| 1 | // Protocol Buffers - Google's data interchange format |
| 2 | // Copyright 2008 Google Inc. All rights reserved. |
| 3 | // https://developers.google.com/protocol-buffers/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are |
| 7 | // met: |
| 8 | // |
| 9 | // * Redistributions of source code must retain the above copyright |
| 10 | // notice, this list of conditions and the following disclaimer. |
| 11 | // * Redistributions in binary form must reproduce the above |
| 12 | // copyright notice, this list of conditions and the following disclaimer |
| 13 | // in the documentation and/or other materials provided with the |
| 14 | // distribution. |
| 15 | // * Neither the name of Google Inc. nor the names of its |
| 16 | // contributors may be used to endorse or promote products derived from |
| 17 | // this software without specific prior written permission. |
| 18 | // |
| 19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | |
| 31 | // Author: kenton@google.com (Kenton Varda) |
| 32 | // atenasio@google.com (Chris Atenasio) (ZigZag transform) |
| 33 | // wink@google.com (Wink Saville) (refactored from wire_format.h) |
| 34 | // Based on original Protocol Buffers design by |
| 35 | // Sanjay Ghemawat, Jeff Dean, and others. |
| 36 | // |
| 37 | // This header is logically internal, but is made public because it is used |
| 38 | // from protocol-compiler-generated code, which may reside in other components. |
| 39 | |
| 40 | #ifndef GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__ |
| 41 | #define GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__ |
| 42 | |
| 43 | |
| 44 | #include <limits> |
| 45 | #include <string> |
| 46 | |
| 47 | #include <google/protobuf/stubs/common.h> |
| 48 | #include <google/protobuf/stubs/logging.h> |
| 49 | #include <google/protobuf/io/coded_stream.h> |
| 50 | #include <google/protobuf/port.h> |
| 51 | #include <google/protobuf/stubs/casts.h> |
| 52 | #include <google/protobuf/arenastring.h> |
| 53 | #include <google/protobuf/message_lite.h> |
| 54 | #include <google/protobuf/repeated_field.h> |
| 55 | |
| 56 | // Do UTF-8 validation on string type in Debug build only |
| 57 | #ifndef NDEBUG |
| 58 | #define GOOGLE_PROTOBUF_UTF8_VALIDATION_ENABLED |
| 59 | #endif |
| 60 | |
| 61 | // Avoid conflict with iOS where <ConditionalMacros.h> #defines TYPE_BOOL. |
| 62 | // |
| 63 | // If some one needs the macro TYPE_BOOL in a file that includes this header, |
| 64 | // it's possible to bring it back using push/pop_macro as follows. |
| 65 | // |
| 66 | // #pragma push_macro("TYPE_BOOL") |
| 67 | // #include this header and/or all headers that need the macro to be undefined. |
| 68 | // #pragma pop_macro("TYPE_BOOL") |
| 69 | #undef TYPE_BOOL |
| 70 | |
| 71 | |
| 72 | // Must be included last. |
| 73 | #include <google/protobuf/port_def.inc> |
| 74 | |
| 75 | namespace google { |
| 76 | namespace protobuf { |
| 77 | namespace internal { |
| 78 | |
| 79 | // This class is for internal use by the protocol buffer library and by |
| 80 | // protocol-compiler-generated message classes. It must not be called |
| 81 | // directly by clients. |
| 82 | // |
| 83 | // This class contains helpers for implementing the binary protocol buffer |
| 84 | // wire format without the need for reflection. Use WireFormat when using |
| 85 | // reflection. |
| 86 | // |
| 87 | // This class is really a namespace that contains only static methods. |
| 88 | class PROTOBUF_EXPORT WireFormatLite { |
| 89 | public: |
| 90 | // ----------------------------------------------------------------- |
| 91 | // Helper constants and functions related to the format. These are |
| 92 | // mostly meant for internal and generated code to use. |
| 93 | |
| 94 | // The wire format is composed of a sequence of tag/value pairs, each |
| 95 | // of which contains the value of one field (or one element of a repeated |
| 96 | // field). Each tag is encoded as a varint. The lower bits of the tag |
| 97 | // identify its wire type, which specifies the format of the data to follow. |
| 98 | // The rest of the bits contain the field number. Each type of field (as |
| 99 | // declared by FieldDescriptor::Type, in descriptor.h) maps to one of |
| 100 | // these wire types. Immediately following each tag is the field's value, |
| 101 | // encoded in the format specified by the wire type. Because the tag |
| 102 | // identifies the encoding of this data, it is possible to skip |
| 103 | // unrecognized fields for forwards compatibility. |
| 104 | |
| 105 | enum WireType { |
| 106 | WIRETYPE_VARINT = 0, |
| 107 | WIRETYPE_FIXED64 = 1, |
| 108 | WIRETYPE_LENGTH_DELIMITED = 2, |
| 109 | WIRETYPE_START_GROUP = 3, |
| 110 | WIRETYPE_END_GROUP = 4, |
| 111 | WIRETYPE_FIXED32 = 5, |
| 112 | }; |
| 113 | |
| 114 | // Lite alternative to FieldDescriptor::Type. Must be kept in sync. |
| 115 | enum FieldType { |
| 116 | TYPE_DOUBLE = 1, |
| 117 | TYPE_FLOAT = 2, |
| 118 | TYPE_INT64 = 3, |
| 119 | TYPE_UINT64 = 4, |
| 120 | TYPE_INT32 = 5, |
| 121 | TYPE_FIXED64 = 6, |
| 122 | TYPE_FIXED32 = 7, |
| 123 | TYPE_BOOL = 8, |
| 124 | TYPE_STRING = 9, |
| 125 | TYPE_GROUP = 10, |
| 126 | TYPE_MESSAGE = 11, |
| 127 | TYPE_BYTES = 12, |
| 128 | TYPE_UINT32 = 13, |
| 129 | TYPE_ENUM = 14, |
| 130 | TYPE_SFIXED32 = 15, |
| 131 | TYPE_SFIXED64 = 16, |
| 132 | TYPE_SINT32 = 17, |
| 133 | TYPE_SINT64 = 18, |
| 134 | MAX_FIELD_TYPE = 18, |
| 135 | }; |
| 136 | |
| 137 | // Lite alternative to FieldDescriptor::CppType. Must be kept in sync. |
| 138 | enum CppType { |
| 139 | CPPTYPE_INT32 = 1, |
| 140 | CPPTYPE_INT64 = 2, |
| 141 | CPPTYPE_UINT32 = 3, |
| 142 | CPPTYPE_UINT64 = 4, |
| 143 | CPPTYPE_DOUBLE = 5, |
| 144 | CPPTYPE_FLOAT = 6, |
| 145 | CPPTYPE_BOOL = 7, |
| 146 | CPPTYPE_ENUM = 8, |
| 147 | CPPTYPE_STRING = 9, |
| 148 | CPPTYPE_MESSAGE = 10, |
| 149 | MAX_CPPTYPE = 10, |
| 150 | }; |
| 151 | |
| 152 | // Helper method to get the CppType for a particular Type. |
| 153 | static CppType FieldTypeToCppType(FieldType type); |
| 154 | |
| 155 | // Given a FieldDescriptor::Type return its WireType |
| 156 | static inline WireFormatLite::WireType WireTypeForFieldType( |
| 157 | WireFormatLite::FieldType type) { |
| 158 | return kWireTypeForFieldType[type]; |
| 159 | } |
| 160 | |
| 161 | // Number of bits in a tag which identify the wire type. |
| 162 | static constexpr int kTagTypeBits = 3; |
| 163 | // Mask for those bits. |
| 164 | static constexpr uint32_t kTagTypeMask = (1 << kTagTypeBits) - 1; |
| 165 | |
| 166 | // Helper functions for encoding and decoding tags. (Inlined below and in |
| 167 | // _inl.h) |
| 168 | // |
| 169 | // This is different from MakeTag(field->number(), field->type()) in the |
| 170 | // case of packed repeated fields. |
| 171 | constexpr static uint32_t MakeTag(int field_number, WireType type); |
| 172 | static WireType GetTagWireType(uint32_t tag); |
| 173 | static int GetTagFieldNumber(uint32_t tag); |
| 174 | |
| 175 | // Compute the byte size of a tag. For groups, this includes both the start |
| 176 | // and end tags. |
| 177 | static inline size_t TagSize(int field_number, |
| 178 | WireFormatLite::FieldType type); |
| 179 | |
| 180 | // Skips a field value with the given tag. The input should start |
| 181 | // positioned immediately after the tag. Skipped values are simply |
| 182 | // discarded, not recorded anywhere. See WireFormat::SkipField() for a |
| 183 | // version that records to an UnknownFieldSet. |
| 184 | static bool SkipField(io::CodedInputStream* input, uint32_t tag); |
| 185 | |
| 186 | // Skips a field value with the given tag. The input should start |
| 187 | // positioned immediately after the tag. Skipped values are recorded to a |
| 188 | // CodedOutputStream. |
| 189 | static bool SkipField(io::CodedInputStream* input, uint32_t tag, |
| 190 | io::CodedOutputStream* output); |
| 191 | |
| 192 | // Reads and ignores a message from the input. Skipped values are simply |
| 193 | // discarded, not recorded anywhere. See WireFormat::SkipMessage() for a |
| 194 | // version that records to an UnknownFieldSet. |
| 195 | static bool SkipMessage(io::CodedInputStream* input); |
| 196 | |
| 197 | // Reads and ignores a message from the input. Skipped values are recorded |
| 198 | // to a CodedOutputStream. |
| 199 | static bool SkipMessage(io::CodedInputStream* input, |
| 200 | io::CodedOutputStream* output); |
| 201 | |
| 202 | // This macro does the same thing as WireFormatLite::MakeTag(), but the |
| 203 | // result is usable as a compile-time constant, which makes it usable |
| 204 | // as a switch case or a template input. WireFormatLite::MakeTag() is more |
| 205 | // type-safe, though, so prefer it if possible. |
| 206 | #define GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(FIELD_NUMBER, TYPE) \ |
| 207 | static_cast<uint32_t>((static_cast<uint32_t>(FIELD_NUMBER) << 3) | (TYPE)) |
| 208 | |
| 209 | // These are the tags for the old MessageSet format, which was defined as: |
| 210 | // message MessageSet { |
| 211 | // repeated group Item = 1 { |
| 212 | // required int32 type_id = 2; |
| 213 | // required string message = 3; |
| 214 | // } |
| 215 | // } |
| 216 | static constexpr int kMessageSetItemNumber = 1; |
| 217 | static constexpr int kMessageSetTypeIdNumber = 2; |
| 218 | static constexpr int kMessageSetMessageNumber = 3; |
| 219 | static const int kMessageSetItemStartTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG( |
| 220 | kMessageSetItemNumber, WireFormatLite::WIRETYPE_START_GROUP); |
| 221 | static const int kMessageSetItemEndTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG( |
| 222 | kMessageSetItemNumber, WireFormatLite::WIRETYPE_END_GROUP); |
| 223 | static const int kMessageSetTypeIdTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG( |
| 224 | kMessageSetTypeIdNumber, WireFormatLite::WIRETYPE_VARINT); |
| 225 | static const int kMessageSetMessageTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG( |
| 226 | kMessageSetMessageNumber, WireFormatLite::WIRETYPE_LENGTH_DELIMITED); |
| 227 | |
| 228 | // Byte size of all tags of a MessageSet::Item combined. |
| 229 | static const size_t kMessageSetItemTagsSize; |
| 230 | |
| 231 | // Helper functions for converting between floats/doubles and IEEE-754 |
| 232 | // uint32s/uint64s so that they can be written. (Assumes your platform |
| 233 | // uses IEEE-754 floats.) |
| 234 | static uint32_t EncodeFloat(float value); |
| 235 | static float DecodeFloat(uint32_t value); |
| 236 | static uint64_t EncodeDouble(double value); |
| 237 | static double DecodeDouble(uint64_t value); |
| 238 | |
| 239 | // Helper functions for mapping signed integers to unsigned integers in |
| 240 | // such a way that numbers with small magnitudes will encode to smaller |
| 241 | // varints. If you simply static_cast a negative number to an unsigned |
| 242 | // number and varint-encode it, it will always take 10 bytes, defeating |
| 243 | // the purpose of varint. So, for the "sint32" and "sint64" field types, |
| 244 | // we ZigZag-encode the values. |
| 245 | static uint32_t ZigZagEncode32(int32_t n); |
| 246 | static int32_t ZigZagDecode32(uint32_t n); |
| 247 | static uint64_t ZigZagEncode64(int64_t n); |
| 248 | static int64_t ZigZagDecode64(uint64_t n); |
| 249 | |
| 250 | // ================================================================= |
| 251 | // Methods for reading/writing individual field. |
| 252 | |
| 253 | // Read fields, not including tags. The assumption is that you already |
| 254 | // read the tag to determine what field to read. |
| 255 | |
| 256 | // For primitive fields, we just use a templatized routine parameterized by |
