField<Element>::RepeatedField(Iter begin, Iter end) |
541 | : current_size_(0), total_size_(0), arena_or_elements_(nullptr) { |
542 | Add(begin, end); |
543 | } |
544 | |
545 | template <typename Element> |
546 | RepeatedField<Element>::~RepeatedField() { |
547 | #ifndef NDEBUG |
548 | // Try to trigger segfault / asan failure in non-opt builds if arena_ |
549 | // lifetime has ended before the destructor. |
550 | auto arena = GetOwningArena(); |
551 | if (arena) (void)arena->SpaceAllocated(); |
552 | #endif |
553 | if (total_size_ > 0) { |
554 | InternalDeallocate(rep: rep(), size: total_size_, in_destructor: true); |
555 | } |
556 | } |
557 | |
558 | template <typename Element> |
559 | inline RepeatedField<Element>& RepeatedField<Element>::operator=( |
560 | const RepeatedField& other) { |
561 | if (this != &other) CopyFrom(other); |
562 | return *this; |
563 | } |
564 | |
565 | template <typename Element> |
566 | inline RepeatedField<Element>::RepeatedField(RepeatedField&& other) noexcept |
567 | : RepeatedField() { |
568 | #ifdef PROTOBUF_FORCE_COPY_IN_MOVE |
569 | CopyFrom(other); |
570 | #else // PROTOBUF_FORCE_COPY_IN_MOVE |
571 | // We don't just call Swap(&other) here because it would perform 3 copies if |
572 | // other is on an arena. This field can't be on an arena because arena |
573 | // construction always uses the Arena* accepting constructor. |
574 | if (other.GetOwningArena()) { |
575 | CopyFrom(other); |
576 | } else { |
577 | InternalSwap(other: &other); |
578 | } |
579 | #endif // !PROTOBUF_FORCE_COPY_IN_MOVE |
580 | } |
581 | |
582 | template <typename Element> |
583 | inline RepeatedField<Element>& RepeatedField<Element>::operator=( |
584 | RepeatedField&& other) noexcept { |
585 | // We don't just call Swap(&other) here because it would perform 3 copies if |
586 | // the two fields are on different arenas. |
587 | if (this != &other) { |
588 | if (GetOwningArena() != other.GetOwningArena() |
589 | #ifdef PROTOBUF_FORCE_COPY_IN_MOVE |
590 | || GetOwningArena() == nullptr |
591 | #endif // !PROTOBUF_FORCE_COPY_IN_MOVE |
592 | ) { |
593 | CopyFrom(other); |
594 | } else { |
595 | InternalSwap(other: &other); |
596 | } |
597 | } |
598 | return *this; |
599 | } |
600 | |
601 | template <typename Element> |
602 | inline bool RepeatedField<Element>::empty() const { |
603 | return current_size_ == 0; |
604 | } |
605 | |
606 | template <typename Element> |
607 | inline int RepeatedField<Element>::size() const { |
608 | return current_size_; |
609 | } |
610 | |
611 | template <typename Element> |
612 | inline int RepeatedField<Element>::Capacity() const { |
613 | return total_size_; |
614 | } |
615 | |
616 | template <typename Element> |
617 | inline void RepeatedField<Element>::AddAlreadyReserved(const Element& value) { |
618 | GOOGLE_DCHECK_LT(current_size_, total_size_); |
619 | elements()[current_size_++] = value; |
620 | } |
621 | |
622 | template <typename Element> |
623 | inline Element* RepeatedField<Element>::AddAlreadyReserved() { |
624 | GOOGLE_DCHECK_LT(current_size_, total_size_); |
625 | return &elements()[current_size_++]; |
626 | } |
627 | |
628 | template <typename Element> |
629 | inline Element* RepeatedField<Element>::AddNAlreadyReserved(int elements) { |
630 | GOOGLE_DCHECK_GE(total_size_ - current_size_, elements) |
631 | << total_size_ << ", " << current_size_; |
632 | // Warning: sometimes people call this when elements == 0 and |
633 | // total_size_ == 0. In this case the return pointer points to a zero size |
634 | // array (n == 0). Hence we can just use unsafe_elements(), because the user |
635 | // cannot dereference the pointer anyway. |
636 | Element* ret = unsafe_elements() + current_size_; |
637 | current_size_ += elements; |
638 | return ret; |
639 | } |
640 | |
641 | template <typename Element> |
