1 | // Protocol Buffers - Google's data interchange format |
2 | // Copyright 2008 Google Inc. All rights reserved. |
3 | // https://developers.google.com/protocol-buffers/ |
4 | // |
5 | // Redistribution and use in source and binary forms, with or without |
6 | // modification, are permitted provided that the following conditions are |
7 | // met: |
8 | // |
9 | // * Redistributions of source code must retain the above copyright |
10 | // notice, this list of conditions and the following disclaimer. |
11 | // * Redistributions in binary form must reproduce the above |
12 | // copyright notice, this list of conditions and the following disclaimer |
13 | // in the documentation and/or other materials provided with the |
14 | // distribution. |
15 | // * Neither the name of Google Inc. nor the names of its |
16 | // contributors may be used to endorse or promote products derived from |
17 | // this software without specific prior written permission. |
18 | // |
19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
30 | |
31 | // Author: kenton@google.com (Kenton Varda) |
32 | // atenasio@google.com (Chris Atenasio) (ZigZag transform) |
33 | // wink@google.com (Wink Saville) (refactored from wire_format.h) |
34 | // Based on original Protocol Buffers design by |
35 | // Sanjay Ghemawat, Jeff Dean, and others. |
36 | // |
37 | // This header is logically internal, but is made public because it is used |
38 | // from protocol-compiler-generated code, which may reside in other components. |
39 | |
40 | #ifndef GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__ |
41 | #define GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__ |
42 | |
43 | |
44 | #include <limits> |
45 | #include <string> |
46 | |
47 | #include <google/protobuf/stubs/common.h> |
48 | #include <google/protobuf/stubs/logging.h> |
49 | #include <google/protobuf/io/coded_stream.h> |
50 | #include <google/protobuf/port.h> |
51 | #include <google/protobuf/stubs/casts.h> |
52 | #include <google/protobuf/arenastring.h> |
53 | #include <google/protobuf/message_lite.h> |
54 | #include <google/protobuf/repeated_field.h> |
55 | |
56 | // Do UTF-8 validation on string type in Debug build only |
57 | #ifndef NDEBUG |
58 | #define GOOGLE_PROTOBUF_UTF8_VALIDATION_ENABLED |
59 | #endif |
60 | |
61 | // Avoid conflict with iOS where <ConditionalMacros.h> #defines TYPE_BOOL. |
62 | // |
63 | // If some one needs the macro TYPE_BOOL in a file that includes this header, |
64 | // it's possible to bring it back using push/pop_macro as follows. |
65 | // |
66 | // #pragma push_macro("TYPE_BOOL") |
67 | // #include this header and/or all headers that need the macro to be undefined. |
68 | // #pragma pop_macro("TYPE_BOOL") |
69 | #undef TYPE_BOOL |
70 | |
71 | |
72 | // Must be included last. |
73 | #include <google/protobuf/port_def.inc> |
74 | |
75 | namespace google { |
76 | namespace protobuf { |
77 | namespace internal { |
78 | |
79 | // This class is for internal use by the protocol buffer library and by |
80 | // protocol-compiler-generated message classes. It must not be called |
81 | // directly by clients. |
82 | // |
83 | // This class contains helpers for implementing the binary protocol buffer |
84 | // wire format without the need for reflection. Use WireFormat when using |
85 | // reflection. |
86 | // |
87 | // This class is really a namespace that contains only static methods. |
88 | class PROTOBUF_EXPORT WireFormatLite { |
89 | public: |
90 | // ----------------------------------------------------------------- |
91 | // Helper constants and functions related to the format. These are |
92 | // mostly meant for internal and generated code to use. |
93 | |
94 | // The wire format is composed of a sequence of tag/value pairs, each |
95 | // of which contains the value of one field (or one element of a repeated |
96 | // field). Each tag is encoded as a varint. The lower bits of the tag |
97 | // identify its wire type, which specifies the format of the data to follow. |
98 | // The rest of the bits contain the field number. Each type of field (as |
99 | // declared by FieldDescriptor::Type, in descriptor.h) maps to one of |
100 | // these wire types. Immediately following each tag is the field's value, |
101 | // encoded in the format specified by the wire type. Because the tag |
102 | // identifies the encoding of this data, it is possible to skip |
103 | // unrecognized fields for forwards compatibility. |
104 | |
105 | enum WireType { |
106 | WIRETYPE_VARINT = 0, |
107 | WIRETYPE_FIXED64 = 1, |
108 | WIRETYPE_LENGTH_DELIMITED = 2, |
109 | WIRETYPE_START_GROUP = 3, |
110 | WIRETYPE_END_GROUP = 4, |
111 | WIRETYPE_FIXED32 = 5, |
112 | }; |
113 | |
114 | // Lite alternative to FieldDescriptor::Type. Must be kept in sync. |
115 | enum FieldType { |
116 | TYPE_DOUBLE = 1, |
117 | TYPE_FLOAT = 2, |
118 | TYPE_INT64 = 3, |
119 | TYPE_UINT64 = 4, |
120 | TYPE_INT32 = 5, |
121 | TYPE_FIXED64 = 6, |
122 | TYPE_FIXED32 = 7, |
123 | TYPE_BOOL = 8, |
124 | TYPE_STRING = 9, |
125 | TYPE_GROUP = 10, |
126 | TYPE_MESSAGE = 11, |
127 | TYPE_BYTES = 12, |
128 | TYPE_UINT32 = 13, |
129 | TYPE_ENUM = 14, |
130 | TYPE_SFIXED32 = 15, |
131 | TYPE_SFIXED64 = 16, |
132 | TYPE_SINT32 = 17, |
133 | TYPE_SINT64 = 18, |
134 | MAX_FIELD_TYPE = 18, |
135 | }; |
136 | |
137 | // Lite alternative to FieldDescriptor::CppType. Must be kept in sync. |
138 | enum CppType { |
139 | CPPTYPE_INT32 = 1, |
140 | CPPTYPE_INT64 = 2, |
141 | CPPTYPE_UINT32 = 3, |
142 | CPPTYPE_UINT64 = 4, |
143 | CPPTYPE_DOUBLE = 5, |
144 | CPPTYPE_FLOAT = 6, |
145 | CPPTYPE_BOOL = 7, |
146 | CPPTYPE_ENUM = 8, |
147 | CPPTYPE_STRING = 9, |
148 | CPPTYPE_MESSAGE = 10, |
149 | MAX_CPPTYPE = 10, |
150 | }; |
151 | |
152 | // Helper method to get the CppType for a particular Type. |
153 | static CppType FieldTypeToCppType(FieldType type); |
154 | |
155 | // Given a FieldDescriptor::Type return its WireType |
156 | static inline WireFormatLite::WireType WireTypeForFieldType( |
157 | WireFormatLite::FieldType type) { |
158 | return kWireTypeForFieldType[type]; |
159 | } |
160 | |
161 | // Number of bits in a tag which identify the wire type. |
162 | static constexpr int kTagTypeBits = 3; |
163 | // Mask for those bits. |
164 | static constexpr uint32_t kTagTypeMask = (1 << kTagTypeBits) - 1; |
165 | |
166 | // Helper functions for encoding and decoding tags. (Inlined below and in |
167 | // _inl.h) |
168 | // |
169 | // This is different from MakeTag(field->number(), field->type()) in the |
170 | // case of packed repeated fields. |
171 | constexpr static uint32_t MakeTag(int field_number, WireType type); |
172 | static WireType GetTagWireType(uint32_t tag); |
173 | static int GetTagFieldNumber(uint32_t tag); |
174 | |
175 | // Compute the byte size of a tag. For groups, this includes both the start |
176 | // and end tags. |
177 | static inline size_t TagSize(int field_number, |
178 | WireFormatLite::FieldType type); |
179 | |
180 | // Skips a field value with the given tag. The input should start |
181 | // positioned immediately after the tag. Skipped values are simply |
182 | // discarded, not recorded anywhere. See WireFormat::SkipField() for a |
183 | // version that records to an UnknownFieldSet. |
184 | static bool SkipField(io::CodedInputStream* input, uint32_t tag); |
185 | |
186 | // Skips a field value with the given tag. The input should start |
187 | // positioned immediately after the tag. Skipped values are recorded to a |
188 | // CodedOutputStream. |
189 | static bool SkipField(io::CodedInputStream* input, uint32_t tag, |
190 | io::CodedOutputStream* output); |
191 | |
192 | // Reads and ignores a message from the input. Skipped values are simply |
193 | // discarded, not recorded anywhere. See WireFormat::SkipMessage() for a |