| 257 | // the represented type and the FieldType. These are specialized with the |
| 258 | // appropriate definition for each declared type. |
| 259 | template <typename CType, enum FieldType DeclaredType> |
| 260 | PROTOBUF_NDEBUG_INLINE static bool ReadPrimitive(io::CodedInputStream* input, |
| 261 | CType* value); |
| 262 | |
| 263 | // Reads repeated primitive values, with optimizations for repeats. |
| 264 | // tag_size and tag should both be compile-time constants provided by the |
| 265 | // protocol compiler. |
| 266 | template <typename CType, enum FieldType DeclaredType> |
| 267 | PROTOBUF_NDEBUG_INLINE static bool ReadRepeatedPrimitive( |
| 268 | int tag_size, uint32_t tag, io::CodedInputStream* input, |
| 269 | RepeatedField<CType>* value); |
| 270 | |
| 271 | // Identical to ReadRepeatedPrimitive, except will not inline the |
| 272 | // implementation. |
| 273 | template <typename CType, enum FieldType DeclaredType> |
| 274 | static bool ReadRepeatedPrimitiveNoInline(int tag_size, uint32_t tag, |
| 275 | io::CodedInputStream* input, |
| 276 | RepeatedField<CType>* value); |
| 277 | |
| 278 | // Reads a primitive value directly from the provided buffer. It returns a |
| 279 | // pointer past the segment of data that was read. |
| 280 | // |
| 281 | // This is only implemented for the types with fixed wire size, e.g. |
| 282 | // float, double, and the (s)fixed* types. |
| 283 | template <typename CType, enum FieldType DeclaredType> |
| 284 | PROTOBUF_NDEBUG_INLINE static const uint8_t* ReadPrimitiveFromArray( |
| 285 | const uint8_t* buffer, CType* value); |
| 286 | |
| 287 | // Reads a primitive packed field. |
| 288 | // |
| 289 | // This is only implemented for packable types. |
| 290 | template <typename CType, enum FieldType DeclaredType> |
| 291 | PROTOBUF_NDEBUG_INLINE static bool ReadPackedPrimitive( |
| 292 | io::CodedInputStream* input, RepeatedField<CType>* value); |
| 293 | |
| 294 | // Identical to ReadPackedPrimitive, except will not inline the |
| 295 | // implementation. |
| 296 | template <typename CType, enum FieldType DeclaredType> |
| 297 | static bool ReadPackedPrimitiveNoInline(io::CodedInputStream* input, |
| 298 | RepeatedField<CType>* value); |
| 299 | |
| 300 | // Read a packed enum field. If the is_valid function is not nullptr, values |
| 301 | // for which is_valid(value) returns false are silently dropped. |
| 302 | static bool ReadPackedEnumNoInline(io::CodedInputStream* input, |
| 303 | bool (*is_valid)(int), |
| 304 | RepeatedField<int>* values); |
| 305 | |
| 306 | // Read a packed enum field. If the is_valid function is not nullptr, values |
| 307 | // for which is_valid(value) returns false are appended to |
| 308 | // unknown_fields_stream. |
| 309 | static bool ReadPackedEnumPreserveUnknowns( |
| 310 | io::CodedInputStream* input, int field_number, bool (*is_valid)(int), |
| 311 | io::CodedOutputStream* unknown_fields_stream, RepeatedField<int>* values); |
| 312 | |
| 313 | // Read a string. ReadString(..., std::string* value) requires an |
| 314 | // existing std::string. |
| 315 | static inline bool ReadString(io::CodedInputStream* input, |
| 316 | std::string* value); |
| 317 | // ReadString(..., std::string** p) is internal-only, and should only be |
| 318 | // called from generated code. It starts by setting *p to "new std::string" if |
| 319 | // *p == &GetEmptyStringAlreadyInited(). It then invokes |
| 320 | // ReadString(io::CodedInputStream* input, *p). This is useful for reducing |
| 321 | // code size. |
| 322 | static inline bool ReadString(io::CodedInputStream* input, std::string** p); |
| 323 | // Analogous to ReadString(). |
| 324 | static bool ReadBytes(io::CodedInputStream* input, std::string* value); |
| 325 | static bool ReadBytes(io::CodedInputStream* input, std::string** p); |
| 326 | |
| 327 | enum Operation { |
| 328 | PARSE = 0, |
| 329 | SERIALIZE = 1, |
| 330 | }; |
| 331 | |
| 332 | // Returns true if the data is valid UTF-8. |
| 333 | static bool VerifyUtf8String(const char* data, int size, Operation op, |
| 334 | const char* field_name); |
| 335 | |
| 336 | template <typename MessageType> |
| 337 | static inline bool ReadGroup(int field_number, io::CodedInputStream* input, |
| 338 | MessageType* value); |
| 339 | |
| 340 | template <typename MessageType> |
| 341 | static inline bool ReadMessage(io::CodedInputStream* input, |
| 342 | MessageType* value); |
| 343 | |
| 344 | template <typename MessageType> |
| 345 | static inline bool ReadMessageNoVirtual(io::CodedInputStream* input, |
| 346 | MessageType* value) { |
| 347 | return ReadMessage(input, value); |
| 348 | } |
| 349 | |
| 350 | // Write a tag. The Write*() functions typically include the tag, so |
| 351 | // normally there's no need to call this unless using the Write*NoTag() |
| 352 | // variants. |
| 353 | PROTOBUF_NDEBUG_INLINE static void WriteTag(int field_number, WireType type, |
| 354 | io::CodedOutputStream* output); |
| 355 | |
| 356 | // Write fields, without tags. |
| 357 | PROTOBUF_NDEBUG_INLINE static void WriteInt32NoTag( |
| 358 | int32_t value, io::CodedOutputStream* output); |
| 359 | PROTOBUF_NDEBUG_INLINE static void WriteInt64NoTag( |
| 360 | int64_t value, io::CodedOutputStream* output); |
| 361 | PROTOBUF_NDEBUG_INLINE static void WriteUInt32NoTag( |
| 362 | uint32_t value, io::CodedOutputStream* output); |
| 363 | PROTOBUF_NDEBUG_INLINE static void WriteUInt64NoTag( |
| 364 | uint64_t value, io::CodedOutputStream* output); |
| 365 | PROTOBUF_NDEBUG_INLINE static void WriteSInt32NoTag( |
| 366 | int32_t value, io::CodedOutputStream* output); |
| 367 | PROTOBUF_NDEBUG_INLINE static void WriteSInt64NoTag( |
| 368 | int64_t value, io::CodedOutputStream* output); |
| 369 | PROTOBUF_NDEBUG_INLINE static void WriteFixed32NoTag( |
| 370 | uint32_t value, io::CodedOutputStream* output); |
| 371 | PROTOBUF_NDEBUG_INLINE static void WriteFixed64NoTag( |
| 372 | uint64_t value, io::CodedOutputStream* output); |
| 373 | PROTOBUF_NDEBUG_INLINE static void WriteSFixed32NoTag( |
| 374 | int32_t value, io::CodedOutputStream* output); |
| 375 | PROTOBUF_NDEBUG_INLINE static void WriteSFixed64NoTag( |
| 376 | int64_t value, io::CodedOutputStream* output); |
| 377 | PROTOBUF_NDEBUG_INLINE static void WriteFloatNoTag( |
| 378 | float value, io::CodedOutputStream* output); |
| 379 | PROTOBUF_NDEBUG_INLINE static void WriteDoubleNoTag( |
| 380 | double value, io::CodedOutputStream* output); |
| 381 | PROTOBUF_NDEBUG_INLINE static void WriteBoolNoTag( |
| 382 | bool value, io::CodedOutputStream* output); |
| 383 | PROTOBUF_NDEBUG_INLINE static void WriteEnumNoTag( |
| 384 | int value, io::CodedOutputStream* output); |
| 385 | |
| 386 | // Write array of primitive fields, without tags |
| 387 | static void WriteFloatArray(const float* a, int n, |
| 388 | io::CodedOutputStream* output); |
| 389 | static void WriteDoubleArray(const double* a, int n, |
| 390 | io::CodedOutputStream* output); |
| 391 | static void WriteFixed32Array(const uint32_t* a, int n, |
| 392 | io::CodedOutputStream* output); |
| 393 | static void WriteFixed64Array(const uint64_t* a, int n, |
| 394 | io::CodedOutputStream* output); |
| 395 | static void WriteSFixed32Array(const int32_t* a, int n, |
| 396 | io::CodedOutputStream* output); |
| 397 | static void WriteSFixed64Array(const int64_t* a, int n, |
| 398 | io::CodedOutputStream* output); |
| 399 | static void WriteBoolArray(const bool* a, int n, |
| 400 | io::CodedOutputStream* output); |
| 401 | |
| 402 | // Write fields, including tags. |
| 403 | static void WriteInt32(int field_number, int32_t value, |
| 404 | io::CodedOutputStream* output); |
| 405 | static void WriteInt64(int field_number, int64_t value, |
| 406 | io::CodedOutputStream* output); |
| 407 | static void WriteUInt32(int field_number, uint32_t value, |
| 408 | io::CodedOutputStream* output); |
| 409 | static void WriteUInt64(int field_number, uint64_t value, |
| 410 | io::CodedOutputStream* output); |
| 411 | static void WriteSInt32(int field_number, int32_t value, |
| 412 | io::CodedOutputStream* output); |
| 413 | static void WriteSInt64(int field_number, int64_t value, |
| 414 | io::CodedOutputStream* output); |
| 415 | static void WriteFixed32(int field_number, uint32_t value, |
| 416 | io::CodedOutputStream* output); |
| 417 | static void WriteFixed64(int field_number, uint64_t value, |
| 418 | io::CodedOutputStream* output); |
| 419 | static void WriteSFixed32(int field_number, int32_t value, |
| 420 | io::CodedOutputStream* output); |
| 421 | static void WriteSFixed64(int field_number, int64_t value, |
| 422 | io::CodedOutputStream* output); |
| 423 | static void WriteFloat(int field_number, float value, |
| 424 | io::CodedOutputStream* output); |
| 425 | static void WriteDouble(int field_number, double value, |
| 426 | io::CodedOutputStream* output); |
| 427 | static void WriteBool(int field_number, bool value, |
| 428 | io::CodedOutputStream* output); |
| 429 | static void WriteEnum(int field_number, int value, |
| 430 | io::CodedOutputStream* output); |
| 431 | |
| 432 | static void WriteString(int field_number, const std::string& value, |
| 433 | io::CodedOutputStream* output); |
| 434 | static void WriteBytes(int field_number, const std::string& value, |
| 435 | io::CodedOutputStream* output); |
| 436 | static void WriteStringMaybeAliased(int field_number, |
| 437 | const std::string& value, |
| 438 | io::CodedOutputStream* output); |
| 439 | static void WriteBytesMaybeAliased(int field_number, const std::string& value, |
| 440 | io::CodedOutputStream* output); |
| 441 | |
| 442 | static void WriteGroup(int field_number, const MessageLite& value, |
| 443 | io::CodedOutputStream* output); |
| 444 | static void WriteMessage(int field_number, const MessageLite& value, |
| 445 | io::CodedOutputStream* output); |
| 446 | // Like above, but these will check if the output stream has enough |
| 447 | // space to write directly to a flat array. |
| 448 | static void WriteGroupMaybeToArray(int field_number, const MessageLite& value, |
| 449 | io::CodedOutputStream* output); |
| 450 | static void WriteMessageMaybeToArray(int field_number, |
| 451 | const MessageLite& value, |
| 452 | io::CodedOutputStream* output); |
| 453 | |
| 454 | // Like above, but de-virtualize the call to SerializeWithCachedSizes(). The |
| 455 | // pointer must point at an instance of MessageType, *not* a subclass (or |
| 456 | // the subclass must not override SerializeWithCachedSizes()). |
| 457 | template <typename MessageType> |
| 458 | static inline void WriteGroupNoVirtual(int field_number, |
| 459 | const MessageType& value, |
| 460 | io::CodedOutputStream* output); |
| 461 | template <typename MessageType> |
| 462 | static inline void WriteMessageNoVirtual(int field_number, |
| 463 | const MessageType& value, |
| 464 | io::CodedOutputStream* output); |
| 465 | |
| 466 | // Like above, but use only *ToArray methods of CodedOutputStream. |
| 467 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteTagToArray(int field_number, |
| 468 | WireType type, |
| 469 | uint8_t* target); |
| 470 | |
| 471 | // Write fields, without tags. |
| 472 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt32NoTagToArray( |
| 473 | int32_t value, uint8_t* target); |
| 474 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt64NoTagToArray( |
| 475 | int64_t value, uint8_t* target); |
| 476 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt32NoTagToArray( |
| 477 | uint32_t value, uint8_t* target); |
| 478 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt64NoTagToArray( |
| 479 | uint64_t value, uint8_t* target); |
| 480 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt32NoTagToArray( |