642 | inline void RepeatedField<Element>::Resize(int new_size, const Element& value) { |
643 | GOOGLE_DCHECK_GE(new_size, 0); |
644 | if (new_size > current_size_) { |
645 | Reserve(new_size); |
646 | std::fill(&elements()[current_size_], &elements()[new_size], value); |
647 | } |
648 | current_size_ = new_size; |
649 | } |
650 | |
651 | template <typename Element> |
652 | inline const Element& RepeatedField<Element>::Get(int index) const { |
653 | GOOGLE_DCHECK_GE(index, 0); |
654 | GOOGLE_DCHECK_LT(index, current_size_); |
655 | return elements()[index]; |
656 | } |
657 | |
658 | template <typename Element> |
659 | inline const Element& RepeatedField<Element>::at(int index) const { |
660 | GOOGLE_CHECK_GE(index, 0); |
661 | GOOGLE_CHECK_LT(index, current_size_); |
662 | return elements()[index]; |
663 | } |
664 | |
665 | template <typename Element> |
666 | inline Element& RepeatedField<Element>::at(int index) { |
667 | GOOGLE_CHECK_GE(index, 0); |
668 | GOOGLE_CHECK_LT(index, current_size_); |
669 | return elements()[index]; |
670 | } |
671 | |
672 | template <typename Element> |
673 | inline Element* RepeatedField<Element>::Mutable(int index) { |
674 | GOOGLE_DCHECK_GE(index, 0); |
675 | GOOGLE_DCHECK_LT(index, current_size_); |
676 | return &elements()[index]; |
677 | } |
678 | |
679 | template <typename Element> |
680 | inline void RepeatedField<Element>::Set(int index, const Element& value) { |
681 | GOOGLE_DCHECK_GE(index, 0); |
682 | GOOGLE_DCHECK_LT(index, current_size_); |
683 | elements()[index] = value; |
684 | } |
685 | |
686 | template <typename Element> |
687 | inline void RepeatedField<Element>::Add(const Element& value) { |
688 | uint32_t size = current_size_; |
689 | if (static_cast<int>(size) == total_size_) { |
690 | // value could reference an element of the array. Reserving new space will |
691 | // invalidate the reference. So we must make a copy first. |
692 | auto tmp = value; |
693 | Reserve(new_size: total_size_ + 1); |
694 | elements()[size] = std::move(tmp); |
695 | } else { |
696 | elements()[size] = value; |
697 | } |
698 | current_size_ = size + 1; |
699 | } |
700 | |
701 | template <typename Element> |
702 | inline Element* RepeatedField<Element>::Add() { |
703 | uint32_t size = current_size_; |
704 | if (static_cast<int>(size) == total_size_) Reserve(new_size: total_size_ + 1); |
705 | auto ptr = &elements()[size]; |
706 | current_size_ = size + 1; |
707 | return ptr; |
708 | } |
709 | |
710 | template <typename Element> |
711 | template <typename Iter> |
712 | inline void RepeatedField<Element>::Add(Iter begin, Iter end) { |
713 | int reserve = internal::CalculateReserve(begin, end); |
714 | if (reserve != -1) { |
715 | if (reserve == 0) { |
716 | return; |
717 | } |
718 | |
719 | Reserve(new_size: reserve + size()); |
720 | // TODO(ckennelly): The compiler loses track of the buffer freshly |
721 | // allocated by Reserve() by the time we call elements, so it cannot |
722 | // guarantee that elements does not alias [begin(), end()). |
723 | // |
724 | // If restrict is available, annotating the pointer obtained from elements() |
725 | // causes this to lower to memcpy instead of memmove. |
726 | std::copy(begin, end, elements() + size()); |
727 | current_size_ = reserve + size(); |
728 | } else { |
729 | FastAdder fast_adder(this); |
730 | for (; begin != end; ++begin) fast_adder.Add(*begin); |
731 | } |
732 | } |
733 | |
734 | template <typename Element> |
735 | inline void RepeatedField<Element>::RemoveLast() { |
736 | GOOGLE_DCHECK_GT(current_size_, 0); |
737 | current_size_--; |
738 | } |
739 | |
740 | template <typename Element> |
741 | void RepeatedField<Element>::(int start, int num, |
742 | Element* elements) { |
743 | GOOGLE_DCHECK_GE(start, 0); |
744 | GOOGLE_DCHECK_GE(num, 0); |