194 | // version that records to an UnknownFieldSet. |
195 | static bool SkipMessage(io::CodedInputStream* input); |
196 | |
197 | // Reads and ignores a message from the input. Skipped values are recorded |
198 | // to a CodedOutputStream. |
199 | static bool SkipMessage(io::CodedInputStream* input, |
200 | io::CodedOutputStream* output); |
201 | |
202 | // This macro does the same thing as WireFormatLite::MakeTag(), but the |
203 | // result is usable as a compile-time constant, which makes it usable |
204 | // as a switch case or a template input. WireFormatLite::MakeTag() is more |
205 | // type-safe, though, so prefer it if possible. |
206 | #define GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(FIELD_NUMBER, TYPE) \ |
207 | static_cast<uint32_t>((static_cast<uint32_t>(FIELD_NUMBER) << 3) | (TYPE)) |
208 | |
209 | // These are the tags for the old MessageSet format, which was defined as: |
210 | // message MessageSet { |
211 | // repeated group Item = 1 { |
212 | // required int32 type_id = 2; |
213 | // required string message = 3; |
214 | // } |
215 | // } |
216 | static constexpr int kMessageSetItemNumber = 1; |
217 | static constexpr int kMessageSetTypeIdNumber = 2; |
218 | static constexpr int kMessageSetMessageNumber = 3; |
219 | static const int kMessageSetItemStartTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG( |
220 | kMessageSetItemNumber, WireFormatLite::WIRETYPE_START_GROUP); |
221 | static const int kMessageSetItemEndTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG( |
222 | kMessageSetItemNumber, WireFormatLite::WIRETYPE_END_GROUP); |
223 | static const int kMessageSetTypeIdTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG( |
224 | kMessageSetTypeIdNumber, WireFormatLite::WIRETYPE_VARINT); |
225 | static const int kMessageSetMessageTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG( |
226 | kMessageSetMessageNumber, WireFormatLite::WIRETYPE_LENGTH_DELIMITED); |
227 | |
228 | // Byte size of all tags of a MessageSet::Item combined. |
229 | static const size_t kMessageSetItemTagsSize; |
230 | |
231 | // Helper functions for converting between floats/doubles and IEEE-754 |
232 | // uint32s/uint64s so that they can be written. (Assumes your platform |
233 | // uses IEEE-754 floats.) |
234 | static uint32_t EncodeFloat(float value); |
235 | static float DecodeFloat(uint32_t value); |
236 | static uint64_t EncodeDouble(double value); |
237 | static double DecodeDouble(uint64_t value); |
238 | |
239 | // Helper functions for mapping signed integers to unsigned integers in |
240 | // such a way that numbers with small magnitudes will encode to smaller |
241 | // varints. If you simply static_cast a negative number to an unsigned |
242 | // number and varint-encode it, it will always take 10 bytes, defeating |
243 | // the purpose of varint. So, for the "sint32" and "sint64" field types, |
244 | // we ZigZag-encode the values. |
245 | static uint32_t ZigZagEncode32(int32_t n); |
246 | static int32_t ZigZagDecode32(uint32_t n); |
247 | static uint64_t ZigZagEncode64(int64_t n); |
248 | static int64_t ZigZagDecode64(uint64_t n); |
249 | |
250 | // ================================================================= |
251 | // Methods for reading/writing individual field. |
252 | |
253 | // Read fields, not including tags. The assumption is that you already |
254 | // read the tag to determine what field to read. |
255 | |
256 | // For primitive fields, we just use a templatized routine parameterized by |
257 | // the represented type and the FieldType. These are specialized with the |
258 | // appropriate definition for each declared type. |
259 | template <typename CType, enum FieldType DeclaredType> |
260 | PROTOBUF_NDEBUG_INLINE static bool ReadPrimitive(io::CodedInputStream* input, |
261 | CType* value); |
262 | |
263 | // Reads repeated primitive values, with optimizations for repeats. |
264 | // tag_size and tag should both be compile-time constants provided by the |
265 | // protocol compiler. |
266 | template <typename CType, enum FieldType DeclaredType> |
267 | PROTOBUF_NDEBUG_INLINE static bool ReadRepeatedPrimitive( |
268 | int tag_size, uint32_t tag, io::CodedInputStream* input, |
269 | RepeatedField<CType>* value); |
270 | |
271 | // Identical to ReadRepeatedPrimitive, except will not inline the |
272 | // implementation. |
273 | template <typename CType, enum FieldType DeclaredType> |
274 | static bool ReadRepeatedPrimitiveNoInline(int tag_size, uint32_t tag, |
275 | io::CodedInputStream* input, |
276 | RepeatedField<CType>* value); |
277 | |
278 | // Reads a primitive value directly from the provided buffer. It returns a |
279 | // pointer past the segment of data that was read. |
280 | // |
281 | // This is only implemented for the types with fixed wire size, e.g. |
282 | // float, double, and the (s)fixed* types. |
283 | template <typename CType, enum FieldType DeclaredType> |
284 | PROTOBUF_NDEBUG_INLINE static const uint8_t* ReadPrimitiveFromArray( |
285 | const uint8_t* buffer, CType* value); |
286 | |
287 | // Reads a primitive packed field. |
288 | // |
289 | // This is only implemented for packable types. |
290 | template <typename CType, enum FieldType DeclaredType> |
291 | PROTOBUF_NDEBUG_INLINE static bool ReadPackedPrimitive( |
292 | io::CodedInputStream* input, RepeatedField<CType>* value); |
293 | |
294 | // Identical to ReadPackedPrimitive, except will not inline the |
295 | // implementation. |
296 | template <typename CType, enum FieldType DeclaredType> |
297 | static bool ReadPackedPrimitiveNoInline(io::CodedInputStream* input, |
298 | RepeatedField<CType>* value); |
299 | |
300 | // Read a packed enum field. If the is_valid function is not nullptr, values |
301 | // for which is_valid(value) returns false are silently dropped. |
302 | static bool ReadPackedEnumNoInline(io::CodedInputStream* input, |
303 | bool (*is_valid)(int), |
304 | RepeatedField<int>* values); |
305 | |
306 | // Read a packed enum field. If the is_valid function is not nullptr, values |
307 | // for which is_valid(value) returns false are appended to |
308 | // unknown_fields_stream. |
309 | static bool ReadPackedEnumPreserveUnknowns( |
310 | io::CodedInputStream* input, int field_number, bool (*is_valid)(int), |
311 | io::CodedOutputStream* unknown_fields_stream, RepeatedField<int>* values); |
312 | |
313 | // Read a string. ReadString(..., std::string* value) requires an |
314 | // existing std::string. |
315 | static inline bool ReadString(io::CodedInputStream* input, |
316 | std::string* value); |
317 | // ReadString(..., std::string** p) is internal-only, and should only be |
318 | // called from generated code. It starts by setting *p to "new std::string" if |
319 | // *p == &GetEmptyStringAlreadyInited(). It then invokes |
320 | // ReadString(io::CodedInputStream* input, *p). This is useful for reducing |
321 | // code size. |
322 | static inline bool ReadString(io::CodedInputStream* input, std::string** p); |
323 | // Analogous to ReadString(). |
324 | static bool ReadBytes(io::CodedInputStream* input, std::string* value); |
325 | static bool ReadBytes(io::CodedInputStream* input, std::string** p); |
326 | |
327 | enum Operation { |
328 | PARSE = 0, |
329 | SERIALIZE = 1, |
330 | }; |
331 | |
332 | // Returns true if the data is valid UTF-8. |
333 | static bool VerifyUtf8String(const char* data, int size, Operation op, |
334 | const char* field_name); |
335 | |
336 | template <typename MessageType> |
337 | static inline bool ReadGroup(int field_number, io::CodedInputStream* input, |
338 | MessageType* value); |
339 | |
340 | template <typename MessageType> |
341 | static inline bool ReadMessage(io::CodedInputStream* input, |
342 | MessageType* value); |
343 | |