| 481 | int32_t value, uint8_t* target); |
| 482 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt64NoTagToArray( |
| 483 | int64_t value, uint8_t* target); |
| 484 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed32NoTagToArray( |
| 485 | uint32_t value, uint8_t* target); |
| 486 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed64NoTagToArray( |
| 487 | uint64_t value, uint8_t* target); |
| 488 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed32NoTagToArray( |
| 489 | int32_t value, uint8_t* target); |
| 490 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed64NoTagToArray( |
| 491 | int64_t value, uint8_t* target); |
| 492 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFloatNoTagToArray( |
| 493 | float value, uint8_t* target); |
| 494 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteDoubleNoTagToArray( |
| 495 | double value, uint8_t* target); |
| 496 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBoolNoTagToArray(bool value, |
| 497 | uint8_t* target); |
| 498 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteEnumNoTagToArray(int value, |
| 499 | uint8_t* target); |
| 500 | |
| 501 | // Write fields, without tags. These require that value.size() > 0. |
| 502 | template <typename T> |
| 503 | PROTOBUF_NDEBUG_INLINE static uint8_t* WritePrimitiveNoTagToArray( |
| 504 | const RepeatedField<T>& value, uint8_t* (*Writer)(T, uint8_t*), |
| 505 | uint8_t* target); |
| 506 | template <typename T> |
| 507 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixedNoTagToArray( |
| 508 | const RepeatedField<T>& value, uint8_t* (*Writer)(T, uint8_t*), |
| 509 | uint8_t* target); |
| 510 | |
| 511 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt32NoTagToArray( |
| 512 | const RepeatedField<int32_t>& value, uint8_t* output); |
| 513 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt64NoTagToArray( |
| 514 | const RepeatedField<int64_t>& value, uint8_t* output); |
| 515 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt32NoTagToArray( |
| 516 | const RepeatedField<uint32_t>& value, uint8_t* output); |
| 517 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt64NoTagToArray( |
| 518 | const RepeatedField<uint64_t>& value, uint8_t* output); |
| 519 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt32NoTagToArray( |
| 520 | const RepeatedField<int32_t>& value, uint8_t* output); |
| 521 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt64NoTagToArray( |
| 522 | const RepeatedField<int64_t>& value, uint8_t* output); |
| 523 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed32NoTagToArray( |
| 524 | const RepeatedField<uint32_t>& value, uint8_t* output); |
| 525 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed64NoTagToArray( |
| 526 | const RepeatedField<uint64_t>& value, uint8_t* output); |
| 527 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed32NoTagToArray( |
| 528 | const RepeatedField<int32_t>& value, uint8_t* output); |
| 529 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed64NoTagToArray( |
| 530 | const RepeatedField<int64_t>& value, uint8_t* output); |
| 531 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFloatNoTagToArray( |
| 532 | const RepeatedField<float>& value, uint8_t* output); |
| 533 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteDoubleNoTagToArray( |
| 534 | const RepeatedField<double>& value, uint8_t* output); |
| 535 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBoolNoTagToArray( |
| 536 | const RepeatedField<bool>& value, uint8_t* output); |
| 537 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteEnumNoTagToArray( |
| 538 | const RepeatedField<int>& value, uint8_t* output); |
| 539 | |
| 540 | // Write fields, including tags. |
| 541 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt32ToArray(int field_number, |
| 542 | int32_t value, |
| 543 | uint8_t* target); |
| 544 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt64ToArray(int field_number, |
| 545 | int64_t value, |
| 546 | uint8_t* target); |
| 547 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt32ToArray(int field_number, |
| 548 | uint32_t value, |
| 549 | uint8_t* target); |
| 550 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt64ToArray(int field_number, |
| 551 | uint64_t value, |
| 552 | uint8_t* target); |
| 553 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt32ToArray(int field_number, |
| 554 | int32_t value, |
| 555 | uint8_t* target); |
| 556 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt64ToArray(int field_number, |
| 557 | int64_t value, |
| 558 | uint8_t* target); |
| 559 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed32ToArray(int field_number, |
| 560 | uint32_t value, |
| 561 | uint8_t* target); |
| 562 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed64ToArray(int field_number, |
| 563 | uint64_t value, |
| 564 | uint8_t* target); |
| 565 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed32ToArray(int field_number, |
| 566 | int32_t value, |
| 567 | uint8_t* target); |
| 568 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed64ToArray(int field_number, |
| 569 | int64_t value, |
| 570 | uint8_t* target); |
| 571 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFloatToArray(int field_number, |
| 572 | float value, |
| 573 | uint8_t* target); |
| 574 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteDoubleToArray(int field_number, |
| 575 | double value, |
| 576 | uint8_t* target); |
| 577 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBoolToArray(int field_number, |
| 578 | bool value, |
| 579 | uint8_t* target); |
| 580 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteEnumToArray(int field_number, |
| 581 | int value, |
| 582 | uint8_t* target); |
| 583 | |
| 584 | template <typename T> |
| 585 | PROTOBUF_NDEBUG_INLINE static uint8_t* WritePrimitiveToArray( |
| 586 | int field_number, const RepeatedField<T>& value, |
| 587 | uint8_t* (*Writer)(int, T, uint8_t*), uint8_t* target); |
| 588 | |
| 589 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt32ToArray( |
| 590 | int field_number, const RepeatedField<int32_t>& value, uint8_t* output); |
| 591 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt64ToArray( |
| 592 | int field_number, const RepeatedField<int64_t>& value, uint8_t* output); |
| 593 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt32ToArray( |
| 594 | int field_number, const RepeatedField<uint32_t>& value, uint8_t* output); |
| 595 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt64ToArray( |
| 596 | int field_number, const RepeatedField<uint64_t>& value, uint8_t* output); |
| 597 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt32ToArray( |
| 598 | int field_number, const RepeatedField<int32_t>& value, uint8_t* output); |
| 599 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt64ToArray( |
| 600 | int field_number, const RepeatedField<int64_t>& value, uint8_t* output); |
| 601 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed32ToArray( |
| 602 | int field_number, const RepeatedField<uint32_t>& value, uint8_t* output); |
| 603 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed64ToArray( |
| 604 | int field_number, const RepeatedField<uint64_t>& value, uint8_t* output); |
| 605 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed32ToArray( |
| 606 | int field_number, const RepeatedField<int32_t>& value, uint8_t* output); |
| 607 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed64ToArray( |
| 608 | int field_number, const RepeatedField<int64_t>& value, uint8_t* output); |
| 609 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFloatToArray( |
| 610 | int field_number, const RepeatedField<float>& value, uint8_t* output); |
| 611 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteDoubleToArray( |
| 612 | int field_number, const RepeatedField<double>& value, uint8_t* output); |
| 613 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBoolToArray( |
| 614 | int field_number, const RepeatedField<bool>& value, uint8_t* output); |
| 615 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteEnumToArray( |
| 616 | int field_number, const RepeatedField<int>& value, uint8_t* output); |
| 617 | |
| 618 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteStringToArray( |
| 619 | int field_number, const std::string& value, uint8_t* target); |
| 620 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBytesToArray( |
| 621 | int field_number, const std::string& value, uint8_t* target); |
| 622 | |
| 623 | // Whether to serialize deterministically (e.g., map keys are |
| 624 | // sorted) is a property of a CodedOutputStream, and in the process |
| 625 | // of serialization, the "ToArray" variants may be invoked. But they don't |
| 626 | // have a CodedOutputStream available, so they get an additional parameter |
| 627 | // telling them whether to serialize deterministically. |
| 628 | static uint8_t* InternalWriteGroup(int field_number, const MessageLite& value, |
| 629 | uint8_t* target, |
| 630 | io::EpsCopyOutputStream* stream); |
| 631 | static uint8_t* InternalWriteMessage(int field_number, |
| 632 | const MessageLite& value, |
| 633 | int cached_size, uint8_t* target, |
| 634 | io::EpsCopyOutputStream* stream); |
| 635 | |
| 636 | // Like above, but de-virtualize the call to SerializeWithCachedSizes(). The |
| 637 | // pointer must point at an instance of MessageType, *not* a subclass (or |
| 638 | // the subclass must not override SerializeWithCachedSizes()). |
| 639 | template <typename MessageType> |
| 640 | PROTOBUF_NDEBUG_INLINE static uint8_t* InternalWriteGroupNoVirtualToArray( |
| 641 | int field_number, const MessageType& value, uint8_t* target); |
| 642 | template <typename MessageType> |
| 643 | PROTOBUF_NDEBUG_INLINE static uint8_t* InternalWriteMessageNoVirtualToArray( |
| 644 | int field_number, const MessageType& value, uint8_t* target); |
| 645 | |
| 646 | // For backward-compatibility, the last four methods also have versions |
| 647 | // that are non-deterministic always. |
| 648 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteGroupToArray( |
| 649 | int field_number, const MessageLite& value, uint8_t* target) { |
| 650 | io::EpsCopyOutputStream stream( |
| 651 | target, |
| 652 | value.GetCachedSize() + |
| 653 | static_cast<int>(2 * io::CodedOutputStream::VarintSize32( |
| 654 | value: static_cast<uint32_t>(field_number) << 3)), |
| 655 | io::CodedOutputStream::IsDefaultSerializationDeterministic()); |
| 656 | return InternalWriteGroup(field_number, value, target, stream: &stream); |
| 657 | } |
| 658 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteMessageToArray( |
| 659 | int field_number, const MessageLite& value, uint8_t* target) { |
| 660 | int size = value.GetCachedSize(); |
| 661 | io::EpsCopyOutputStream stream( |
| 662 | target, |
| 663 | size + static_cast<int>(io::CodedOutputStream::VarintSize32( |
| 664 | value: static_cast<uint32_t>(field_number) << 3) + |
| 665 | io::CodedOutputStream::VarintSize32(value: size)), |
| 666 | io::CodedOutputStream::IsDefaultSerializationDeterministic()); |
| 667 | return InternalWriteMessage(field_number, value, cached_size: value.GetCachedSize(), |
| 668 | target, stream: &stream); |
| 669 | } |
| 670 | |
| 671 | // Compute the byte size of a field. The XxSize() functions do NOT include |
| 672 | // the tag, so you must also call TagSize(). (This is because, for repeated |
| 673 | // fields, you should only call TagSize() once and multiply it by the element |
| 674 | // count, but you may have to call XxSize() for each individual element.) |
| 675 | static inline size_t Int32Size(int32_t value); |
| 676 | static inline size_t Int64Size(int64_t value); |