745 | GOOGLE_DCHECK_LE(start + num, this->current_size_); |
746 | |
747 | // Save the values of the removed elements if requested. |
748 | if (elements != nullptr) { |
749 | for (int i = 0; i < num; ++i) elements[i] = this->Get(i + start); |
750 | } |
751 | |
752 | // Slide remaining elements down to fill the gap. |
753 | if (num > 0) { |
754 | for (int i = start + num; i < this->current_size_; ++i) |
755 | this->Set(i - num, this->Get(i)); |
756 | this->Truncate(this->current_size_ - num); |
757 | } |
758 | } |
759 | |
760 | template <typename Element> |
761 | inline void RepeatedField<Element>::Clear() { |
762 | current_size_ = 0; |
763 | } |
764 | |
765 | template <typename Element> |
766 | inline void RepeatedField<Element>::MergeFrom(const RepeatedField& other) { |
767 | GOOGLE_DCHECK_NE(&other, this); |
768 | if (other.current_size_ != 0) { |
769 | int existing_size = size(); |
770 | Reserve(new_size: existing_size + other.size()); |
771 | AddNAlreadyReserved(elements: other.size()); |
772 | CopyArray(to: Mutable(index: existing_size), from: &other.Get(0), size: other.size()); |
773 | } |
774 | } |
775 | |
776 | template <typename Element> |
777 | inline void RepeatedField<Element>::CopyFrom(const RepeatedField& other) { |
778 | if (&other == this) return; |
779 | Clear(); |
780 | MergeFrom(other); |
781 | } |
782 | |
783 | template <typename Element> |
784 | template <typename Iter> |
785 | inline void RepeatedField<Element>::Assign(Iter begin, Iter end) { |
786 | Clear(); |
787 | Add(begin, end); |
788 | } |
789 | |
790 | template <typename Element> |
791 | inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase( |
792 | const_iterator position) { |
793 | return erase(position, position + 1); |
794 | } |
795 | |
796 | template <typename Element> |
797 | inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase( |
798 | const_iterator first, const_iterator last) { |
799 | size_type first_offset = first - cbegin(); |
800 | if (first != last) { |
801 | Truncate(new_size: std::copy(last, cend(), begin() + first_offset) - cbegin()); |
802 | } |
803 | return begin() + first_offset; |
804 | } |
805 | |
806 | template <typename Element> |
807 | inline Element* RepeatedField<Element>::mutable_data() { |
808 | return unsafe_elements(); |
809 | } |
810 | |
811 | template <typename Element> |
812 | inline const Element* RepeatedField<Element>::data() const { |
813 | return unsafe_elements(); |
814 | } |
815 | |
816 | template <typename Element> |
817 | inline void RepeatedField<Element>::InternalSwap(RepeatedField* other) { |
818 | GOOGLE_DCHECK(this != other); |
819 | |
820 | // Swap all fields at once. |
821 | static_assert(std::is_standard_layout<RepeatedField<Element>>::value, |
822 | "offsetof() requires standard layout before c++17" ); |
823 | internal::memswap<offsetof(RepeatedField, arena_or_elements_) + |
824 | sizeof(this->arena_or_elements_) - |
825 | offsetof(RepeatedField, current_size_)>( |
826 | reinterpret_cast<char*>(this) + offsetof(RepeatedField, current_size_), |
827 | reinterpret_cast<char*>(other) + offsetof(RepeatedField, current_size_)); |
828 | } |
829 | |
830 | template <typename Element> |
831 | void RepeatedField<Element>::Swap(RepeatedField* other) { |
832 | if (this == other) return; |
833 | #ifdef PROTOBUF_FORCE_COPY_IN_SWAP |
834 | if (GetOwningArena() != nullptr && |
835 | GetOwningArena() == other->GetOwningArena()) { |
836 | #else // PROTOBUF_FORCE_COPY_IN_SWAP |
837 | if (GetOwningArena() == other->GetOwningArena()) { |
838 | #endif // !PROTOBUF_FORCE_COPY_IN_SWAP |
839 | InternalSwap(other); |
840 | } else { |
841 | RepeatedField<Element> temp(other->GetOwningArena()); |
842 | temp.MergeFrom(*this); |
843 | CopyFrom(other: *other); |
844 | other->UnsafeArenaSwap(&temp); |
845 | } |
846 | } |
847 | |
848 | template <typename Element> |