344 | template <typename MessageType> |
345 | static inline bool ReadMessageNoVirtual(io::CodedInputStream* input, |
346 | MessageType* value) { |
347 | return ReadMessage(input, value); |
348 | } |
349 | |
350 | // Write a tag. The Write*() functions typically include the tag, so |
351 | // normally there's no need to call this unless using the Write*NoTag() |
352 | // variants. |
353 | PROTOBUF_NDEBUG_INLINE static void WriteTag(int field_number, WireType type, |
354 | io::CodedOutputStream* output); |
355 | |
356 | // Write fields, without tags. |
357 | PROTOBUF_NDEBUG_INLINE static void WriteInt32NoTag( |
358 | int32_t value, io::CodedOutputStream* output); |
359 | PROTOBUF_NDEBUG_INLINE static void WriteInt64NoTag( |
360 | int64_t value, io::CodedOutputStream* output); |
361 | PROTOBUF_NDEBUG_INLINE static void WriteUInt32NoTag( |
362 | uint32_t value, io::CodedOutputStream* output); |
363 | PROTOBUF_NDEBUG_INLINE static void WriteUInt64NoTag( |
364 | uint64_t value, io::CodedOutputStream* output); |
365 | PROTOBUF_NDEBUG_INLINE static void WriteSInt32NoTag( |
366 | int32_t value, io::CodedOutputStream* output); |
367 | PROTOBUF_NDEBUG_INLINE static void WriteSInt64NoTag( |
368 | int64_t value, io::CodedOutputStream* output); |
369 | PROTOBUF_NDEBUG_INLINE static void WriteFixed32NoTag( |
370 | uint32_t value, io::CodedOutputStream* output); |
371 | PROTOBUF_NDEBUG_INLINE static void WriteFixed64NoTag( |
372 | uint64_t value, io::CodedOutputStream* output); |
373 | PROTOBUF_NDEBUG_INLINE static void WriteSFixed32NoTag( |
374 | int32_t value, io::CodedOutputStream* output); |
375 | PROTOBUF_NDEBUG_INLINE static void WriteSFixed64NoTag( |
376 | int64_t value, io::CodedOutputStream* output); |
377 | PROTOBUF_NDEBUG_INLINE static void WriteFloatNoTag( |
378 | float value, io::CodedOutputStream* output); |
379 | PROTOBUF_NDEBUG_INLINE static void WriteDoubleNoTag( |
380 | double value, io::CodedOutputStream* output); |
381 | PROTOBUF_NDEBUG_INLINE static void WriteBoolNoTag( |
382 | bool value, io::CodedOutputStream* output); |
383 | PROTOBUF_NDEBUG_INLINE static void WriteEnumNoTag( |
384 | int value, io::CodedOutputStream* output); |
385 | |
386 | // Write array of primitive fields, without tags |
387 | static void WriteFloatArray(const float* a, int n, |
388 | io::CodedOutputStream* output); |
389 | static void WriteDoubleArray(const double* a, int n, |
390 | io::CodedOutputStream* output); |
391 | static void WriteFixed32Array(const uint32_t* a, int n, |
392 | io::CodedOutputStream* output); |
393 | static void WriteFixed64Array(const uint64_t* a, int n, |
394 | io::CodedOutputStream* output); |
395 | static void WriteSFixed32Array(const int32_t* a, int n, |
396 | io::CodedOutputStream* output); |
397 | static void WriteSFixed64Array(const int64_t* a, int n, |
398 | io::CodedOutputStream* output); |
399 | static void WriteBoolArray(const bool* a, int n, |
400 | io::CodedOutputStream* output); |
401 | |
402 | // Write fields, including tags. |
403 | static void WriteInt32(int field_number, int32_t value, |
404 | io::CodedOutputStream* output); |
405 | static void WriteInt64(int field_number, int64_t value, |
406 | io::CodedOutputStream* output); |
407 | static void WriteUInt32(int field_number, uint32_t value, |
408 | io::CodedOutputStream* output); |
409 | static void WriteUInt64(int field_number, uint64_t value, |
410 | io::CodedOutputStream* output); |
411 | static void WriteSInt32(int field_number, int32_t value, |
412 | io::CodedOutputStream* output); |
413 | static void WriteSInt64(int field_number, int64_t value, |
414 | io::CodedOutputStream* output); |
415 | static void WriteFixed32(int field_number, uint32_t value, |
416 | io::CodedOutputStream* output); |
417 | static void WriteFixed64(int field_number, uint64_t value, |
418 | io::CodedOutputStream* output); |
419 | static void WriteSFixed32(int field_number, int32_t value, |
420 | io::CodedOutputStream* output); |
421 | static void WriteSFixed64(int field_number, int64_t value, |
422 | io::CodedOutputStream* output); |
423 | static void WriteFloat(int field_number, float value, |
424 | io::CodedOutputStream* output); |
425 | static void WriteDouble(int field_number, double value, |
426 | io::CodedOutputStream* output); |
427 | static void WriteBool(int field_number, bool value, |
428 | io::CodedOutputStream* output); |
429 | static void WriteEnum(int field_number, int value, |
430 | io::CodedOutputStream* output); |
431 | |
432 | static void WriteString(int field_number, const std::string& value, |
433 | io::CodedOutputStream* output); |
434 | static void WriteBytes(int field_number, const std::string& value, |
435 | io::CodedOutputStream* output); |
436 | static void WriteStringMaybeAliased(int field_number, |
437 | const std::string& value, |
438 | io::CodedOutputStream* output); |
439 | static void WriteBytesMaybeAliased(int field_number, const std::string& value, |
440 | io::CodedOutputStream* output); |
441 | |
442 | static void WriteGroup(int field_number, const MessageLite& value, |
443 | io::CodedOutputStream* output); |
444 | static void WriteMessage(int field_number, const MessageLite& value, |
445 | io::CodedOutputStream* output); |
446 | // Like above, but these will check if the output stream has enough |
447 | // space to write directly to a flat array. |
448 | static void WriteGroupMaybeToArray(int field_number, const MessageLite& value, |
449 | io::CodedOutputStream* output); |
450 | static void WriteMessageMaybeToArray(int field_number, |
451 | const MessageLite& value, |
452 | io::CodedOutputStream* output); |
453 | |
454 | // Like above, but de-virtualize the call to SerializeWithCachedSizes(). The |
455 | // pointer must point at an instance of MessageType, *not* a subclass (or |
456 | // the subclass must not override SerializeWithCachedSizes()). |
457 | template <typename MessageType> |
458 | static inline void WriteGroupNoVirtual(int field_number, |
459 | const MessageType& value, |
460 | io::CodedOutputStream* output); |
461 | template <typename MessageType> |
462 | static inline void WriteMessageNoVirtual(int field_number, |
463 | const MessageType& value, |
464 | io::CodedOutputStream* output); |
465 | |
466 | // Like above, but use only *ToArray methods of CodedOutputStream. |
467 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteTagToArray(int field_number, |
468 | WireType type, |
469 | uint8_t* target); |
470 | |
471 | // Write fields, without tags. |
472 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt32NoTagToArray( |
473 | int32_t value, uint8_t* target); |
474 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt64NoTagToArray( |
475 | int64_t value, uint8_t* target); |
476 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt32NoTagToArray( |
477 | uint32_t value, uint8_t* target); |
478 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt64NoTagToArray( |
479 | uint64_t value, uint8_t* target); |
480 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt32NoTagToArray( |
481 | int32_t value, uint8_t* target); |
482 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt64NoTagToArray( |
483 | int64_t value, uint8_t* target); |
484 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed32NoTagToArray( |
485 | uint32_t value, uint8_t* target); |
486 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed64NoTagToArray( |
487 | uint64_t value, uint8_t* target); |
488 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed32NoTagToArray( |
489 | int32_t value, uint8_t* target); |
490 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed64NoTagToArray( |
491 | int64_t value, uint8_t* target); |
492 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFloatNoTagToArray( |
493 | float value, uint8_t* target); |