| 677 | static inline size_t UInt32Size(uint32_t value); |
| 678 | static inline size_t UInt64Size(uint64_t value); |
| 679 | static inline size_t SInt32Size(int32_t value); |
| 680 | static inline size_t SInt64Size(int64_t value); |
| 681 | static inline size_t EnumSize(int value); |
| 682 | static inline size_t Int32SizePlusOne(int32_t value); |
| 683 | static inline size_t Int64SizePlusOne(int64_t value); |
| 684 | static inline size_t UInt32SizePlusOne(uint32_t value); |
| 685 | static inline size_t UInt64SizePlusOne(uint64_t value); |
| 686 | static inline size_t SInt32SizePlusOne(int32_t value); |
| 687 | static inline size_t SInt64SizePlusOne(int64_t value); |
| 688 | static inline size_t EnumSizePlusOne(int value); |
| 689 | |
| 690 | static size_t Int32Size(const RepeatedField<int32_t>& value); |
| 691 | static size_t Int64Size(const RepeatedField<int64_t>& value); |
| 692 | static size_t UInt32Size(const RepeatedField<uint32_t>& value); |
| 693 | static size_t UInt64Size(const RepeatedField<uint64_t>& value); |
| 694 | static size_t SInt32Size(const RepeatedField<int32_t>& value); |
| 695 | static size_t SInt64Size(const RepeatedField<int64_t>& value); |
| 696 | static size_t EnumSize(const RepeatedField<int>& value); |
| 697 | |
| 698 | // These types always have the same size. |
| 699 | static constexpr size_t kFixed32Size = 4; |
| 700 | static constexpr size_t kFixed64Size = 8; |
| 701 | static constexpr size_t kSFixed32Size = 4; |
| 702 | static constexpr size_t kSFixed64Size = 8; |
| 703 | static constexpr size_t kFloatSize = 4; |
| 704 | static constexpr size_t kDoubleSize = 8; |
| 705 | static constexpr size_t kBoolSize = 1; |
| 706 | |
| 707 | static inline size_t StringSize(const std::string& value); |
| 708 | static inline size_t BytesSize(const std::string& value); |
| 709 | |
| 710 | template <typename MessageType> |
| 711 | static inline size_t GroupSize(const MessageType& value); |
| 712 | template <typename MessageType> |
| 713 | static inline size_t MessageSize(const MessageType& value); |
| 714 | |
| 715 | // Like above, but de-virtualize the call to ByteSize(). The |
| 716 | // pointer must point at an instance of MessageType, *not* a subclass (or |
| 717 | // the subclass must not override ByteSize()). |
| 718 | template <typename MessageType> |
| 719 | static inline size_t GroupSizeNoVirtual(const MessageType& value); |
| 720 | template <typename MessageType> |
| 721 | static inline size_t MessageSizeNoVirtual(const MessageType& value); |
| 722 | |
| 723 | // Given the length of data, calculate the byte size of the data on the |
| 724 | // wire if we encode the data as a length delimited field. |
| 725 | static inline size_t LengthDelimitedSize(size_t length); |
| 726 | |
| 727 | private: |
| 728 | // A helper method for the repeated primitive reader. This method has |
| 729 | // optimizations for primitive types that have fixed size on the wire, and |
| 730 | // can be read using potentially faster paths. |
| 731 | template <typename CType, enum FieldType DeclaredType> |
| 732 | PROTOBUF_NDEBUG_INLINE static bool ReadRepeatedFixedSizePrimitive( |
| 733 | int tag_size, uint32_t tag, io::CodedInputStream* input, |
| 734 | RepeatedField<CType>* value); |
| 735 | |
| 736 | // Like ReadRepeatedFixedSizePrimitive but for packed primitive fields. |
| 737 | template <typename CType, enum FieldType DeclaredType> |
| 738 | PROTOBUF_NDEBUG_INLINE static bool ReadPackedFixedSizePrimitive( |
| 739 | io::CodedInputStream* input, RepeatedField<CType>* value); |
| 740 | |
| 741 | static const CppType kFieldTypeToCppTypeMap[]; |
| 742 | static const WireFormatLite::WireType kWireTypeForFieldType[]; |
| 743 | static void WriteSubMessageMaybeToArray(int size, const MessageLite& value, |
| 744 | io::CodedOutputStream* output); |
| 745 | |
| 746 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(WireFormatLite); |
| 747 | }; |
| 748 | |
| 749 | // A class which deals with unknown values. The default implementation just |
| 750 | // discards them. WireFormat defines a subclass which writes to an |
| 751 | // UnknownFieldSet. This class is used by ExtensionSet::ParseField(), since |
| 752 | // ExtensionSet is part of the lite library but UnknownFieldSet is not. |
| 753 | class PROTOBUF_EXPORT FieldSkipper { |
| 754 | public: |
| 755 | FieldSkipper() {} |
| 756 | virtual ~FieldSkipper() {} |
| 757 | |
| 758 | // Skip a field whose tag has already been consumed. |
| 759 | virtual bool SkipField(io::CodedInputStream* input, uint32_t tag); |
| 760 | |
| 761 | // Skip an entire message or group, up to an end-group tag (which is consumed) |
| 762 | // or end-of-stream. |
| 763 | virtual bool SkipMessage(io::CodedInputStream* input); |
| 764 | |
| 765 | // Deal with an already-parsed unrecognized enum value. The default |
| 766 | // implementation does nothing, but the UnknownFieldSet-based implementation |
| 767 | // saves it as an unknown varint. |
| 768 | virtual void SkipUnknownEnum(int field_number, int value); |
| 769 | }; |
| 770 | |
| 771 | // Subclass of FieldSkipper which saves skipped fields to a CodedOutputStream. |
| 772 | |
| 773 | class PROTOBUF_EXPORT CodedOutputStreamFieldSkipper : public FieldSkipper { |
| 774 | public: |
| 775 | explicit CodedOutputStreamFieldSkipper(io::CodedOutputStream* unknown_fields) |
| 776 | : unknown_fields_(unknown_fields) {} |
| 777 | ~CodedOutputStreamFieldSkipper() override {} |
| 778 | |
| 779 | // implements FieldSkipper ----------------------------------------- |
| 780 | bool SkipField(io::CodedInputStream* input, uint32_t tag) override; |
| 781 | bool SkipMessage(io::CodedInputStream* input) override; |
| 782 | void SkipUnknownEnum(int field_number, int value) override; |
| 783 | |
| 784 | protected: |
| 785 | io::CodedOutputStream* unknown_fields_; |
| 786 | }; |
| 787 | |
| 788 | // inline methods ==================================================== |
| 789 | |
| 790 | inline WireFormatLite::CppType WireFormatLite::FieldTypeToCppType( |
| 791 | FieldType type) { |
| 792 | return kFieldTypeToCppTypeMap[type]; |
| 793 | } |
| 794 | |
| 795 | constexpr inline uint32_t WireFormatLite::MakeTag(int field_number, |
| 796 | WireType type) { |
| 797 | return GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(field_number, type); |
| 798 | } |
| 799 | |
| 800 | inline WireFormatLite::WireType WireFormatLite::GetTagWireType(uint32_t tag) { |
| 801 | return static_cast<WireType>(tag & kTagTypeMask); |
| 802 | } |
| 803 | |
| 804 | inline int WireFormatLite::GetTagFieldNumber(uint32_t tag) { |
| 805 | return static_cast<int>(tag >> kTagTypeBits); |
| 806 | } |
| 807 | |
| 808 | inline size_t WireFormatLite::TagSize(int field_number, |
| 809 | WireFormatLite::FieldType type) { |
| 810 | size_t result = io::CodedOutputStream::VarintSize32( |
| 811 | value: static_cast<uint32_t>(field_number << kTagTypeBits)); |
| 812 | if (type == TYPE_GROUP) { |
| 813 | // Groups have both a start and an end tag. |
| 814 | return result * 2; |
| 815 | } else { |
| 816 | return result; |
| 817 | } |
| 818 | } |
| 819 | |
| 820 | inline uint32_t WireFormatLite::EncodeFloat(float value) { |
| 821 | return bit_cast<uint32_t>(from: value); |
| 822 | } |
| 823 | |
| 824 | inline float WireFormatLite::DecodeFloat(uint32_t value) { |
| 825 | return bit_cast<float>(from: value); |
| 826 | } |
| 827 | |
| 828 | inline uint64_t WireFormatLite::EncodeDouble(double value) { |
| 829 | return bit_cast<uint64_t>(from: value); |
| 830 | } |
| 831 | |
| 832 | inline double WireFormatLite::DecodeDouble(uint64_t value) { |
| 833 | return bit_cast<double>(from: value); |
| 834 | } |
| 835 | |
| 836 | // ZigZag Transform: Encodes signed integers so that they can be |
| 837 | // effectively used with varint encoding. |
| 838 | // |
| 839 | // varint operates on unsigned integers, encoding smaller numbers into |
| 840 | // fewer bytes. If you try to use it on a signed integer, it will treat |
| 841 | // this number as a very large unsigned integer, which means that even |
| 842 | // small signed numbers like -1 will take the maximum number of bytes |
| 843 | // (10) to encode. ZigZagEncode() maps signed integers to unsigned |
| 844 | // in such a way that those with a small absolute value will have smaller |
| 845 | // encoded values, making them appropriate for encoding using varint. |
| 846 | // |
| 847 | // int32_t -> uint32_t |
| 848 | // ------------------------- |
| 849 | // 0 -> 0 |
| 850 | // -1 -> 1 |
| 851 | // 1 -> 2 |
| 852 | // -2 -> 3 |
| 853 | // ... -> ... |
| 854 | // 2147483647 -> 4294967294 |
| 855 | // -2147483648 -> 4294967295 |
| 856 | // |
| 857 | // >> encode >> |
| 858 | // << decode << |
| 859 | |
| 860 | inline uint32_t WireFormatLite::ZigZagEncode32(int32_t n) { |
| 861 | // Note: the right-shift must be arithmetic |
| 862 | // Note: left shift must be unsigned because of overflow |
| 863 | return (static_cast<uint32_t>(n) << 1) ^ static_cast<uint32_t>(n >> 31); |
| 864 | } |
| 865 | |
| 866 | inline int32_t WireFormatLite::ZigZagDecode32(uint32_t n) { |
| 867 | // Note: Using unsigned types prevent undefined behavior |
| 868 | return static_cast<int32_t>((n >> 1) ^ (~(n & 1) + 1)); |
| 869 | } |
| 870 | |
| 871 | inline uint64_t WireFormatLite::ZigZagEncode64(int64_t n) { |
| 872 | // Note: the right-shift must be arithmetic |
| 873 | // Note: left shift must be unsigned because of overflow |
| 874 | return (static_cast<uint64_t>(n) << 1) ^ static_cast<uint64_t>(n >> 63); |
| 875 | } |
| 876 | |
| 877 | inline int64_t WireFormatLite::ZigZagDecode64(uint64_t n) { |
| 878 | // Note: Using unsigned types prevent undefined behavior |
| 879 | return static_cast<int64_t>((n >> 1) ^ (~(n & 1) + 1)); |
| 880 | } |
| 881 | |
| 882 | // String is for UTF-8 text only, but, even so, ReadString() can simply |
| 883 | // call ReadBytes(). |
| 884 | |
| 885 | inline bool WireFormatLite::ReadString(io::CodedInputStream* input, |
| 886 | std::string* value) { |
| 887 | return ReadBytes(input, value); |
| 888 | } |
| 889 | |
| 890 | inline bool WireFormatLite::ReadString(io::CodedInputStream* input, |
| 891 | std::string** p) { |
| 892 | return ReadBytes(input, p); |
| 893 | } |
| 894 | |
| 895 | inline uint8_t* InternalSerializeUnknownMessageSetItemsToArray( |
| 896 | const std::string& unknown_fields, uint8_t* target, |
| 897 | io::EpsCopyOutputStream* stream) { |
| 898 | return stream->WriteRaw(data: unknown_fields.data(), |
| 899 | size: static_cast<int>(unknown_fields.size()), ptr: target); |
| 900 | } |
| 901 | |
| 902 | inline size_t ComputeUnknownMessageSetItemsSize( |
| 903 | const std::string& unknown_fields) { |
| 904 | return unknown_fields.size(); |
| 905 | } |
| 906 | |
| 907 | // Implementation details of ReadPrimitive. |
| 908 | |
| 909 | template <> |
| 910 | inline bool WireFormatLite::ReadPrimitive<int32_t, WireFormatLite::TYPE_INT32>( |
| 911 | io::CodedInputStream* input, int32_t* value) { |
| 912 | uint32_t temp; |
| 913 | if (!input->ReadVarint32(value: &temp)) return false; |
| 914 | *value = static_cast<int32_t>(temp); |
| 915 | return true; |
| 916 | } |
| 917 | template <> |
| 918 | inline bool WireFormatLite::ReadPrimitive<int64_t, WireFormatLite::TYPE_INT64>( |
| 919 | io::CodedInputStream* input, int64_t* value) { |
| 920 | uint64_t temp; |
| 921 | if (!input->ReadVarint64(value: &temp)) return false; |
| 922 | *value = static_cast<int64_t>(temp); |
| 923 | return true; |
| 924 | } |
| 925 | template <> |
| 926 | inline bool |
| 927 | WireFormatLite::ReadPrimitive<uint32_t, WireFormatLite::TYPE_UINT32>( |
| 928 | io::CodedInputStream* input, uint32_t* value) { |
| 929 | return input->ReadVarint32(value); |
| 930 | } |