849 | void RepeatedField<Element>::UnsafeArenaSwap(RepeatedField* other) { |
850 | if (this == other) return; |
851 | GOOGLE_DCHECK_EQ(GetOwningArena(), other->GetOwningArena()); |
852 | InternalSwap(other); |
853 | } |
854 | |
855 | template <typename Element> |
856 | void RepeatedField<Element>::SwapElements(int index1, int index2) { |
857 | using std::swap; // enable ADL with fallback |
858 | swap(elements()[index1], elements()[index2]); |
859 | } |
860 | |
861 | template <typename Element> |
862 | inline typename RepeatedField<Element>::iterator |
863 | RepeatedField<Element>::begin() { |
864 | return iterator(unsafe_elements()); |
865 | } |
866 | template <typename Element> |
867 | inline typename RepeatedField<Element>::const_iterator |
868 | RepeatedField<Element>::begin() const { |
869 | return const_iterator(unsafe_elements()); |
870 | } |
871 | template <typename Element> |
872 | inline typename RepeatedField<Element>::const_iterator |
873 | RepeatedField<Element>::cbegin() const { |
874 | return const_iterator(unsafe_elements()); |
875 | } |
876 | template <typename Element> |
877 | inline typename RepeatedField<Element>::iterator RepeatedField<Element>::end() { |
878 | return iterator(unsafe_elements() + current_size_); |
879 | } |
880 | template <typename Element> |
881 | inline typename RepeatedField<Element>::const_iterator |
882 | RepeatedField<Element>::end() const { |
883 | return const_iterator(unsafe_elements() + current_size_); |
884 | } |
885 | template <typename Element> |
886 | inline typename RepeatedField<Element>::const_iterator |
887 | RepeatedField<Element>::cend() const { |
888 | return const_iterator(unsafe_elements() + current_size_); |
889 | } |
890 | |
891 | template <typename Element> |
892 | inline size_t RepeatedField<Element>::SpaceUsedExcludingSelfLong() const { |
893 | return total_size_ > 0 ? (total_size_ * sizeof(Element) + kRepHeaderSize) : 0; |
894 | } |
895 | |
896 | namespace internal { |
897 | // Returns the new size for a reserved field based on its 'total_size' and the |
898 | // requested 'new_size'. The result is clamped to the closed interval: |
899 | // [internal::kMinRepeatedFieldAllocationSize, |
900 | // std::numeric_limits<int>::max()] |
901 | // Requires: |
902 | // new_size > total_size && |
903 | // (total_size == 0 || |
904 | // total_size >= kRepeatedFieldLowerClampLimit) |
905 | template <typename T, int kRepHeaderSize> |
906 | inline int CalculateReserveSize(int total_size, int new_size) { |
907 | constexpr int lower_limit = RepeatedFieldLowerClampLimit<T, kRepHeaderSize>(); |
908 | if (new_size < lower_limit) { |
909 | // Clamp to smallest allowed size. |
910 | return lower_limit; |
911 | } |
912 | constexpr int kMaxSizeBeforeClamp = |
913 | (std::numeric_limits<int>::max() - kRepHeaderSize) / 2; |
914 | if (PROTOBUF_PREDICT_FALSE(total_size > kMaxSizeBeforeClamp)) { |
915 | return std::numeric_limits<int>::max(); |
916 | } |
917 | // We want to double the number of bytes, not the number of elements, to try |
918 | // to stay within power-of-two allocations. |
919 | // The allocation has kRepHeaderSize + sizeof(T) * capacity. |
920 | int doubled_size = 2 * total_size + kRepHeaderSize / sizeof(T); |
921 | return std::max(doubled_size, new_size); |
922 | } |
923 | } // namespace internal |
924 | |
925 | // Avoid inlining of Reserve(): new, copy, and delete[] lead to a significant |
926 | // amount of code bloat. |
927 | template <typename Element> |
928 | void RepeatedField<Element>::Reserve(int new_size) { |
929 | if (total_size_ >= new_size) return; |
930 | Rep* old_rep = total_size_ > 0 ? rep() : nullptr; |
931 | Rep* new_rep; |
932 | Arena* arena = GetOwningArena(); |
933 | |
934 | new_size = internal::CalculateReserveSize<Element, kRepHeaderSize>( |
935 | total_size_, new_size); |