494 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteDoubleNoTagToArray( |
495 | double value, uint8_t* target); |
496 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBoolNoTagToArray(bool value, |
497 | uint8_t* target); |
498 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteEnumNoTagToArray(int value, |
499 | uint8_t* target); |
500 | |
501 | // Write fields, without tags. These require that value.size() > 0. |
502 | template <typename T> |
503 | PROTOBUF_NDEBUG_INLINE static uint8_t* WritePrimitiveNoTagToArray( |
504 | const RepeatedField<T>& value, uint8_t* (*Writer)(T, uint8_t*), |
505 | uint8_t* target); |
506 | template <typename T> |
507 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixedNoTagToArray( |
508 | const RepeatedField<T>& value, uint8_t* (*Writer)(T, uint8_t*), |
509 | uint8_t* target); |
510 | |
511 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt32NoTagToArray( |
512 | const RepeatedField<int32_t>& value, uint8_t* output); |
513 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt64NoTagToArray( |
514 | const RepeatedField<int64_t>& value, uint8_t* output); |
515 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt32NoTagToArray( |
516 | const RepeatedField<uint32_t>& value, uint8_t* output); |
517 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt64NoTagToArray( |
518 | const RepeatedField<uint64_t>& value, uint8_t* output); |
519 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt32NoTagToArray( |
520 | const RepeatedField<int32_t>& value, uint8_t* output); |
521 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt64NoTagToArray( |
522 | const RepeatedField<int64_t>& value, uint8_t* output); |
523 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed32NoTagToArray( |
524 | const RepeatedField<uint32_t>& value, uint8_t* output); |
525 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed64NoTagToArray( |
526 | const RepeatedField<uint64_t>& value, uint8_t* output); |
527 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed32NoTagToArray( |
528 | const RepeatedField<int32_t>& value, uint8_t* output); |
529 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed64NoTagToArray( |
530 | const RepeatedField<int64_t>& value, uint8_t* output); |
531 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFloatNoTagToArray( |
532 | const RepeatedField<float>& value, uint8_t* output); |
533 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteDoubleNoTagToArray( |
534 | const RepeatedField<double>& value, uint8_t* output); |
535 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBoolNoTagToArray( |
536 | const RepeatedField<bool>& value, uint8_t* output); |
537 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteEnumNoTagToArray( |
538 | const RepeatedField<int>& value, uint8_t* output); |
539 | |
540 | // Write fields, including tags. |
541 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt32ToArray(int field_number, |
542 | int32_t value, |
543 | uint8_t* target); |
544 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt64ToArray(int field_number, |
545 | int64_t value, |
546 | uint8_t* target); |
547 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt32ToArray(int field_number, |
548 | uint32_t value, |
549 | uint8_t* target); |
550 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt64ToArray(int field_number, |
551 | uint64_t value, |
552 | uint8_t* target); |
553 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt32ToArray(int field_number, |
554 | int32_t value, |
555 | uint8_t* target); |
556 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt64ToArray(int field_number, |
557 | int64_t value, |
558 | uint8_t* target); |
559 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed32ToArray(int field_number, |
560 | uint32_t value, |
561 | uint8_t* target); |
562 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed64ToArray(int field_number, |
563 | uint64_t value, |
564 | uint8_t* target); |
565 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed32ToArray(int field_number, |
566 | int32_t value, |
567 | uint8_t* target); |
568 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed64ToArray(int field_number, |
569 | int64_t value, |
570 | uint8_t* target); |
571 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFloatToArray(int field_number, |
572 | float value, |
573 | uint8_t* target); |
574 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteDoubleToArray(int field_number, |
575 | double value, |
576 | uint8_t* target); |
577 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBoolToArray(int field_number, |
578 | bool value, |
579 | uint8_t* target); |
580 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteEnumToArray(int field_number, |
581 | int value, |
582 | uint8_t* target); |
583 | |
584 | template <typename T> |
585 | PROTOBUF_NDEBUG_INLINE static uint8_t* WritePrimitiveToArray( |
586 | int field_number, const RepeatedField<T>& value, |
587 | uint8_t* (*Writer)(int, T, uint8_t*), uint8_t* target); |
588 | |
589 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt32ToArray( |
590 | int field_number, const RepeatedField<int32_t>& value, uint8_t* output); |
591 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt64ToArray( |
592 | int field_number, const RepeatedField<int64_t>& value, uint8_t* output); |
593 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt32ToArray( |
594 | int field_number, const RepeatedField<uint32_t>& value, uint8_t* output); |
595 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt64ToArray( |
596 | int field_number, const RepeatedField<uint64_t>& value, uint8_t* output); |
597 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt32ToArray( |
598 | int field_number, const RepeatedField<int32_t>& value, uint8_t* output); |
599 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt64ToArray( |
600 | int field_number, const RepeatedField<int64_t>& value, uint8_t* output); |
601 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed32ToArray( |
602 | int field_number, const RepeatedField<uint32_t>& value, uint8_t* output); |
603 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed64ToArray( |
604 | int field_number, const RepeatedField<uint64_t>& value, uint8_t* output); |
605 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed32ToArray( |
606 | int field_number, const RepeatedField<int32_t>& value, uint8_t* output); |
607 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed64ToArray( |
608 | int field_number, const RepeatedField<int64_t>& value, uint8_t* output); |
609 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFloatToArray( |
610 | int field_number, const RepeatedField<float>& value, uint8_t* output); |
611 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteDoubleToArray( |
612 | int field_number, const RepeatedField<double>& value, uint8_t* output); |
613 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBoolToArray( |
614 | int field_number, const RepeatedField<bool>& value, uint8_t* output); |
615 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteEnumToArray( |
616 | int field_number, const RepeatedField<int>& value, uint8_t* output); |
617 | |
618 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteStringToArray( |
619 | int field_number, const std::string& value, uint8_t* target); |
620 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBytesToArray( |
621 | int field_number, const std::string& value, uint8_t* target); |
622 | |
623 | // Whether to serialize deterministically (e.g., map keys are |
624 | // sorted) is a property of a CodedOutputStream, and in the process |
625 | // of serialization, the "ToArray" variants may be invoked. But they don't |
626 | // have a CodedOutputStream available, so they get an additional parameter |