| 931 | template <> |
| 932 | inline bool |
| 933 | WireFormatLite::ReadPrimitive<uint64_t, WireFormatLite::TYPE_UINT64>( |
| 934 | io::CodedInputStream* input, uint64_t* value) { |
| 935 | return input->ReadVarint64(value); |
| 936 | } |
| 937 | template <> |
| 938 | inline bool WireFormatLite::ReadPrimitive<int32_t, WireFormatLite::TYPE_SINT32>( |
| 939 | io::CodedInputStream* input, int32_t* value) { |
| 940 | uint32_t temp; |
| 941 | if (!input->ReadVarint32(value: &temp)) return false; |
| 942 | *value = ZigZagDecode32(n: temp); |
| 943 | return true; |
| 944 | } |
| 945 | template <> |
| 946 | inline bool WireFormatLite::ReadPrimitive<int64_t, WireFormatLite::TYPE_SINT64>( |
| 947 | io::CodedInputStream* input, int64_t* value) { |
| 948 | uint64_t temp; |
| 949 | if (!input->ReadVarint64(value: &temp)) return false; |
| 950 | *value = ZigZagDecode64(n: temp); |
| 951 | return true; |
| 952 | } |
| 953 | template <> |
| 954 | inline bool |
| 955 | WireFormatLite::ReadPrimitive<uint32_t, WireFormatLite::TYPE_FIXED32>( |
| 956 | io::CodedInputStream* input, uint32_t* value) { |
| 957 | return input->ReadLittleEndian32(value); |
| 958 | } |
| 959 | template <> |
| 960 | inline bool |
| 961 | WireFormatLite::ReadPrimitive<uint64_t, WireFormatLite::TYPE_FIXED64>( |
| 962 | io::CodedInputStream* input, uint64_t* value) { |
| 963 | return input->ReadLittleEndian64(value); |
| 964 | } |
| 965 | template <> |
| 966 | inline bool |
| 967 | WireFormatLite::ReadPrimitive<int32_t, WireFormatLite::TYPE_SFIXED32>( |
| 968 | io::CodedInputStream* input, int32_t* value) { |
| 969 | uint32_t temp; |
| 970 | if (!input->ReadLittleEndian32(value: &temp)) return false; |
| 971 | *value = static_cast<int32_t>(temp); |
| 972 | return true; |
| 973 | } |
| 974 | template <> |
| 975 | inline bool |
| 976 | WireFormatLite::ReadPrimitive<int64_t, WireFormatLite::TYPE_SFIXED64>( |
| 977 | io::CodedInputStream* input, int64_t* value) { |
| 978 | uint64_t temp; |
| 979 | if (!input->ReadLittleEndian64(value: &temp)) return false; |
| 980 | *value = static_cast<int64_t>(temp); |
| 981 | return true; |
| 982 | } |
| 983 | template <> |
| 984 | inline bool WireFormatLite::ReadPrimitive<float, WireFormatLite::TYPE_FLOAT>( |
| 985 | io::CodedInputStream* input, float* value) { |
| 986 | uint32_t temp; |
| 987 | if (!input->ReadLittleEndian32(value: &temp)) return false; |
| 988 | *value = DecodeFloat(value: temp); |
| 989 | return true; |
| 990 | } |
| 991 | template <> |
| 992 | inline bool WireFormatLite::ReadPrimitive<double, WireFormatLite::TYPE_DOUBLE>( |
| 993 | io::CodedInputStream* input, double* value) { |
| 994 | uint64_t temp; |
| 995 | if (!input->ReadLittleEndian64(value: &temp)) return false; |
| 996 | *value = DecodeDouble(value: temp); |
| 997 | return true; |
| 998 | } |
| 999 | template <> |
| 1000 | inline bool WireFormatLite::ReadPrimitive<bool, WireFormatLite::TYPE_BOOL>( |
| 1001 | io::CodedInputStream* input, bool* value) { |
| 1002 | uint64_t temp; |
| 1003 | if (!input->ReadVarint64(value: &temp)) return false; |
| 1004 | *value = temp != 0; |
| 1005 | return true; |
| 1006 | } |
| 1007 | template <> |
| 1008 | inline bool WireFormatLite::ReadPrimitive<int, WireFormatLite::TYPE_ENUM>( |
| 1009 | io::CodedInputStream* input, int* value) { |
| 1010 | uint32_t temp; |
| 1011 | if (!input->ReadVarint32(value: &temp)) return false; |
| 1012 | *value = static_cast<int>(temp); |
| 1013 | return true; |
| 1014 | } |
| 1015 | |
| 1016 | template <> |
| 1017 | inline const uint8_t* |
| 1018 | WireFormatLite::ReadPrimitiveFromArray<uint32_t, WireFormatLite::TYPE_FIXED32>( |
| 1019 | const uint8_t* buffer, uint32_t* value) { |
| 1020 | return io::CodedInputStream::ReadLittleEndian32FromArray(buffer, value); |
| 1021 | } |
| 1022 | template <> |
| 1023 | inline const uint8_t* |
| 1024 | WireFormatLite::ReadPrimitiveFromArray<uint64_t, WireFormatLite::TYPE_FIXED64>( |
| 1025 | const uint8_t* buffer, uint64_t* value) { |
| 1026 | return io::CodedInputStream::ReadLittleEndian64FromArray(buffer, value); |
| 1027 | } |
| 1028 | template <> |
| 1029 | inline const uint8_t* |
| 1030 | WireFormatLite::ReadPrimitiveFromArray<int32_t, WireFormatLite::TYPE_SFIXED32>( |
| 1031 | const uint8_t* buffer, int32_t* value) { |
| 1032 | uint32_t temp; |
| 1033 | buffer = io::CodedInputStream::ReadLittleEndian32FromArray(buffer, value: &temp); |
| 1034 | *value = static_cast<int32_t>(temp); |
| 1035 | return buffer; |
| 1036 | } |
| 1037 | template <> |
| 1038 | inline const uint8_t* |
| 1039 | WireFormatLite::ReadPrimitiveFromArray<int64_t, WireFormatLite::TYPE_SFIXED64>( |
| 1040 | const uint8_t* buffer, int64_t* value) { |
| 1041 | uint64_t temp; |
| 1042 | buffer = io::CodedInputStream::ReadLittleEndian64FromArray(buffer, value: &temp); |
| 1043 | *value = static_cast<int64_t>(temp); |
| 1044 | return buffer; |
| 1045 | } |
| 1046 | template <> |
| 1047 | inline const uint8_t* |
| 1048 | WireFormatLite::ReadPrimitiveFromArray<float, WireFormatLite::TYPE_FLOAT>( |
| 1049 | const uint8_t* buffer, float* value) { |
| 1050 | uint32_t temp; |
| 1051 | buffer = io::CodedInputStream::ReadLittleEndian32FromArray(buffer, value: &temp); |
| 1052 | *value = DecodeFloat(value: temp); |
| 1053 | return buffer; |
| 1054 | } |
| 1055 | template <> |
| 1056 | inline const uint8_t* |
| 1057 | WireFormatLite::ReadPrimitiveFromArray<double, WireFormatLite::TYPE_DOUBLE>( |
| 1058 | const uint8_t* buffer, double* value) { |
| 1059 | uint64_t temp; |
| 1060 | buffer = io::CodedInputStream::ReadLittleEndian64FromArray(buffer, value: &temp); |
| 1061 | *value = DecodeDouble(value: temp); |
| 1062 | return buffer; |
| 1063 | } |
| 1064 | |
| 1065 | template <typename CType, enum WireFormatLite::FieldType DeclaredType> |
| 1066 | inline bool WireFormatLite::ReadRepeatedPrimitive( |
| 1067 | int, // tag_size, unused. |
| 1068 | uint32_t tag, io::CodedInputStream* input, RepeatedField<CType>* values) { |
| 1069 | CType value; |
| 1070 | if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false; |
| 1071 | values->Add(value); |
| 1072 | int elements_already_reserved = values->Capacity() - values->size(); |
| 1073 | while (elements_already_reserved > 0 && input->ExpectTag(expected: tag)) { |
| 1074 | if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false; |
| 1075 | values->AddAlreadyReserved(value); |
| 1076 | elements_already_reserved--; |
| 1077 | } |
| 1078 | return true; |
| 1079 | } |
| 1080 | |
| 1081 | template <typename CType, enum WireFormatLite::FieldType DeclaredType> |
| 1082 | inline bool WireFormatLite::ReadRepeatedFixedSizePrimitive( |
| 1083 | int tag_size, uint32_t tag, io::CodedInputStream* input, |
| 1084 | RepeatedField<CType>* values) { |
| 1085 | GOOGLE_DCHECK_EQ(UInt32Size(tag), static_cast<size_t>(tag_size)); |
| 1086 | CType value; |
| 1087 | if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false; |
| 1088 | values->Add(value); |
| 1089 | |
| 1090 | // For fixed size values, repeated values can be read more quickly by |
| 1091 | // reading directly from a raw array. |
| 1092 | // |
| 1093 | // We can get a tight loop by only reading as many elements as can be |
| 1094 | // added to the RepeatedField without having to do any resizing. Additionally, |
| 1095 | // we only try to read as many elements as are available from the current |
| 1096 | // buffer space. Doing so avoids having to perform boundary checks when |
| 1097 | // reading the value: the maximum number of elements that can be read is |
| 1098 | // known outside of the loop. |
| 1099 | const void* void_pointer; |
| 1100 | int size; |
| 1101 | input->GetDirectBufferPointerInline(data: &void_pointer, size: &size); |
| 1102 | if (size > 0) { |
| 1103 | const uint8_t* buffer = reinterpret_cast<const uint8_t*>(void_pointer); |
| 1104 | // The number of bytes each type occupies on the wire. |
| 1105 | const int per_value_size = tag_size + static_cast<int>(sizeof(value)); |
| 1106 | |
| 1107 | // parentheses around (std::min) prevents macro expansion of min(...) |
| 1108 | int elements_available = |
| 1109 | (std::min)(values->Capacity() - values->size(), size / per_value_size); |
| 1110 | int num_read = 0; |
| 1111 | while (num_read < elements_available && |
| 1112 | (buffer = io::CodedInputStream::ExpectTagFromArray(buffer, expected: tag)) != |
| 1113 | nullptr) { |
| 1114 | buffer = ReadPrimitiveFromArray<CType, DeclaredType>(buffer, &value); |
| 1115 | values->AddAlreadyReserved(value); |
| 1116 | ++num_read; |
| 1117 | } |
| 1118 | const int read_bytes = num_read * per_value_size; |
| 1119 | if (read_bytes > 0) { |
| 1120 | input->Skip(count: read_bytes); |
| 1121 | } |
| 1122 | } |
| 1123 | return true; |
| 1124 | } |
| 1125 | |
| 1126 | // Specializations of ReadRepeatedPrimitive for the fixed size types, which use |
| 1127 | // the optimized code path. |
| 1128 | #define READ_REPEATED_FIXED_SIZE_PRIMITIVE(CPPTYPE, DECLARED_TYPE) \ |
| 1129 | template <> \ |
| 1130 | inline bool WireFormatLite::ReadRepeatedPrimitive< \ |
| 1131 | CPPTYPE, WireFormatLite::DECLARED_TYPE>( \ |
| 1132 | int tag_size, uint32_t tag, io::CodedInputStream* input, \ |
| 1133 | RepeatedField<CPPTYPE>* values) { \ |
| 1134 | return ReadRepeatedFixedSizePrimitive<CPPTYPE, \ |
| 1135 | WireFormatLite::DECLARED_TYPE>( \ |
| 1136 | tag_size, tag, input, values); \ |
| 1137 | } |
| 1138 | |
| 1139 | READ_REPEATED_FIXED_SIZE_PRIMITIVE(uint32_t, TYPE_FIXED32) |
| 1140 | READ_REPEATED_FIXED_SIZE_PRIMITIVE(uint64_t, TYPE_FIXED64) |
| 1141 | READ_REPEATED_FIXED_SIZE_PRIMITIVE(int32_t, TYPE_SFIXED32) |
| 1142 | READ_REPEATED_FIXED_SIZE_PRIMITIVE(int64_t, TYPE_SFIXED64) |
| 1143 | READ_REPEATED_FIXED_SIZE_PRIMITIVE(float, TYPE_FLOAT) |
| 1144 | READ_REPEATED_FIXED_SIZE_PRIMITIVE(double, TYPE_DOUBLE) |
| 1145 | |
| 1146 | #undef READ_REPEATED_FIXED_SIZE_PRIMITIVE |
| 1147 | |
| 1148 | template <typename CType, enum WireFormatLite::FieldType DeclaredType> |
| 1149 | bool WireFormatLite::ReadRepeatedPrimitiveNoInline( |
| 1150 | int tag_size, uint32_t tag, io::CodedInputStream* input, |
| 1151 | RepeatedField<CType>* value) { |
| 1152 | return ReadRepeatedPrimitive<CType, DeclaredType>(tag_size, tag, input, |
| 1153 | value); |
| 1154 | } |
| 1155 | |
| 1156 | template <typename CType, enum WireFormatLite::FieldType DeclaredType> |
| 1157 | inline bool WireFormatLite::ReadPackedPrimitive(io::CodedInputStream* input, |
| 1158 | RepeatedField<CType>* values) { |
| 1159 | int length; |
| 1160 | if (!input->ReadVarintSizeAsInt(value: &length)) return false; |
| 1161 | io::CodedInputStream::Limit limit = input->PushLimit(byte_limit: length); |
| 1162 | while (input->BytesUntilLimit() > 0) { |
| 1163 | CType value; |
| 1164 | if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false; |
| 1165 | values->Add(value); |
| 1166 | } |
| 1167 | input->PopLimit(limit); |
| 1168 | return true; |
| 1169 | } |
| 1170 | |
| 1171 | template <typename CType, enum WireFormatLite::FieldType DeclaredType> |
| 1172 | inline bool WireFormatLite::ReadPackedFixedSizePrimitive( |
| 1173 | io::CodedInputStream* input, RepeatedField<CType>* values) { |
| 1174 | int length; |
| 1175 | if (!input->ReadVarintSizeAsInt(value: &length)) return false; |
| 1176 | const int old_entries = values->size(); |
| 1177 | const int new_entries = length / static_cast<int>(sizeof(CType)); |
| 1178 | const int new_bytes = new_entries * static_cast<int>(sizeof(CType)); |
| 1179 | if (new_bytes != length) return false; |
| 1180 | // We would *like* to pre-allocate the buffer to write into (for |
| 1181 | // speed), but *must* avoid performing a very large allocation due |
| 1182 | // to a malicious user-supplied "length" above. So we have a fast |