936 | |
937 | GOOGLE_DCHECK_LE( |
938 | static_cast<size_t>(new_size), |
939 | (std::numeric_limits<size_t>::max() - kRepHeaderSize) / sizeof(Element)) |
940 | << "Requested size is too large to fit into size_t." ; |
941 | size_t bytes = |
942 | kRepHeaderSize + sizeof(Element) * static_cast<size_t>(new_size); |
943 | if (arena == nullptr) { |
944 | new_rep = static_cast<Rep*>(::operator new(bytes)); |
945 | } else { |
946 | new_rep = reinterpret_cast<Rep*>(Arena::CreateArray<char>(arena, num_elements: bytes)); |
947 | } |
948 | new_rep->arena = arena; |
949 | int old_total_size = total_size_; |
950 | // Already known: new_size >= internal::kMinRepeatedFieldAllocationSize |
951 | // Maintain invariant: |
952 | // total_size_ == 0 || |
953 | // total_size_ >= internal::kMinRepeatedFieldAllocationSize |
954 | total_size_ = new_size; |
955 | arena_or_elements_ = new_rep->elements(); |
956 | // Invoke placement-new on newly allocated elements. We shouldn't have to do |
957 | // this, since Element is supposed to be POD, but a previous version of this |
958 | // code allocated storage with "new Element[size]" and some code uses |
959 | // RepeatedField with non-POD types, relying on constructor invocation. If |
960 | // Element has a trivial constructor (e.g., int32_t), gcc (tested with -O2) |
961 | // completely removes this loop because the loop body is empty, so this has no |
962 | // effect unless its side-effects are required for correctness. |
963 | // Note that we do this before MoveArray() below because Element's copy |
964 | // assignment implementation will want an initialized instance first. |
965 | Element* e = &elements()[0]; |
966 | Element* limit = e + total_size_; |
967 | for (; e < limit; e++) { |
968 | new (e) Element; |
969 | } |
970 | if (current_size_ > 0) { |
971 | MoveArray(to: &elements()[0], from: old_rep->elements(), size: current_size_); |
972 | } |
973 | |
974 | // Likewise, we need to invoke destructors on the old array. |
975 | InternalDeallocate(rep: old_rep, size: old_total_size, in_destructor: false); |
976 | |
977 | } |
978 | |
979 | template <typename Element> |
980 | inline void RepeatedField<Element>::Truncate(int new_size) { |
981 | GOOGLE_DCHECK_LE(new_size, current_size_); |
982 | if (current_size_ > 0) { |
983 | current_size_ = new_size; |
984 | } |
985 | } |
986 | |
987 | template <typename Element> |
988 | inline void RepeatedField<Element>::MoveArray(Element* to, Element* from, |
989 | int array_size) { |
990 | CopyArray(to, from, size: array_size); |
991 | } |
992 | |
993 | template <typename Element> |
994 | inline void RepeatedField<Element>::CopyArray(Element* to, const Element* from, |
995 | int array_size) { |
996 | internal::ElementCopier<Element>()(to, from, array_size); |
997 | } |
998 | |
999 | namespace internal { |
1000 | |
1001 | template <typename Element, bool HasTrivialCopy> |
1002 | void ElementCopier<Element, HasTrivialCopy>::operator()(Element* to, |
1003 | const Element* from, |
1004 | int array_size) { |
1005 | std::copy(from, from + array_size, to); |
1006 | } |
1007 | |
1008 | template <typename Element> |
1009 | struct ElementCopier<Element, true> { |
1010 | void operator()(Element* to, const Element* from, int array_size) { |
1011 | memcpy(to, from, static_cast<size_t>(array_size) * sizeof(Element)); |
1012 | } |
1013 | }; |
1014 | |
1015 | } // namespace internal |
1016 | |
1017 | |
1018 | // ------------------------------------------------------------------- |
1019 | |
1020 | // Iterators and helper functions that follow the spirit of the STL |
1021 | // std::back_insert_iterator and std::back_inserter but are tailor-made |
1022 | // for RepeatedField and RepeatedPtrField. Typical usage would be: |
1023 | // |
1024 | // std::copy(some_sequence.begin(), some_sequence.end(), |