627 | // telling them whether to serialize deterministically. |
628 | static uint8_t* InternalWriteGroup(int field_number, const MessageLite& value, |
629 | uint8_t* target, |
630 | io::EpsCopyOutputStream* stream); |
631 | static uint8_t* InternalWriteMessage(int field_number, |
632 | const MessageLite& value, |
633 | int cached_size, uint8_t* target, |
634 | io::EpsCopyOutputStream* stream); |
635 | |
636 | // Like above, but de-virtualize the call to SerializeWithCachedSizes(). The |
637 | // pointer must point at an instance of MessageType, *not* a subclass (or |
638 | // the subclass must not override SerializeWithCachedSizes()). |
639 | template <typename MessageType> |
640 | PROTOBUF_NDEBUG_INLINE static uint8_t* InternalWriteGroupNoVirtualToArray( |
641 | int field_number, const MessageType& value, uint8_t* target); |
642 | template <typename MessageType> |
643 | PROTOBUF_NDEBUG_INLINE static uint8_t* InternalWriteMessageNoVirtualToArray( |
644 | int field_number, const MessageType& value, uint8_t* target); |
645 | |
646 | // For backward-compatibility, the last four methods also have versions |
647 | // that are non-deterministic always. |
648 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteGroupToArray( |
649 | int field_number, const MessageLite& value, uint8_t* target) { |
650 | io::EpsCopyOutputStream stream( |
651 | target, |
652 | value.GetCachedSize() + |
653 | static_cast<int>(2 * io::CodedOutputStream::VarintSize32( |
654 | value: static_cast<uint32_t>(field_number) << 3)), |
655 | io::CodedOutputStream::IsDefaultSerializationDeterministic()); |
656 | return InternalWriteGroup(field_number, value, target, stream: &stream); |
657 | } |
658 | PROTOBUF_NDEBUG_INLINE static uint8_t* WriteMessageToArray( |
659 | int field_number, const MessageLite& value, uint8_t* target) { |
660 | int size = value.GetCachedSize(); |
661 | io::EpsCopyOutputStream stream( |
662 | target, |
663 | size + static_cast<int>(io::CodedOutputStream::VarintSize32( |
664 | value: static_cast<uint32_t>(field_number) << 3) + |
665 | io::CodedOutputStream::VarintSize32(value: size)), |
666 | io::CodedOutputStream::IsDefaultSerializationDeterministic()); |
667 | return InternalWriteMessage(field_number, value, cached_size: value.GetCachedSize(), |
668 | target, stream: &stream); |
669 | } |
670 | |
671 | // Compute the byte size of a field. The XxSize() functions do NOT include |
672 | // the tag, so you must also call TagSize(). (This is because, for repeated |
673 | // fields, you should only call TagSize() once and multiply it by the element |
674 | // count, but you may have to call XxSize() for each individual element.) |
675 | static inline size_t Int32Size(int32_t value); |
676 | static inline size_t Int64Size(int64_t value); |
677 | static inline size_t UInt32Size(uint32_t value); |
678 | static inline size_t UInt64Size(uint64_t value); |
679 | static inline size_t SInt32Size(int32_t value); |
680 | static inline size_t SInt64Size(int64_t value); |
681 | static inline size_t EnumSize(int value); |
682 | static inline size_t Int32SizePlusOne(int32_t value); |
683 | static inline size_t Int64SizePlusOne(int64_t value); |
684 | static inline size_t UInt32SizePlusOne(uint32_t value); |
685 | static inline size_t UInt64SizePlusOne(uint64_t value); |
686 | static inline size_t SInt32SizePlusOne(int32_t value); |
687 | static inline size_t SInt64SizePlusOne(int64_t value); |
688 | static inline size_t EnumSizePlusOne(int value); |
689 | |
690 | static size_t Int32Size(const RepeatedField<int32_t>& value); |
691 | static size_t Int64Size(const RepeatedField<int64_t>& value); |
692 | static size_t UInt32Size(const RepeatedField<uint32_t>& value); |
693 | static size_t UInt64Size(const RepeatedField<uint64_t>& value); |
694 | static size_t SInt32Size(const RepeatedField<int32_t>& value); |
695 | static size_t SInt64Size(const RepeatedField<int64_t>& value); |
696 | static size_t EnumSize(const RepeatedField<int>& value); |
697 | |
698 | // These types always have the same size. |
699 | static constexpr size_t kFixed32Size = 4; |
700 | static constexpr size_t kFixed64Size = 8; |
701 | static constexpr size_t kSFixed32Size = 4; |
702 | static constexpr size_t kSFixed64Size = 8; |
703 | static constexpr size_t kFloatSize = 4; |
704 | static constexpr size_t kDoubleSize = 8; |
705 | static constexpr size_t kBoolSize = 1; |
706 | |
707 | static inline size_t StringSize(const std::string& value); |
708 | static inline size_t BytesSize(const std::string& value); |
709 | |
710 | template <typename MessageType> |
711 | static inline size_t GroupSize(const MessageType& value); |
712 | template <typename MessageType> |
713 | static inline size_t MessageSize(const MessageType& value); |
714 | |
715 | // Like above, but de-virtualize the call to ByteSize(). The |
716 | // pointer must point at an instance of MessageType, *not* a subclass (or |
717 | // the subclass must not override ByteSize()). |
718 | template <typename MessageType> |
719 | static inline size_t GroupSizeNoVirtual(const MessageType& value); |
720 | template <typename MessageType> |
721 | static inline size_t MessageSizeNoVirtual(const MessageType& value); |
722 | |
723 | // Given the length of data, calculate the byte size of the data on the |
724 | // wire if we encode the data as a length delimited field. |
725 | static inline size_t LengthDelimitedSize(size_t length); |
726 | |
727 | private: |
728 | // A helper method for the repeated primitive reader. This method has |
729 | // optimizations for primitive types that have fixed size on the wire, and |
730 | // can be read using potentially faster paths. |
731 | template <typename CType, enum FieldType DeclaredType> |
732 | PROTOBUF_NDEBUG_INLINE static bool ReadRepeatedFixedSizePrimitive( |
733 | int tag_size, uint32_t tag, io::CodedInputStream* input, |
734 | RepeatedField<CType>* value); |
735 | |
736 | // Like ReadRepeatedFixedSizePrimitive but for packed primitive fields. |
737 | template <typename CType, enum FieldType DeclaredType> |
738 | PROTOBUF_NDEBUG_INLINE static bool ReadPackedFixedSizePrimitive( |
739 | io::CodedInputStream* input, RepeatedField<CType>* value); |
740 | |
741 | static const CppType kFieldTypeToCppTypeMap[]; |
742 | static const WireFormatLite::WireType kWireTypeForFieldType[]; |
743 | static void WriteSubMessageMaybeToArray(int size, const MessageLite& value, |
744 | io::CodedOutputStream* output); |
745 | |
746 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(WireFormatLite); |
747 | }; |
748 | |
749 | // A class which deals with unknown values. The default implementation just |
750 | // discards them. WireFormat defines a subclass which writes to an |
751 | // UnknownFieldSet. This class is used by ExtensionSet::ParseField(), since |
752 | // ExtensionSet is part of the lite library but UnknownFieldSet is not. |
753 | class PROTOBUF_EXPORT FieldSkipper { |
754 | public: |
755 | FieldSkipper() {} |
756 | virtual ~FieldSkipper() {} |
757 | |
758 | // Skip a field whose tag has already been consumed. |
759 | virtual bool SkipField(io::CodedInputStream* input, uint32_t tag); |
760 | |
761 | // Skip an entire message or group, up to an end-group tag (which is consumed) |
762 | // or end-of-stream. |
763 | virtual bool SkipMessage(io::CodedInputStream* input); |
764 | |
765 | // Deal with an already-parsed unrecognized enum value. The default |
766 | // implementation does nothing, but the UnknownFieldSet-based implementation |
767 | // saves it as an unknown varint. |
768 | virtual void SkipUnknownEnum(int field_number, int value); |
769 | }; |
770 | |
771 | // Subclass of FieldSkipper which saves skipped fields to a CodedOutputStream. |
772 | |
773 | class PROTOBUF_EXPORT CodedOutputStreamFieldSkipper : public FieldSkipper { |