| 1183 | // path that pre-allocates when the "length" is less than a bound. |
| 1184 | // We determine the bound by calling BytesUntilTotalBytesLimit() and |
| 1185 | // BytesUntilLimit(). These return -1 to mean "no limit set". |
| 1186 | // There are four cases: |
| 1187 | // TotalBytesLimit Limit |
| 1188 | // -1 -1 Use slow path. |
| 1189 | // -1 >= 0 Use fast path if length <= Limit. |
| 1190 | // >= 0 -1 Use slow path. |
| 1191 | // >= 0 >= 0 Use fast path if length <= min(both limits). |
| 1192 | int64_t bytes_limit = input->BytesUntilTotalBytesLimit(); |
| 1193 | if (bytes_limit == -1) { |
| 1194 | bytes_limit = input->BytesUntilLimit(); |
| 1195 | } else { |
| 1196 | // parentheses around (std::min) prevents macro expansion of min(...) |
| 1197 | bytes_limit = |
| 1198 | (std::min)(bytes_limit, static_cast<int64_t>(input->BytesUntilLimit())); |
| 1199 | } |
| 1200 | if (bytes_limit >= new_bytes) { |
| 1201 | // Fast-path that pre-allocates *values to the final size. |
| 1202 | #if defined(PROTOBUF_LITTLE_ENDIAN) |
| 1203 | values->Resize(old_entries + new_entries, 0); |
| 1204 | // values->mutable_data() may change after Resize(), so do this after: |
| 1205 | void* dest = reinterpret_cast<void*>(values->mutable_data() + old_entries); |
| 1206 | if (!input->ReadRaw(buffer: dest, size: new_bytes)) { |
| 1207 | values->Truncate(old_entries); |
| 1208 | return false; |
| 1209 | } |
| 1210 | #else |
| 1211 | values->Reserve(old_entries + new_entries); |
| 1212 | CType value; |
| 1213 | for (int i = 0; i < new_entries; ++i) { |
| 1214 | if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false; |
| 1215 | values->AddAlreadyReserved(value); |
| 1216 | } |
| 1217 | #endif |
| 1218 | } else { |
| 1219 | // This is the slow-path case where "length" may be too large to |
| 1220 | // safely allocate. We read as much as we can into *values |
| 1221 | // without pre-allocating "length" bytes. |
| 1222 | CType value; |
| 1223 | for (int i = 0; i < new_entries; ++i) { |
| 1224 | if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false; |
| 1225 | values->Add(value); |
| 1226 | } |
| 1227 | } |
| 1228 | return true; |
| 1229 | } |
| 1230 | |
| 1231 | // Specializations of ReadPackedPrimitive for the fixed size types, which use |
| 1232 | // an optimized code path. |
| 1233 | #define READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(CPPTYPE, DECLARED_TYPE) \ |
| 1234 | template <> \ |
| 1235 | inline bool \ |
| 1236 | WireFormatLite::ReadPackedPrimitive<CPPTYPE, WireFormatLite::DECLARED_TYPE>( \ |
| 1237 | io::CodedInputStream * input, RepeatedField<CPPTYPE> * values) { \ |
| 1238 | return ReadPackedFixedSizePrimitive<CPPTYPE, \ |
| 1239 | WireFormatLite::DECLARED_TYPE>( \ |
| 1240 | input, values); \ |
| 1241 | } |
| 1242 | |
| 1243 | READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(uint32_t, TYPE_FIXED32) |
| 1244 | READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(uint64_t, TYPE_FIXED64) |
| 1245 | READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(int32_t, TYPE_SFIXED32) |
| 1246 | READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(int64_t, TYPE_SFIXED64) |
| 1247 | READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(float, TYPE_FLOAT) |
| 1248 | READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(double, TYPE_DOUBLE) |
| 1249 | |
| 1250 | #undef READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE |
| 1251 | |
| 1252 | template <typename CType, enum WireFormatLite::FieldType DeclaredType> |
| 1253 | bool WireFormatLite::ReadPackedPrimitiveNoInline(io::CodedInputStream* input, |
| 1254 | RepeatedField<CType>* values) { |
| 1255 | return ReadPackedPrimitive<CType, DeclaredType>(input, values); |
| 1256 | } |
| 1257 | |
| 1258 | |
| 1259 | template <typename MessageType> |
| 1260 | inline bool WireFormatLite::ReadGroup(int field_number, |
| 1261 | io::CodedInputStream* input, |
| 1262 | MessageType* value) { |
| 1263 | if (!input->IncrementRecursionDepth()) return false; |
| 1264 | if (!value->MergePartialFromCodedStream(input)) return false; |
| 1265 | input->UnsafeDecrementRecursionDepth(); |
| 1266 | // Make sure the last thing read was an end tag for this group. |
| 1267 | if (!input->LastTagWas(expected: MakeTag(field_number, type: WIRETYPE_END_GROUP))) { |
| 1268 | return false; |
| 1269 | } |
| 1270 | return true; |
| 1271 | } |
| 1272 | template <typename MessageType> |
| 1273 | inline bool WireFormatLite::ReadMessage(io::CodedInputStream* input, |
| 1274 | MessageType* value) { |
| 1275 | int length; |
| 1276 | if (!input->ReadVarintSizeAsInt(value: &length)) return false; |
| 1277 | std::pair<io::CodedInputStream::Limit, int> p = |
| 1278 | input->IncrementRecursionDepthAndPushLimit(byte_limit: length); |
| 1279 | if (p.second < 0 || !value->MergePartialFromCodedStream(input)) return false; |
| 1280 | // Make sure that parsing stopped when the limit was hit, not at an endgroup |
| 1281 | // tag. |
| 1282 | return input->DecrementRecursionDepthAndPopLimit(limit: p.first); |
| 1283 | } |
| 1284 | |
| 1285 | // =================================================================== |
| 1286 | |
| 1287 | inline void WireFormatLite::WriteTag(int field_number, WireType type, |
| 1288 | io::CodedOutputStream* output) { |
| 1289 | output->WriteTag(value: MakeTag(field_number, type)); |
| 1290 | } |
| 1291 | |
| 1292 | inline void WireFormatLite::WriteInt32NoTag(int32_t value, |
| 1293 | io::CodedOutputStream* output) { |
| 1294 | output->WriteVarint32SignExtended(value); |
| 1295 | } |
| 1296 | inline void WireFormatLite::WriteInt64NoTag(int64_t value, |
| 1297 | io::CodedOutputStream* output) { |
| 1298 | output->WriteVarint64(value: static_cast<uint64_t>(value)); |
| 1299 | } |
| 1300 | inline void WireFormatLite::WriteUInt32NoTag(uint32_t value, |
| 1301 | io::CodedOutputStream* output) { |
| 1302 | output->WriteVarint32(value); |
| 1303 | } |
| 1304 | inline void WireFormatLite::WriteUInt64NoTag(uint64_t value, |
| 1305 | io::CodedOutputStream* output) { |
| 1306 | output->WriteVarint64(value); |
| 1307 | } |
| 1308 | inline void WireFormatLite::WriteSInt32NoTag(int32_t value, |
| 1309 | io::CodedOutputStream* output) { |
| 1310 | output->WriteVarint32(value: ZigZagEncode32(n: value)); |
| 1311 | } |
| 1312 | inline void WireFormatLite::WriteSInt64NoTag(int64_t value, |
| 1313 | io::CodedOutputStream* output) { |
| 1314 | output->WriteVarint64(value: ZigZagEncode64(n: value)); |
| 1315 | } |
| 1316 | inline void WireFormatLite::WriteFixed32NoTag(uint32_t value, |
| 1317 | io::CodedOutputStream* output) { |
| 1318 | output->WriteLittleEndian32(value); |
| 1319 | } |
| 1320 | inline void WireFormatLite::WriteFixed64NoTag(uint64_t value, |
| 1321 | io::CodedOutputStream* output) { |
| 1322 | output->WriteLittleEndian64(value); |
| 1323 | } |
| 1324 | inline void WireFormatLite::WriteSFixed32NoTag(int32_t value, |
| 1325 | io::CodedOutputStream* output) { |
| 1326 | output->WriteLittleEndian32(value: static_cast<uint32_t>(value)); |
| 1327 | } |
| 1328 | inline void WireFormatLite::WriteSFixed64NoTag(int64_t value, |
| 1329 | io::CodedOutputStream* output) { |
| 1330 | output->WriteLittleEndian64(value: static_cast<uint64_t>(value)); |
| 1331 | } |
| 1332 | inline void WireFormatLite::WriteFloatNoTag(float value, |
| 1333 | io::CodedOutputStream* output) { |
| 1334 | output->WriteLittleEndian32(value: EncodeFloat(value)); |
| 1335 | } |
| 1336 | inline void WireFormatLite::WriteDoubleNoTag(double value, |
| 1337 | io::CodedOutputStream* output) { |
| 1338 | output->WriteLittleEndian64(value: EncodeDouble(value)); |
| 1339 | } |
| 1340 | inline void WireFormatLite::WriteBoolNoTag(bool value, |
| 1341 | io::CodedOutputStream* output) { |
| 1342 | output->WriteVarint32(value: value ? 1 : 0); |
| 1343 | } |
| 1344 | inline void WireFormatLite::WriteEnumNoTag(int value, |
| 1345 | io::CodedOutputStream* output) { |
| 1346 | output->WriteVarint32SignExtended(value); |
| 1347 | } |
| 1348 | |
| 1349 | // See comment on ReadGroupNoVirtual to understand the need for this template |
| 1350 | // parameter name. |
| 1351 | template <typename MessageType_WorkAroundCppLookupDefect> |
| 1352 | inline void WireFormatLite::WriteGroupNoVirtual( |
| 1353 | int field_number, const MessageType_WorkAroundCppLookupDefect& value, |
| 1354 | io::CodedOutputStream* output) { |
| 1355 | WriteTag(field_number, type: WIRETYPE_START_GROUP, output); |
| 1356 | value.MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizes(output); |
| 1357 | WriteTag(field_number, type: WIRETYPE_END_GROUP, output); |
| 1358 | } |
| 1359 | template <typename MessageType_WorkAroundCppLookupDefect> |
| 1360 | inline void WireFormatLite::WriteMessageNoVirtual( |
| 1361 | int field_number, const MessageType_WorkAroundCppLookupDefect& value, |
| 1362 | io::CodedOutputStream* output) { |
| 1363 | WriteTag(field_number, type: WIRETYPE_LENGTH_DELIMITED, output); |
| 1364 | output->WriteVarint32( |
| 1365 | value: value.MessageType_WorkAroundCppLookupDefect::GetCachedSize()); |
| 1366 | value.MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizes(output); |
| 1367 | } |
| 1368 | |
| 1369 | // =================================================================== |
| 1370 | |
| 1371 | inline uint8_t* WireFormatLite::WriteTagToArray(int field_number, WireType type, |
| 1372 | uint8_t* target) { |
| 1373 | return io::CodedOutputStream::WriteTagToArray(value: MakeTag(field_number, type), |
| 1374 | target); |
| 1375 | } |
| 1376 | |
| 1377 | inline uint8_t* WireFormatLite::WriteInt32NoTagToArray(int32_t value, |
| 1378 | uint8_t* target) { |
| 1379 | return io::CodedOutputStream::WriteVarint32SignExtendedToArray(value, target); |
| 1380 | } |
| 1381 | inline uint8_t* WireFormatLite::WriteInt64NoTagToArray(int64_t value, |
| 1382 | uint8_t* target) { |
| 1383 | return io::CodedOutputStream::WriteVarint64ToArray( |
| 1384 | value: static_cast<uint64_t>(value), target); |
| 1385 | } |
| 1386 | inline uint8_t* WireFormatLite::WriteUInt32NoTagToArray(uint32_t value, |
| 1387 | uint8_t* target) { |
| 1388 | return io::CodedOutputStream::WriteVarint32ToArray(value, target); |
| 1389 | } |
| 1390 | inline uint8_t* WireFormatLite::WriteUInt64NoTagToArray(uint64_t value, |
| 1391 | uint8_t* target) { |
| 1392 | return io::CodedOutputStream::WriteVarint64ToArray(value, target); |
| 1393 | } |
| 1394 | inline uint8_t* WireFormatLite::WriteSInt32NoTagToArray(int32_t value, |
| 1395 | uint8_t* target) { |
| 1396 | return io::CodedOutputStream::WriteVarint32ToArray(value: ZigZagEncode32(n: value), |
| 1397 | target); |
| 1398 | } |
| 1399 | inline uint8_t* WireFormatLite::WriteSInt64NoTagToArray(int64_t value, |
| 1400 | uint8_t* target) { |
| 1401 | return io::CodedOutputStream::WriteVarint64ToArray(value: ZigZagEncode64(n: value), |
| 1402 | target); |
| 1403 | } |
| 1404 | inline uint8_t* WireFormatLite::WriteFixed32NoTagToArray(uint32_t value, |
| 1405 | uint8_t* target) { |
| 1406 | return io::CodedOutputStream::WriteLittleEndian32ToArray(value, target); |
| 1407 | } |
| 1408 | inline uint8_t* WireFormatLite::WriteFixed64NoTagToArray(uint64_t value, |
| 1409 | uint8_t* target) { |
| 1410 | return io::CodedOutputStream::WriteLittleEndian64ToArray(value, target); |
| 1411 | } |
| 1412 | inline uint8_t* WireFormatLite::WriteSFixed32NoTagToArray(int32_t value, |
| 1413 | uint8_t* target) { |
| 1414 | return io::CodedOutputStream::WriteLittleEndian32ToArray( |
| 1415 | value: static_cast<uint32_t>(value), target); |
| 1416 | } |
| 1417 | inline uint8_t* WireFormatLite::WriteSFixed64NoTagToArray(int64_t value, |
| 1418 | uint8_t* target) { |