1025 | // RepeatedFieldBackInserter(proto.mutable_sequence())); |
1026 | // |
1027 | // Ported by johannes from util/gtl/proto-array-iterators.h |
1028 | |
1029 | namespace internal { |
1030 | |
1031 | // STL-like iterator implementation for RepeatedField. You should not |
1032 | // refer to this class directly; use RepeatedField<T>::iterator instead. |
1033 | // |
1034 | // Note: All of the iterator operators *must* be inlined to avoid performance |
1035 | // regressions. This is caused by the extern template declarations below (which |
1036 | // are required because of the RepeatedField extern template declarations). If |
1037 | // any of these functions aren't explicitly inlined (e.g. defined in the class), |
1038 | // the compiler isn't allowed to inline them. |
1039 | template <typename Element> |
1040 | class RepeatedIterator { |
1041 | public: |
1042 | using iterator_category = std::random_access_iterator_tag; |
1043 | // Note: remove_const is necessary for std::partial_sum, which uses value_type |
1044 | // to determine the summation variable type. |
1045 | using value_type = typename std::remove_const<Element>::type; |
1046 | using difference_type = std::ptrdiff_t; |
1047 | using pointer = Element*; |
1048 | using reference = Element&; |
1049 | |
1050 | constexpr RepeatedIterator() noexcept : it_(nullptr) {} |
1051 | |
1052 | // Allows "upcasting" from RepeatedIterator<T**> to |
1053 | // RepeatedIterator<const T*const*>. |
1054 | template <typename OtherElement, |
1055 | typename std::enable_if<std::is_convertible< |
1056 | OtherElement*, pointer>::value>::type* = nullptr> |
1057 | constexpr RepeatedIterator( |
1058 | const RepeatedIterator<OtherElement>& other) noexcept |
1059 | : it_(other.it_) {} |
1060 | |
1061 | // dereferenceable |
1062 | constexpr reference operator*() const noexcept { return *it_; } |
1063 | constexpr pointer operator->() const noexcept { return it_; } |
1064 | |
1065 | private: |
1066 | // Helper alias to hide the internal type. |
1067 | using iterator = RepeatedIterator<Element>; |
1068 | |
1069 | public: |
1070 | // {inc,dec}rementable |
1071 | iterator& operator++() noexcept { |
1072 | ++it_; |
1073 | return *this; |
1074 | } |
1075 | iterator operator++(int) noexcept { return iterator(it_++); } |
1076 | iterator& operator--() noexcept { |
1077 | --it_; |
1078 | return *this; |
1079 | } |
1080 | iterator operator--(int) noexcept { return iterator(it_--); } |
1081 | |
1082 | // equality_comparable |
1083 | friend constexpr bool operator==(const iterator& x, |
1084 | const iterator& y) noexcept { |
1085 | return x.it_ == y.it_; |
1086 | } |
1087 | friend constexpr bool operator!=(const iterator& x, |
1088 | const iterator& y) noexcept { |
1089 | return x.it_ != y.it_; |
1090 | } |
1091 | |
1092 | // less_than_comparable |
1093 | friend constexpr bool operator<(const iterator& x, |
1094 | const iterator& y) noexcept { |
1095 | return x.it_ < y.it_; |
1096 | } |
1097 | friend constexpr bool operator<=(const iterator& x, |
1098 | const iterator& y) noexcept { |
1099 | return x.it_ <= y.it_; |
1100 | } |
1101 | friend constexpr bool operator>(const iterator& x, |
1102 | const iterator& y) noexcept { |
1103 | return x.it_ > y.it_; |
1104 | } |
1105 | friend constexpr bool operator>=(const iterator& x, |
1106 | const iterator& y) noexcept { |
1107 | return x.it_ >= y.it_; |
1108 | } |
1109 | |
1110 | // addable, subtractable |
1111 | iterator& operator+=(difference_type d) noexcept { |
1112 | it_ += d; |
1113 | return *this; |
1114 | } |
1115 | constexpr iterator operator+(difference_type d) const noexcept { |
1116 | return iterator(it_ + d); |
1117 | } |
1118 | friend constexpr iterator operator+(const difference_type d, |
1119 | iterator it) noexcept { |
1120 | return it + d; |
1121 | } |
1122 | |