774 | public: |
775 | explicit CodedOutputStreamFieldSkipper(io::CodedOutputStream* unknown_fields) |
776 | : unknown_fields_(unknown_fields) {} |
777 | ~CodedOutputStreamFieldSkipper() override {} |
778 | |
779 | // implements FieldSkipper ----------------------------------------- |
780 | bool SkipField(io::CodedInputStream* input, uint32_t tag) override; |
781 | bool SkipMessage(io::CodedInputStream* input) override; |
782 | void SkipUnknownEnum(int field_number, int value) override; |
783 | |
784 | protected: |
785 | io::CodedOutputStream* unknown_fields_; |
786 | }; |
787 | |
788 | // inline methods ==================================================== |
789 | |
790 | inline WireFormatLite::CppType WireFormatLite::FieldTypeToCppType( |
791 | FieldType type) { |
792 | return kFieldTypeToCppTypeMap[type]; |
793 | } |
794 | |
795 | constexpr inline uint32_t WireFormatLite::MakeTag(int field_number, |
796 | WireType type) { |
797 | return GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(field_number, type); |
798 | } |
799 | |
800 | inline WireFormatLite::WireType WireFormatLite::GetTagWireType(uint32_t tag) { |
801 | return static_cast<WireType>(tag & kTagTypeMask); |
802 | } |
803 | |
804 | inline int WireFormatLite::GetTagFieldNumber(uint32_t tag) { |
805 | return static_cast<int>(tag >> kTagTypeBits); |
806 | } |
807 | |
808 | inline size_t WireFormatLite::TagSize(int field_number, |
809 | WireFormatLite::FieldType type) { |
810 | size_t result = io::CodedOutputStream::VarintSize32( |
811 | value: static_cast<uint32_t>(field_number << kTagTypeBits)); |
812 | if (type == TYPE_GROUP) { |
813 | // Groups have both a start and an end tag. |
814 | return result * 2; |
815 | } else { |
816 | return result; |
817 | } |
818 | } |
819 | |
820 | inline uint32_t WireFormatLite::EncodeFloat(float value) { |
821 | return bit_cast<uint32_t>(from: value); |
822 | } |
823 | |
824 | inline float WireFormatLite::DecodeFloat(uint32_t value) { |
825 | return bit_cast<float>(from: value); |
826 | } |
827 | |
828 | inline uint64_t WireFormatLite::EncodeDouble(double value) { |
829 | return bit_cast<uint64_t>(from: value); |
830 | } |
831 | |
832 | inline double WireFormatLite::DecodeDouble(uint64_t value) { |
833 | return bit_cast<double>(from: value); |
834 | } |
835 | |
836 | // ZigZag Transform: Encodes signed integers so that they can be |
837 | // effectively used with varint encoding. |
838 | // |
839 | // varint operates on unsigned integers, encoding smaller numbers into |
840 | // fewer bytes. If you try to use it on a signed integer, it will treat |
841 | // this number as a very large unsigned integer, which means that even |
842 | // small signed numbers like -1 will take the maximum number of bytes |
843 | // (10) to encode. ZigZagEncode() maps signed integers to unsigned |
844 | // in such a way that those with a small absolute value will have smaller |
845 | // encoded values, making them appropriate for encoding using varint. |
846 | // |
847 | // int32_t -> uint32_t |
848 | // ------------------------- |
849 | // 0 -> 0 |
850 | // -1 -> 1 |
851 | // 1 -> 2 |
852 | // -2 -> 3 |
853 | // ... -> ... |
854 | // 2147483647 -> 4294967294 |
855 | // -2147483648 -> 4294967295 |
856 | // |
857 | // >> encode >> |
858 | // << decode << |
859 | |
860 | inline uint32_t WireFormatLite::ZigZagEncode32(int32_t n) { |
861 | // Note: the right-shift must be arithmetic |
862 | // Note: left shift must be unsigned because of overflow |
863 | return (static_cast<uint32_t>(n) << 1) ^ static_cast<uint32_t>(n >> 31); |
864 | } |
865 | |
866 | inline int32_t WireFormatLite::ZigZagDecode32(uint32_t n) { |
867 | // Note: Using unsigned types prevent undefined behavior |
868 | return static_cast<int32_t>((n >> 1) ^ (~(n & 1) + 1)); |
869 | } |
870 | |
871 | inline uint64_t WireFormatLite::ZigZagEncode64(int64_t n) { |
872 | // Note: the right-shift must be arithmetic |
873 | // Note: left shift must be unsigned because of overflow |
874 | return (static_cast<uint64_t>(n) << 1) ^ static_cast<uint64_t>(n >> 63); |
875 | } |
876 | |
877 | inline int64_t WireFormatLite::ZigZagDecode64(uint64_t n) { |
878 | // Note: Using unsigned types prevent undefined behavior |
879 | return static_cast<int64_t>((n >> 1) ^ (~(n & 1) + 1)); |
880 | } |
881 | |
882 | // String is for UTF-8 text only, but, even so, ReadString() can simply |
883 | // call ReadBytes(). |
884 | |
885 | inline bool WireFormatLite::ReadString(io::CodedInputStream* input, |
886 | std::string* value) { |
887 | return ReadBytes(input, value); |
888 | } |
889 | |
890 | inline bool WireFormatLite::ReadString(io::CodedInputStream* input, |
891 | std::string** p) { |
892 | return ReadBytes(input, p); |
893 | } |
894 | |
895 | inline uint8_t* InternalSerializeUnknownMessageSetItemsToArray( |
896 | const std::string& unknown_fields, uint8_t* target, |
897 | io::EpsCopyOutputStream* stream) { |
898 | return stream->WriteRaw(data: unknown_fields.data(), |
899 | size: static_cast<int>(unknown_fields.size()), ptr: target); |
900 | } |
901 | |
902 | inline size_t ComputeUnknownMessageSetItemsSize( |
903 | const std::string& unknown_fields) { |
904 | return unknown_fields.size(); |
905 | } |
906 | |
907 | // Implementation details of ReadPrimitive. |
908 | |
909 | template <> |
910 | inline bool WireFormatLite::ReadPrimitive<int32_t, WireFormatLite::TYPE_INT32>( |
911 | io::CodedInputStream* input, int32_t* value) { |
912 | uint32_t temp; |
913 | if (!input->ReadVarint32(value: &temp)) return false; |
914 | *value = static_cast<int32_t>(temp); |
915 | return true; |
916 | } |
917 | template <> |
918 | inline bool WireFormatLite::ReadPrimitive<int64_t, WireFormatLite::TYPE_INT64>( |
919 | io::CodedInputStream* input, int64_t* value) { |
920 | uint64_t temp; |
921 | if (!input->ReadVarint64(value: &temp)) return false; |
922 | *value = static_cast<int64_t>(temp); |
923 | return true; |
924 | } |
925 | template <> |
926 | inline bool |
927 | WireFormatLite::ReadPrimitive<uint32_t, WireFormatLite::TYPE_UINT32>( |
928 | io::CodedInputStream* input, uint32_t* value) { |
929 | return input->ReadVarint32(value); |
930 | } |
931 | template <> |
932 | inline bool |
933 | WireFormatLite::ReadPrimitive<uint64_t, WireFormatLite::TYPE_UINT64>( |
934 | io::CodedInputStream* input, uint64_t* value) { |
935 | return input->ReadVarint64(value); |
936 | } |
937 | template <> |
938 | inline bool WireFormatLite::ReadPrimitive<int32_t, WireFormatLite::TYPE_SINT32>( |
939 | io::CodedInputStream* input, int32_t* value) { |
940 | uint32_t temp; |
941 | if (!input->ReadVarint32(value: &temp)) return false; |
942 | *value = ZigZagDecode32(n: temp); |
943 | return true; |
944 | } |
945 | template <> |
946 | inline bool WireFormatLite::ReadPrimitive<int64_t, WireFormatLite::TYPE_SINT64>( |
947 | io::CodedInputStream* input, int64_t* value) { |
948 | uint64_t temp; |
949 | if (!input->ReadVarint64(value: &temp)) return false; |
950 | *value = ZigZagDecode64(n: temp); |
951 | return true; |
952 | } |
953 | template <> |
954 | inline bool |
955 | WireFormatLite::ReadPrimitive<uint32_t, WireFormatLite::TYPE_FIXED32>( |
956 | io::CodedInputStream* input, uint32_t* value) { |
957 | return input->ReadLittleEndian32(value); |
958 | } |
959 | template <> |
960 | inline bool |
961 | WireFormatLite::ReadPrimitive<uint64_t, WireFormatLite::TYPE_FIXED64>( |
962 | io::CodedInputStream* input, uint64_t* value) { |
963 | return input->ReadLittleEndian64(value); |
964 | } |
965 | template <> |
966 | inline bool |
967 | WireFormatLite::ReadPrimitive<int32_t, WireFormatLite::TYPE_SFIXED32>( |
968 | io::CodedInputStream* input, int32_t* value) { |
969 | uint32_t temp; |
970 | if (!input->ReadLittleEndian32(value: &temp)) return false; |