| 1419 | return io::CodedOutputStream::WriteLittleEndian64ToArray( |
| 1420 | value: static_cast<uint64_t>(value), target); |
| 1421 | } |
| 1422 | inline uint8_t* WireFormatLite::WriteFloatNoTagToArray(float value, |
| 1423 | uint8_t* target) { |
| 1424 | return io::CodedOutputStream::WriteLittleEndian32ToArray(value: EncodeFloat(value), |
| 1425 | target); |
| 1426 | } |
| 1427 | inline uint8_t* WireFormatLite::WriteDoubleNoTagToArray(double value, |
| 1428 | uint8_t* target) { |
| 1429 | return io::CodedOutputStream::WriteLittleEndian64ToArray(value: EncodeDouble(value), |
| 1430 | target); |
| 1431 | } |
| 1432 | inline uint8_t* WireFormatLite::WriteBoolNoTagToArray(bool value, |
| 1433 | uint8_t* target) { |
| 1434 | return io::CodedOutputStream::WriteVarint32ToArray(value: value ? 1 : 0, target); |
| 1435 | } |
| 1436 | inline uint8_t* WireFormatLite::WriteEnumNoTagToArray(int value, |
| 1437 | uint8_t* target) { |
| 1438 | return io::CodedOutputStream::WriteVarint32SignExtendedToArray(value, target); |
| 1439 | } |
| 1440 | |
| 1441 | template <typename T> |
| 1442 | inline uint8_t* WireFormatLite::WritePrimitiveNoTagToArray( |
| 1443 | const RepeatedField<T>& value, uint8_t* (*Writer)(T, uint8_t*), |
| 1444 | uint8_t* target) { |
| 1445 | const int n = value.size(); |
| 1446 | GOOGLE_DCHECK_GT(n, 0); |
| 1447 | |
| 1448 | const T* ii = value.data(); |
| 1449 | int i = 0; |
| 1450 | do { |
| 1451 | target = Writer(ii[i], target); |
| 1452 | } while (++i < n); |
| 1453 | |
| 1454 | return target; |
| 1455 | } |
| 1456 | |
| 1457 | template <typename T> |
| 1458 | inline uint8_t* WireFormatLite::WriteFixedNoTagToArray( |
| 1459 | const RepeatedField<T>& value, uint8_t* (*Writer)(T, uint8_t*), |
| 1460 | uint8_t* target) { |
| 1461 | #if defined(PROTOBUF_LITTLE_ENDIAN) |
| 1462 | (void)Writer; |
| 1463 | |
| 1464 | const int n = value.size(); |
| 1465 | GOOGLE_DCHECK_GT(n, 0); |
| 1466 | |
| 1467 | const T* ii = value.data(); |
| 1468 | const int bytes = n * static_cast<int>(sizeof(ii[0])); |
| 1469 | memcpy(target, ii, static_cast<size_t>(bytes)); |
| 1470 | return target + bytes; |
| 1471 | #else |
| 1472 | return WritePrimitiveNoTagToArray(value, Writer, target); |
| 1473 | #endif |
| 1474 | } |
| 1475 | |
| 1476 | inline uint8_t* WireFormatLite::WriteInt32NoTagToArray( |
| 1477 | const RepeatedField<int32_t>& value, uint8_t* target) { |
| 1478 | return WritePrimitiveNoTagToArray(value, Writer: WriteInt32NoTagToArray, target); |
| 1479 | } |
| 1480 | inline uint8_t* WireFormatLite::WriteInt64NoTagToArray( |
| 1481 | const RepeatedField<int64_t>& value, uint8_t* target) { |
| 1482 | return WritePrimitiveNoTagToArray(value, Writer: WriteInt64NoTagToArray, target); |
| 1483 | } |
| 1484 | inline uint8_t* WireFormatLite::WriteUInt32NoTagToArray( |
| 1485 | const RepeatedField<uint32_t>& value, uint8_t* target) { |
| 1486 | return WritePrimitiveNoTagToArray(value, Writer: WriteUInt32NoTagToArray, target); |
| 1487 | } |
| 1488 | inline uint8_t* WireFormatLite::WriteUInt64NoTagToArray( |
| 1489 | const RepeatedField<uint64_t>& value, uint8_t* target) { |
| 1490 | return WritePrimitiveNoTagToArray(value, Writer: WriteUInt64NoTagToArray, target); |
| 1491 | } |
| 1492 | inline uint8_t* WireFormatLite::WriteSInt32NoTagToArray( |
| 1493 | const RepeatedField<int32_t>& value, uint8_t* target) { |
| 1494 | return WritePrimitiveNoTagToArray(value, Writer: WriteSInt32NoTagToArray, target); |
| 1495 | } |
| 1496 | inline uint8_t* WireFormatLite::WriteSInt64NoTagToArray( |
| 1497 | const RepeatedField<int64_t>& value, uint8_t* target) { |
| 1498 | return WritePrimitiveNoTagToArray(value, Writer: WriteSInt64NoTagToArray, target); |
| 1499 | } |
| 1500 | inline uint8_t* WireFormatLite::WriteFixed32NoTagToArray( |
| 1501 | const RepeatedField<uint32_t>& value, uint8_t* target) { |
| 1502 | return WriteFixedNoTagToArray(value, Writer: WriteFixed32NoTagToArray, target); |
| 1503 | } |
| 1504 | inline uint8_t* WireFormatLite::WriteFixed64NoTagToArray( |
| 1505 | const RepeatedField<uint64_t>& value, uint8_t* target) { |
| 1506 | return WriteFixedNoTagToArray(value, Writer: WriteFixed64NoTagToArray, target); |
| 1507 | } |
| 1508 | inline uint8_t* WireFormatLite::WriteSFixed32NoTagToArray( |
| 1509 | const RepeatedField<int32_t>& value, uint8_t* target) { |
| 1510 | return WriteFixedNoTagToArray(value, Writer: WriteSFixed32NoTagToArray, target); |
| 1511 | } |
| 1512 | inline uint8_t* WireFormatLite::WriteSFixed64NoTagToArray( |
| 1513 | const RepeatedField<int64_t>& value, uint8_t* target) { |
| 1514 | return WriteFixedNoTagToArray(value, Writer: WriteSFixed64NoTagToArray, target); |
| 1515 | } |
| 1516 | inline uint8_t* WireFormatLite::WriteFloatNoTagToArray( |
| 1517 | const RepeatedField<float>& value, uint8_t* target) { |
| 1518 | return WriteFixedNoTagToArray(value, Writer: WriteFloatNoTagToArray, target); |
| 1519 | } |
| 1520 | inline uint8_t* WireFormatLite::WriteDoubleNoTagToArray( |
| 1521 | const RepeatedField<double>& value, uint8_t* target) { |
| 1522 | return WriteFixedNoTagToArray(value, Writer: WriteDoubleNoTagToArray, target); |
| 1523 | } |
| 1524 | inline uint8_t* WireFormatLite::WriteBoolNoTagToArray( |
| 1525 | const RepeatedField<bool>& value, uint8_t* target) { |
| 1526 | return WritePrimitiveNoTagToArray(value, Writer: WriteBoolNoTagToArray, target); |
| 1527 | } |
| 1528 | inline uint8_t* WireFormatLite::WriteEnumNoTagToArray( |
| 1529 | const RepeatedField<int>& value, uint8_t* target) { |
| 1530 | return WritePrimitiveNoTagToArray(value, Writer: WriteEnumNoTagToArray, target); |
| 1531 | } |
| 1532 | |
| 1533 | inline uint8_t* WireFormatLite::WriteInt32ToArray(int field_number, |
| 1534 | int32_t value, |
| 1535 | uint8_t* target) { |
| 1536 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
| 1537 | return WriteInt32NoTagToArray(value, target); |
| 1538 | } |
| 1539 | inline uint8_t* WireFormatLite::WriteInt64ToArray(int field_number, |
| 1540 | int64_t value, |
| 1541 | uint8_t* target) { |
| 1542 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
| 1543 | return WriteInt64NoTagToArray(value, target); |
| 1544 | } |
| 1545 | inline uint8_t* WireFormatLite::WriteUInt32ToArray(int field_number, |
| 1546 | uint32_t value, |
| 1547 | uint8_t* target) { |
| 1548 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
| 1549 | return WriteUInt32NoTagToArray(value, target); |
| 1550 | } |
| 1551 | inline uint8_t* WireFormatLite::WriteUInt64ToArray(int field_number, |
| 1552 | uint64_t value, |
| 1553 | uint8_t* target) { |
| 1554 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
| 1555 | return WriteUInt64NoTagToArray(value, target); |
| 1556 | } |
| 1557 | inline uint8_t* WireFormatLite::WriteSInt32ToArray(int field_number, |
| 1558 | int32_t value, |
| 1559 | uint8_t* target) { |
| 1560 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
| 1561 | return WriteSInt32NoTagToArray(value, target); |
| 1562 | } |
| 1563 | inline uint8_t* WireFormatLite::WriteSInt64ToArray(int field_number, |
| 1564 | int64_t value, |
| 1565 | uint8_t* target) { |
| 1566 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
| 1567 | return WriteSInt64NoTagToArray(value, target); |
| 1568 | } |
| 1569 | inline uint8_t* WireFormatLite::WriteFixed32ToArray(int field_number, |
| 1570 | uint32_t value, |
| 1571 | uint8_t* target) { |
| 1572 | target = WriteTagToArray(field_number, type: WIRETYPE_FIXED32, target); |
| 1573 | return WriteFixed32NoTagToArray(value, target); |
| 1574 | } |
| 1575 | inline uint8_t* WireFormatLite::WriteFixed64ToArray(int field_number, |
| 1576 | uint64_t value, |
| 1577 | uint8_t* target) { |
| 1578 | target = WriteTagToArray(field_number, type: WIRETYPE_FIXED64, target); |
| 1579 | return WriteFixed64NoTagToArray(value, target); |
| 1580 | } |
| 1581 | inline uint8_t* WireFormatLite::WriteSFixed32ToArray(int field_number, |
| 1582 | int32_t value, |
| 1583 | uint8_t* target) { |
| 1584 | target = WriteTagToArray(field_number, type: WIRETYPE_FIXED32, target); |
| 1585 | return WriteSFixed32NoTagToArray(value, target); |
| 1586 | } |
| 1587 | inline uint8_t* WireFormatLite::WriteSFixed64ToArray(int field_number, |
| 1588 | int64_t value, |
| 1589 | uint8_t* target) { |
| 1590 | target = WriteTagToArray(field_number, type: WIRETYPE_FIXED64, target); |
| 1591 | return WriteSFixed64NoTagToArray(value, target); |
| 1592 | } |
| 1593 | inline uint8_t* WireFormatLite::WriteFloatToArray(int field_number, float value, |
| 1594 | uint8_t* target) { |
| 1595 | target = WriteTagToArray(field_number, type: WIRETYPE_FIXED32, target); |
| 1596 | return WriteFloatNoTagToArray(value, target); |
| 1597 | } |
| 1598 | inline uint8_t* WireFormatLite::WriteDoubleToArray(int field_number, |
| 1599 | double value, |
| 1600 | uint8_t* target) { |
| 1601 | target = WriteTagToArray(field_number, type: WIRETYPE_FIXED64, target); |
| 1602 | return WriteDoubleNoTagToArray(value, target); |
| 1603 | } |
| 1604 | inline uint8_t* WireFormatLite::WriteBoolToArray(int field_number, bool value, |
| 1605 | uint8_t* target) { |
| 1606 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
| 1607 | return WriteBoolNoTagToArray(value, target); |
| 1608 | } |
| 1609 | inline uint8_t* WireFormatLite::WriteEnumToArray(int field_number, int value, |
| 1610 | uint8_t* target) { |
| 1611 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
| 1612 | return WriteEnumNoTagToArray(value, target); |
| 1613 | } |
| 1614 | |
| 1615 | template <typename T> |
| 1616 | inline uint8_t* WireFormatLite::WritePrimitiveToArray( |
| 1617 | int field_number, const RepeatedField<T>& value, |
| 1618 | uint8_t* (*Writer)(int, T, uint8_t*), uint8_t* target) { |
| 1619 | const int n = value.size(); |
| 1620 | if (n == 0) { |
| 1621 | return target; |
| 1622 | } |
| 1623 | |
| 1624 | const T* ii = value.data(); |
| 1625 | int i = 0; |
| 1626 | do { |
| 1627 | target = Writer(field_number, ii[i], target); |
| 1628 | } while (++i < n); |
| 1629 | |
| 1630 | return target; |
| 1631 | } |
| 1632 | |
| 1633 | inline uint8_t* WireFormatLite::WriteInt32ToArray( |
| 1634 | int field_number, const RepeatedField<int32_t>& value, uint8_t* target) { |
| 1635 | return WritePrimitiveToArray(field_number, value, Writer: WriteInt32ToArray, target); |
| 1636 | } |
| 1637 | inline uint8_t* WireFormatLite::WriteInt64ToArray( |
| 1638 | int field_number, const RepeatedField<int64_t>& value, uint8_t* target) { |
| 1639 | return WritePrimitiveToArray(field_number, value, Writer: WriteInt64ToArray, target); |
| 1640 | } |
| 1641 | inline uint8_t* WireFormatLite::WriteUInt32ToArray( |
| 1642 | int field_number, const RepeatedField<uint32_t>& value, uint8_t* target) { |
| 1643 | return WritePrimitiveToArray(field_number, value, Writer: WriteUInt32ToArray, target); |
| 1644 | } |
| 1645 | inline uint8_t* WireFormatLite::WriteUInt64ToArray( |
| 1646 | int field_number, const RepeatedField<uint64_t>& value, uint8_t* target) { |
| 1647 | return WritePrimitiveToArray(field_number, value, Writer: WriteUInt64ToArray, target); |
| 1648 | } |
| 1649 | inline uint8_t* WireFormatLite::WriteSInt32ToArray( |
| 1650 | int field_number, const RepeatedField<int32_t>& value, uint8_t* target) { |
| 1651 | return WritePrimitiveToArray(field_number, value, Writer: WriteSInt32ToArray, target); |
| 1652 | } |
| 1653 | inline uint8_t* WireFormatLite::WriteSInt64ToArray( |
| 1654 | int field_number, const RepeatedField<int64_t>& value, uint8_t* target) { |
| 1655 | return WritePrimitiveToArray(field_number, value, Writer: WriteSInt64ToArray, target); |
| 1656 | } |
| 1657 | inline uint8_t* WireFormatLite::WriteFixed32ToArray( |
| 1658 | int field_number, const RepeatedField<uint32_t>& value, uint8_t* target) { |