1123 | iterator& operator-=(difference_type d) noexcept { |
1124 | it_ -= d; |
1125 | return *this; |
1126 | } |
1127 | iterator constexpr operator-(difference_type d) const noexcept { |
1128 | return iterator(it_ - d); |
1129 | } |
1130 | |
1131 | // indexable |
1132 | constexpr reference operator[](difference_type d) const noexcept { |
1133 | return it_[d]; |
1134 | } |
1135 | |
1136 | // random access iterator |
1137 | friend constexpr difference_type operator-(iterator it1, |
1138 | iterator it2) noexcept { |
1139 | return it1.it_ - it2.it_; |
1140 | } |
1141 | |
1142 | private: |
1143 | template <typename OtherElement> |
1144 | friend class RepeatedIterator; |
1145 | |
1146 | // Allow construction from RepeatedField. |
1147 | friend class RepeatedField<value_type>; |
1148 | explicit RepeatedIterator(Element* it) noexcept : it_(it) {} |
1149 | |
1150 | // The internal iterator. |
1151 | Element* it_; |
1152 | }; |
1153 | |
1154 | // A back inserter for RepeatedField objects. |
1155 | template <typename T> |
1156 | class RepeatedFieldBackInsertIterator { |
1157 | public: |
1158 | using iterator_category = std::output_iterator_tag; |
1159 | using value_type = T; |
1160 | using pointer = void; |
1161 | using reference = void; |
1162 | using difference_type = std::ptrdiff_t; |
1163 | |
1164 | explicit RepeatedFieldBackInsertIterator( |
1165 | RepeatedField<T>* const mutable_field) |
1166 | : field_(mutable_field) {} |
1167 | RepeatedFieldBackInsertIterator<T>& operator=(const T& value) { |
1168 | field_->Add(value); |
1169 | return *this; |
1170 | } |
1171 | RepeatedFieldBackInsertIterator<T>& operator*() { return *this; } |
1172 | RepeatedFieldBackInsertIterator<T>& operator++() { return *this; } |
1173 | RepeatedFieldBackInsertIterator<T>& operator++(int /* unused */) { |
1174 | return *this; |
1175 | } |
1176 | |
1177 | private: |
1178 | RepeatedField<T>* field_; |
1179 | }; |
1180 | |
1181 | } // namespace internal |
1182 | |
1183 | // Provides a back insert iterator for RepeatedField instances, |
1184 | // similar to std::back_inserter(). |
1185 | template <typename T> |
1186 | internal::RepeatedFieldBackInsertIterator<T> RepeatedFieldBackInserter( |
1187 | RepeatedField<T>* const mutable_field) { |
1188 | return internal::RepeatedFieldBackInsertIterator<T>(mutable_field); |
1189 | } |
1190 | |
1191 | // Extern declarations of common instantiations to reduce library bloat. |
1192 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<bool>; |
1193 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<int32_t>; |
1194 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<uint32_t>; |
1195 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<int64_t>; |
1196 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<uint64_t>; |
1197 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<float>; |
1198 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedField<double>; |
1199 | |
1200 | namespace internal { |
1201 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedIterator<bool>; |
1202 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE |
1203 | RepeatedIterator<int32_t>; |
1204 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE |
1205 | RepeatedIterator<uint32_t>; |
1206 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE |
1207 | RepeatedIterator<int64_t>; |
1208 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE |
1209 | RepeatedIterator<uint64_t>; |
1210 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedIterator<float>; |
1211 | extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedIterator<double>; |
1212 | } // namespace internal |
1213 | |
1214 | } // namespace protobuf |
1215 | } // namespace google |
1216 | |
1217 | #include <google/protobuf/port_undef.inc> |
1218 | |
1219 | #endif // GOOGLE_PROTOBUF_REPEATED_FIELD_H__ |
1220 | |