971 | *value = static_cast<int32_t>(temp); |
972 | return true; |
973 | } |
974 | template <> |
975 | inline bool |
976 | WireFormatLite::ReadPrimitive<int64_t, WireFormatLite::TYPE_SFIXED64>( |
977 | io::CodedInputStream* input, int64_t* value) { |
978 | uint64_t temp; |
979 | if (!input->ReadLittleEndian64(value: &temp)) return false; |
980 | *value = static_cast<int64_t>(temp); |
981 | return true; |
982 | } |
983 | template <> |
984 | inline bool WireFormatLite::ReadPrimitive<float, WireFormatLite::TYPE_FLOAT>( |
985 | io::CodedInputStream* input, float* value) { |
986 | uint32_t temp; |
987 | if (!input->ReadLittleEndian32(value: &temp)) return false; |
988 | *value = DecodeFloat(value: temp); |
989 | return true; |
990 | } |
991 | template <> |
992 | inline bool WireFormatLite::ReadPrimitive<double, WireFormatLite::TYPE_DOUBLE>( |
993 | io::CodedInputStream* input, double* value) { |
994 | uint64_t temp; |
995 | if (!input->ReadLittleEndian64(value: &temp)) return false; |
996 | *value = DecodeDouble(value: temp); |
997 | return true; |
998 | } |
999 | template <> |
1000 | inline bool WireFormatLite::ReadPrimitive<bool, WireFormatLite::TYPE_BOOL>( |
1001 | io::CodedInputStream* input, bool* value) { |
1002 | uint64_t temp; |
1003 | if (!input->ReadVarint64(value: &temp)) return false; |
1004 | *value = temp != 0; |
1005 | return true; |
1006 | } |
1007 | template <> |
1008 | inline bool WireFormatLite::ReadPrimitive<int, WireFormatLite::TYPE_ENUM>( |
1009 | io::CodedInputStream* input, int* value) { |
1010 | uint32_t temp; |
1011 | if (!input->ReadVarint32(value: &temp)) return false; |
1012 | *value = static_cast<int>(temp); |
1013 | return true; |
1014 | } |
1015 | |
1016 | template <> |
1017 | inline const uint8_t* |
1018 | WireFormatLite::ReadPrimitiveFromArray<uint32_t, WireFormatLite::TYPE_FIXED32>( |
1019 | const uint8_t* buffer, uint32_t* value) { |
1020 | return io::CodedInputStream::ReadLittleEndian32FromArray(buffer, value); |
1021 | } |
1022 | template <> |
1023 | inline const uint8_t* |
1024 | WireFormatLite::ReadPrimitiveFromArray<uint64_t, WireFormatLite::TYPE_FIXED64>( |
1025 | const uint8_t* buffer, uint64_t* value) { |
1026 | return io::CodedInputStream::ReadLittleEndian64FromArray(buffer, value); |
1027 | } |
1028 | template <> |
1029 | inline const uint8_t* |
1030 | WireFormatLite::ReadPrimitiveFromArray<int32_t, WireFormatLite::TYPE_SFIXED32>( |
1031 | const uint8_t* buffer, int32_t* value) { |
1032 | uint32_t temp; |
1033 | buffer = io::CodedInputStream::ReadLittleEndian32FromArray(buffer, value: &temp); |
1034 | *value = static_cast<int32_t>(temp); |
1035 | return buffer; |
1036 | } |
1037 | template <> |
1038 | inline const uint8_t* |
1039 | WireFormatLite::ReadPrimitiveFromArray<int64_t, WireFormatLite::TYPE_SFIXED64>( |
1040 | const uint8_t* buffer, int64_t* value) { |
1041 | uint64_t temp; |
1042 | buffer = io::CodedInputStream::ReadLittleEndian64FromArray(buffer, value: &temp); |
1043 | *value = static_cast<int64_t>(temp); |
1044 | return buffer; |
1045 | } |
1046 | template <> |
1047 | inline const uint8_t* |
1048 | WireFormatLite::ReadPrimitiveFromArray<float, WireFormatLite::TYPE_FLOAT>( |
1049 | const uint8_t* buffer, float* value) { |
1050 | uint32_t temp; |
1051 | buffer = io::CodedInputStream::ReadLittleEndian32FromArray(buffer, value: &temp); |
1052 | *value = DecodeFloat(value: temp); |
1053 | return buffer; |
1054 | } |
1055 | template <> |
1056 | inline const uint8_t* |
1057 | WireFormatLite::ReadPrimitiveFromArray<double, WireFormatLite::TYPE_DOUBLE>( |
1058 | const uint8_t* buffer, double* value) { |
1059 | uint64_t temp; |
1060 | buffer = io::CodedInputStream::ReadLittleEndian64FromArray(buffer, value: &temp); |
1061 | *value = DecodeDouble(value: temp); |
1062 | return buffer; |
1063 | } |
1064 | |
1065 | template <typename CType, enum WireFormatLite::FieldType DeclaredType> |
1066 | inline bool WireFormatLite::ReadRepeatedPrimitive( |
1067 | int, // tag_size, unused. |
1068 | uint32_t tag, io::CodedInputStream* input, RepeatedField<CType>* values) { |
1069 | CType value; |
1070 | if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false; |
1071 | values->Add(value); |
1072 | int elements_already_reserved = values->Capacity() - values->size(); |
1073 | while (elements_already_reserved > 0 && input->ExpectTag(expected: tag)) { |
1074 | if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false; |
1075 | values->AddAlreadyReserved(value); |
1076 | elements_already_reserved--; |
1077 | } |
1078 | return true; |
1079 | } |
1080 | |
1081 | template <typename CType, enum WireFormatLite::FieldType DeclaredType> |
1082 | inline bool WireFormatLite::ReadRepeatedFixedSizePrimitive( |
1083 | int tag_size, uint32_t tag, io::CodedInputStream* input, |
1084 | RepeatedField<CType>* values) { |
1085 | GOOGLE_DCHECK_EQ(UInt32Size(tag), static_cast<size_t>(tag_size)); |
1086 | CType value; |
1087 | if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false; |
1088 | values->Add(value); |
1089 | |
1090 | // For fixed size values, repeated values can be read more quickly by |
1091 | // reading directly from a raw array. |
1092 | // |
1093 | // We can get a tight loop by only reading as many elements as can be |
1094 | // added to the RepeatedField without having to do any resizing. Additionally, |
1095 | // we only try to read as many elements as are available from the current |
1096 | // buffer space. Doing so avoids having to perform boundary checks when |
1097 | // reading the value: the maximum number of elements that can be read is |
1098 | // known outside of the loop. |
1099 | const void* void_pointer; |
1100 | int size; |
1101 | input->GetDirectBufferPointerInline(data: &void_pointer, size: &size); |
1102 | if (size > 0) { |
1103 | const uint8_t* buffer = reinterpret_cast<const uint8_t*>(void_pointer); |
1104 | // The number of bytes each type occupies on the wire. |
1105 | const int per_value_size = tag_size + static_cast<int>(sizeof(value)); |
1106 | |
1107 | // parentheses around (std::min) prevents macro expansion of min(...) |
1108 | int elements_available = |
1109 | (std::min)(values->Capacity() - values->size(), size / per_value_size); |
1110 | int num_read = 0; |
1111 | while (num_read < elements_available && |
1112 | (buffer = io::CodedInputStream::ExpectTagFromArray(buffer, expected: tag)) != |
1113 | nullptr) { |
1114 | buffer = ReadPrimitiveFromArray<CType, DeclaredType>(buffer, &value); |
1115 | values->AddAlreadyReserved(value); |
1116 | ++num_read; |
1117 | } |
1118 | const int read_bytes = num_read * per_value_size; |
1119 | if (read_bytes > 0) { |
1120 | input->Skip(count: read_bytes); |
1121 | } |
1122 | } |
1123 | return true; |
1124 | } |
1125 | |
1126 | // Specializations of ReadRepeatedPrimitive for the fixed size types, which use |
1127 | // the optimized code path. |
1128 | #define READ_REPEATED_FIXED_SIZE_PRIMITIVE(CPPTYPE, DECLARED_TYPE) \ |
1129 | template <> \ |
1130 | inline bool WireFormatLite::ReadRepeatedPrimitive< \ |
1131 | CPPTYPE, WireFormatLite::DECLARED_TYPE>( \ |
1132 | int tag_size, uint32_t tag, io::CodedInputStream* input, \ |
1133 | RepeatedField<CPPTYPE>* values) { \ |
1134 | return ReadRepeatedFixedSizePrimitive<CPPTYPE, \ |
1135 | WireFormatLite::DECLARED_TYPE>( \ |
1136 | tag_size, tag, input, values); \ |
1137 | } |
1138 | |
1139 | READ_REPEATED_FIXED_SIZE_PRIMITIVE(uint32_t, TYPE_FIXED32) |
1140 | READ_REPEATED_FIXED_SIZE_PRIMITIVE(uint64_t, TYPE_FIXED64) |
1141 | READ_REPEATED_FIXED_SIZE_PRIMITIVE(int32_t, TYPE_SFIXED32) |
1142 | READ_REPEATED_FIXED_SIZE_PRIMITIVE(int64_t, TYPE_SFIXED64) |
1143 | READ_REPEATED_FIXED_SIZE_PRIMITIVE(float, TYPE_FLOAT) |
1144 | READ_REPEATED_FIXED_SIZE_PRIMITIVE(double, TYPE_DOUBLE) |
1145 | |