| 1659 | return WritePrimitiveToArray(field_number, value, Writer: WriteFixed32ToArray, |
| 1660 | target); |
| 1661 | } |
| 1662 | inline uint8_t* WireFormatLite::WriteFixed64ToArray( |
| 1663 | int field_number, const RepeatedField<uint64_t>& value, uint8_t* target) { |
| 1664 | return WritePrimitiveToArray(field_number, value, Writer: WriteFixed64ToArray, |
| 1665 | target); |
| 1666 | } |
| 1667 | inline uint8_t* WireFormatLite::WriteSFixed32ToArray( |
| 1668 | int field_number, const RepeatedField<int32_t>& value, uint8_t* target) { |
| 1669 | return WritePrimitiveToArray(field_number, value, Writer: WriteSFixed32ToArray, |
| 1670 | target); |
| 1671 | } |
| 1672 | inline uint8_t* WireFormatLite::WriteSFixed64ToArray( |
| 1673 | int field_number, const RepeatedField<int64_t>& value, uint8_t* target) { |
| 1674 | return WritePrimitiveToArray(field_number, value, Writer: WriteSFixed64ToArray, |
| 1675 | target); |
| 1676 | } |
| 1677 | inline uint8_t* WireFormatLite::WriteFloatToArray( |
| 1678 | int field_number, const RepeatedField<float>& value, uint8_t* target) { |
| 1679 | return WritePrimitiveToArray(field_number, value, Writer: WriteFloatToArray, target); |
| 1680 | } |
| 1681 | inline uint8_t* WireFormatLite::WriteDoubleToArray( |
| 1682 | int field_number, const RepeatedField<double>& value, uint8_t* target) { |
| 1683 | return WritePrimitiveToArray(field_number, value, Writer: WriteDoubleToArray, target); |
| 1684 | } |
| 1685 | inline uint8_t* WireFormatLite::WriteBoolToArray( |
| 1686 | int field_number, const RepeatedField<bool>& value, uint8_t* target) { |
| 1687 | return WritePrimitiveToArray(field_number, value, Writer: WriteBoolToArray, target); |
| 1688 | } |
| 1689 | inline uint8_t* WireFormatLite::WriteEnumToArray( |
| 1690 | int field_number, const RepeatedField<int>& value, uint8_t* target) { |
| 1691 | return WritePrimitiveToArray(field_number, value, Writer: WriteEnumToArray, target); |
| 1692 | } |
| 1693 | inline uint8_t* WireFormatLite::WriteStringToArray(int field_number, |
| 1694 | const std::string& value, |
| 1695 | uint8_t* target) { |
| 1696 | // String is for UTF-8 text only |
| 1697 | // WARNING: In wire_format.cc, both strings and bytes are handled by |
| 1698 | // WriteString() to avoid code duplication. If the implementations become |
| 1699 | // different, you will need to update that usage. |
| 1700 | target = WriteTagToArray(field_number, type: WIRETYPE_LENGTH_DELIMITED, target); |
| 1701 | return io::CodedOutputStream::WriteStringWithSizeToArray(str: value, target); |
| 1702 | } |
| 1703 | inline uint8_t* WireFormatLite::WriteBytesToArray(int field_number, |
| 1704 | const std::string& value, |
| 1705 | uint8_t* target) { |
| 1706 | target = WriteTagToArray(field_number, type: WIRETYPE_LENGTH_DELIMITED, target); |
| 1707 | return io::CodedOutputStream::WriteStringWithSizeToArray(str: value, target); |
| 1708 | } |
| 1709 | |
| 1710 | |
| 1711 | // See comment on ReadGroupNoVirtual to understand the need for this template |
| 1712 | // parameter name. |
| 1713 | template <typename MessageType_WorkAroundCppLookupDefect> |
| 1714 | inline uint8_t* WireFormatLite::InternalWriteGroupNoVirtualToArray( |
| 1715 | int field_number, const MessageType_WorkAroundCppLookupDefect& value, |
| 1716 | uint8_t* target) { |
| 1717 | target = WriteTagToArray(field_number, type: WIRETYPE_START_GROUP, target); |
| 1718 | target = value.MessageType_WorkAroundCppLookupDefect:: |
| 1719 | SerializeWithCachedSizesToArray(target); |
| 1720 | return WriteTagToArray(field_number, type: WIRETYPE_END_GROUP, target); |
| 1721 | } |
| 1722 | template <typename MessageType_WorkAroundCppLookupDefect> |
| 1723 | inline uint8_t* WireFormatLite::InternalWriteMessageNoVirtualToArray( |
| 1724 | int field_number, const MessageType_WorkAroundCppLookupDefect& value, |
| 1725 | uint8_t* target) { |
| 1726 | target = WriteTagToArray(field_number, type: WIRETYPE_LENGTH_DELIMITED, target); |
| 1727 | target = io::CodedOutputStream::WriteVarint32ToArray( |
| 1728 | value: static_cast<uint32_t>( |
| 1729 | value.MessageType_WorkAroundCppLookupDefect::GetCachedSize()), |
| 1730 | target); |
| 1731 | return value |
| 1732 | .MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizesToArray( |
| 1733 | target); |
| 1734 | } |
| 1735 | |
| 1736 | // =================================================================== |
| 1737 | |
| 1738 | inline size_t WireFormatLite::Int32Size(int32_t value) { |
| 1739 | return io::CodedOutputStream::VarintSize32SignExtended(value); |
| 1740 | } |
| 1741 | inline size_t WireFormatLite::Int64Size(int64_t value) { |
| 1742 | return io::CodedOutputStream::VarintSize64(value: static_cast<uint64_t>(value)); |
| 1743 | } |
| 1744 | inline size_t WireFormatLite::UInt32Size(uint32_t value) { |
| 1745 | return io::CodedOutputStream::VarintSize32(value); |
| 1746 | } |
| 1747 | inline size_t WireFormatLite::UInt64Size(uint64_t value) { |
| 1748 | return io::CodedOutputStream::VarintSize64(value); |
| 1749 | } |
| 1750 | inline size_t WireFormatLite::SInt32Size(int32_t value) { |
| 1751 | return io::CodedOutputStream::VarintSize32(value: ZigZagEncode32(n: value)); |
| 1752 | } |
| 1753 | inline size_t WireFormatLite::SInt64Size(int64_t value) { |
| 1754 | return io::CodedOutputStream::VarintSize64(value: ZigZagEncode64(n: value)); |
| 1755 | } |
| 1756 | inline size_t WireFormatLite::EnumSize(int value) { |
| 1757 | return io::CodedOutputStream::VarintSize32SignExtended(value); |
| 1758 | } |
| 1759 | inline size_t WireFormatLite::Int32SizePlusOne(int32_t value) { |
| 1760 | return io::CodedOutputStream::VarintSize32SignExtendedPlusOne(value); |
| 1761 | } |
| 1762 | inline size_t WireFormatLite::Int64SizePlusOne(int64_t value) { |
| 1763 | return io::CodedOutputStream::VarintSize64PlusOne( |
| 1764 | value: static_cast<uint64_t>(value)); |
| 1765 | } |
| 1766 | inline size_t WireFormatLite::UInt32SizePlusOne(uint32_t value) { |
| 1767 | return io::CodedOutputStream::VarintSize32PlusOne(value); |
| 1768 | } |
| 1769 | inline size_t WireFormatLite::UInt64SizePlusOne(uint64_t value) { |
| 1770 | return io::CodedOutputStream::VarintSize64PlusOne(value); |
| 1771 | } |
| 1772 | inline size_t WireFormatLite::SInt32SizePlusOne(int32_t value) { |
| 1773 | return io::CodedOutputStream::VarintSize32PlusOne(value: ZigZagEncode32(n: value)); |
| 1774 | } |
| 1775 | inline size_t WireFormatLite::SInt64SizePlusOne(int64_t value) { |
| 1776 | return io::CodedOutputStream::VarintSize64PlusOne(value: ZigZagEncode64(n: value)); |
| 1777 | } |
| 1778 | inline size_t WireFormatLite::EnumSizePlusOne(int value) { |
| 1779 | return io::CodedOutputStream::VarintSize32SignExtendedPlusOne(value); |
| 1780 | } |
| 1781 | |
| 1782 | inline size_t WireFormatLite::StringSize(const std::string& value) { |
| 1783 | return LengthDelimitedSize(length: value.size()); |
| 1784 | } |
| 1785 | inline size_t WireFormatLite::BytesSize(const std::string& value) { |
| 1786 | return LengthDelimitedSize(length: value.size()); |
| 1787 | } |
| 1788 | |
| 1789 | |
| 1790 | template <typename MessageType> |
| 1791 | inline size_t WireFormatLite::GroupSize(const MessageType& value) { |
| 1792 | return value.ByteSizeLong(); |
| 1793 | } |
| 1794 | template <typename MessageType> |
| 1795 | inline size_t WireFormatLite::MessageSize(const MessageType& value) { |
| 1796 | return LengthDelimitedSize(length: value.ByteSizeLong()); |
| 1797 | } |
| 1798 | |
| 1799 | // See comment on ReadGroupNoVirtual to understand the need for this template |
| 1800 | // parameter name. |
| 1801 | template <typename MessageType_WorkAroundCppLookupDefect> |
| 1802 | inline size_t WireFormatLite::GroupSizeNoVirtual( |
| 1803 | const MessageType_WorkAroundCppLookupDefect& value) { |
| 1804 | return value.MessageType_WorkAroundCppLookupDefect::ByteSizeLong(); |
| 1805 | } |
| 1806 | template <typename MessageType_WorkAroundCppLookupDefect> |
| 1807 | inline size_t WireFormatLite::MessageSizeNoVirtual( |
| 1808 | const MessageType_WorkAroundCppLookupDefect& value) { |
| 1809 | return LengthDelimitedSize( |
| 1810 | length: value.MessageType_WorkAroundCppLookupDefect::ByteSizeLong()); |
| 1811 | } |
| 1812 | |
| 1813 | inline size_t WireFormatLite::LengthDelimitedSize(size_t length) { |
| 1814 | // The static_cast here prevents an error in certain compiler configurations |
| 1815 | // but is not technically correct--if length is too large to fit in a uint32_t |
| 1816 | // then it will be silently truncated. We will need to fix this if we ever |
| 1817 | // decide to start supporting serialized messages greater than 2 GiB in size. |
| 1818 | return length + |
| 1819 | io::CodedOutputStream::VarintSize32(value: static_cast<uint32_t>(length)); |
| 1820 | } |
| 1821 | |
| 1822 | template <typename MS> |
| 1823 | bool ParseMessageSetItemImpl(io::CodedInputStream* input, MS ms) { |
| 1824 | // This method parses a group which should contain two fields: |
| 1825 | // required int32 type_id = 2; |
| 1826 | // required data message = 3; |
| 1827 | |
| 1828 | uint32_t last_type_id = 0; |
| 1829 | |
| 1830 | // If we see message data before the type_id, we'll append it to this so |
| 1831 | // we can parse it later. |
| 1832 | std::string message_data; |
| 1833 | |
| 1834 | while (true) { |
| 1835 | const uint32_t tag = input->ReadTagNoLastTag(); |
| 1836 | if (tag == 0) return false; |
| 1837 | |
| 1838 | switch (tag) { |
| 1839 | case WireFormatLite::kMessageSetTypeIdTag: { |
| 1840 | uint32_t type_id; |
| 1841 | if (!input->ReadVarint32(value: &type_id)) return false; |
| 1842 | last_type_id = type_id; |
| 1843 | |
| 1844 | if (!message_data.empty()) { |
| 1845 | // We saw some message data before the type_id. Have to parse it |
| 1846 | // now. |
| 1847 | io::CodedInputStream sub_input( |
| 1848 | reinterpret_cast<const uint8_t*>(message_data.data()), |
| 1849 | static_cast<int>(message_data.size())); |
| 1850 | sub_input.SetRecursionLimit(input->RecursionBudget()); |
| 1851 | if (!ms.ParseField(last_type_id, &sub_input)) { |
| 1852 | return false; |
| 1853 | } |
| 1854 | message_data.clear(); |
| 1855 | } |
| 1856 | |
| 1857 | break; |
| 1858 | } |
| 1859 | |
| 1860 | case WireFormatLite::kMessageSetMessageTag: { |
| 1861 | if (last_type_id == 0) { |
| 1862 | // We haven't seen a type_id yet. Append this data to message_data. |
| 1863 | uint32_t length; |
| 1864 | if (!input->ReadVarint32(value: &length)) return false; |
| 1865 | if (static_cast<int32_t>(length) < 0) return false; |
| 1866 | uint32_t size = static_cast<uint32_t>( |
| 1867 | length + io::CodedOutputStream::VarintSize32(value: length)); |
| 1868 | message_data.resize(n: size); |
| 1869 | auto ptr = reinterpret_cast<uint8_t*>(&message_data[0]); |
| 1870 | ptr = io::CodedOutputStream::WriteVarint32ToArray(value: length, target: ptr); |
| 1871 | if (!input->ReadRaw(buffer: ptr, size: length)) return false; |
| 1872 | } else { |
| 1873 | // Already saw type_id, so we can parse this directly. |
| 1874 | if (!ms.ParseField(last_type_id, input)) { |
| 1875 | return false; |
| 1876 | } |
| 1877 | } |
| 1878 | |
| 1879 | break; |
| 1880 | } |
| 1881 | |
| 1882 | case WireFormatLite::kMessageSetItemEndTag: { |
| 1883 | return true; |
| 1884 | } |
| 1885 | |
| 1886 | default: { |
| 1887 | if (!ms.SkipField(tag, input)) return false; |
| 1888 | } |
| 1889 | } |
| 1890 | } |
| 1891 | } |
| 1892 | |
| 1893 | } // namespace internal |
| 1894 | } // namespace protobuf |
| 1895 | } // namespace google |
| 1896 | |
| 1897 | #include <google/protobuf/port_undef.inc> |
| 1898 | |
| 1899 | #endif // GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__ |
| 1900 | |