1146 | #undef READ_REPEATED_FIXED_SIZE_PRIMITIVE |
1147 | |
1148 | template <typename CType, enum WireFormatLite::FieldType DeclaredType> |
1149 | bool WireFormatLite::ReadRepeatedPrimitiveNoInline( |
1150 | int tag_size, uint32_t tag, io::CodedInputStream* input, |
1151 | RepeatedField<CType>* value) { |
1152 | return ReadRepeatedPrimitive<CType, DeclaredType>(tag_size, tag, input, |
1153 | value); |
1154 | } |
1155 | |
1156 | template <typename CType, enum WireFormatLite::FieldType DeclaredType> |
1157 | inline bool WireFormatLite::ReadPackedPrimitive(io::CodedInputStream* input, |
1158 | RepeatedField<CType>* values) { |
1159 | int length; |
1160 | if (!input->ReadVarintSizeAsInt(value: &length)) return false; |
1161 | io::CodedInputStream::Limit limit = input->PushLimit(byte_limit: length); |
1162 | while (input->BytesUntilLimit() > 0) { |
1163 | CType value; |
1164 | if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false; |
1165 | values->Add(value); |
1166 | } |
1167 | input->PopLimit(limit); |
1168 | return true; |
1169 | } |
1170 | |
1171 | template <typename CType, enum WireFormatLite::FieldType DeclaredType> |
1172 | inline bool WireFormatLite::ReadPackedFixedSizePrimitive( |
1173 | io::CodedInputStream* input, RepeatedField<CType>* values) { |
1174 | int length; |
1175 | if (!input->ReadVarintSizeAsInt(value: &length)) return false; |
1176 | const int old_entries = values->size(); |
1177 | const int new_entries = length / static_cast<int>(sizeof(CType)); |
1178 | const int new_bytes = new_entries * static_cast<int>(sizeof(CType)); |
1179 | if (new_bytes != length) return false; |
1180 | // We would *like* to pre-allocate the buffer to write into (for |
1181 | // speed), but *must* avoid performing a very large allocation due |
1182 | // to a malicious user-supplied "length" above. So we have a fast |
1183 | // path that pre-allocates when the "length" is less than a bound. |
1184 | // We determine the bound by calling BytesUntilTotalBytesLimit() and |
1185 | // BytesUntilLimit(). These return -1 to mean "no limit set". |
1186 | // There are four cases: |
1187 | // TotalBytesLimit Limit |
1188 | // -1 -1 Use slow path. |
1189 | // -1 >= 0 Use fast path if length <= Limit. |
1190 | // >= 0 -1 Use slow path. |
1191 | // >= 0 >= 0 Use fast path if length <= min(both limits). |
1192 | int64_t bytes_limit = input->BytesUntilTotalBytesLimit(); |
1193 | if (bytes_limit == -1) { |
1194 | bytes_limit = input->BytesUntilLimit(); |
1195 | } else { |
1196 | // parentheses around (std::min) prevents macro expansion of min(...) |
1197 | bytes_limit = |
1198 | (std::min)(bytes_limit, static_cast<int64_t>(input->BytesUntilLimit())); |
1199 | } |
1200 | if (bytes_limit >= new_bytes) { |
1201 | // Fast-path that pre-allocates *values to the final size. |
1202 | #if defined(PROTOBUF_LITTLE_ENDIAN) |
1203 | values->Resize(old_entries + new_entries, 0); |
1204 | // values->mutable_data() may change after Resize(), so do this after: |
1205 | void* dest = reinterpret_cast<void*>(values->mutable_data() + old_entries); |
1206 | if (!input->ReadRaw(buffer: dest, size: new_bytes)) { |
1207 | values->Truncate(old_entries); |
1208 | return false; |
1209 | } |
1210 | #else |
1211 | values->Reserve(old_entries + new_entries); |
1212 | CType value; |
1213 | for (int i = 0; i < new_entries; ++i) { |
1214 | if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false; |
1215 | values->AddAlreadyReserved(value); |
1216 | } |
1217 | #endif |
1218 | } else { |
1219 | // This is the slow-path case where "length" may be too large to |
1220 | // safely allocate. We read as much as we can into *values |
1221 | // without pre-allocating "length" bytes. |
1222 | CType value; |
1223 | for (int i = 0; i < new_entries; ++i) { |
1224 | if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false; |
1225 | values->Add(value); |
1226 | } |
1227 | } |
1228 | return true; |
1229 | } |
1230 | |
1231 | // Specializations of ReadPackedPrimitive for the fixed size types, which use |
1232 | // an optimized code path. |
1233 | #define READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(CPPTYPE, DECLARED_TYPE) \ |
1234 | template <> \ |
1235 | inline bool \ |
1236 | WireFormatLite::ReadPackedPrimitive<CPPTYPE, WireFormatLite::DECLARED_TYPE>( \ |
1237 | io::CodedInputStream * input, RepeatedField<CPPTYPE> * values) { \ |
1238 | return ReadPackedFixedSizePrimitive<CPPTYPE, \ |
1239 | WireFormatLite::DECLARED_TYPE>( \ |
1240 | input, values); \ |
1241 | } |
1242 | |
1243 | READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(uint32_t, TYPE_FIXED32) |
1244 | READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(uint64_t, TYPE_FIXED64) |
1245 | READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(int32_t, TYPE_SFIXED32) |
1246 | READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(int64_t, TYPE_SFIXED64) |
1247 | READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(float, TYPE_FLOAT) |
1248 | READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(double, TYPE_DOUBLE) |
1249 | |
1250 | #undef READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE |
1251 | |
1252 | template <typename CType, enum WireFormatLite::FieldType DeclaredType> |
1253 | bool WireFormatLite::ReadPackedPrimitiveNoInline(io::CodedInputStream* input, |
1254 | RepeatedField<CType>* values) { |
1255 | return ReadPackedPrimitive<CType, DeclaredType>(input, values); |
1256 | } |
1257 | |
1258 | |
1259 | template <typename MessageType> |
1260 | inline bool WireFormatLite::ReadGroup(int field_number, |
1261 | io::CodedInputStream* input, |
1262 | MessageType* value) { |
1263 | if (!input->IncrementRecursionDepth()) return false; |
1264 | if (!value->MergePartialFromCodedStream(input)) return false; |
1265 | input->UnsafeDecrementRecursionDepth(); |
1266 | // Make sure the last thing read was an end tag for this group. |
1267 | if (!input->LastTagWas(expected: MakeTag(field_number, type: WIRETYPE_END_GROUP))) { |
1268 | return false; |
1269 | } |
1270 | return true; |
1271 | } |
1272 | template <typename MessageType> |
1273 | inline bool WireFormatLite::ReadMessage(io::CodedInputStream* input, |
1274 | MessageType* value) { |
1275 | int length; |
1276 | if (!input->ReadVarintSizeAsInt(value: &length)) return false; |
1277 | std::pair<io::CodedInputStream::Limit, int> p = |
1278 | input->IncrementRecursionDepthAndPushLimit(byte_limit: length); |
1279 | if (p.second < 0 || !value->MergePartialFromCodedStream(input)) return false; |
1280 | // Make sure that parsing stopped when the limit was hit, not at an endgroup |
1281 | // tag. |
1282 | return input->DecrementRecursionDepthAndPopLimit(limit: p.first); |
1283 | } |
1284 | |
1285 | // =================================================================== |
1286 | |
1287 | inline void WireFormatLite::WriteTag(int field_number, WireType type, |
1288 | io::CodedOutputStream* output) { |
1289 | output->WriteTag(value: MakeTag(field_number, type)); |
1290 | } |
1291 | |
1292 | inline void WireFormatLite::WriteInt32NoTag(int32_t value, |
1293 | io::CodedOutputStream* output) { |
1294 | output->WriteVarint32SignExtended(value); |
1295 | } |
1296 | inline void WireFormatLite::WriteInt64NoTag(int64_t value, |
1297 | io::CodedOutputStream* output) { |
1298 | output->WriteVarint64(value: static_cast<uint64_t>(value)); |
1299 | } |
1300 | inline void WireFormatLite::WriteUInt32NoTag(uint32_t value, |
1301 | io::CodedOutputStream* output) { |
1302 | output->WriteVarint32(value); |
1303 | } |
1304 | inline void WireFormatLite::WriteUInt64NoTag(uint64_t value, |
1305 | io::CodedOutputStream* output) { |
1306 | output->WriteVarint64(value); |
1307 | } |
1308 | inline void WireFormatLite::WriteSInt32NoTag(int32_t value, |
1309 | io::CodedOutputStream* output) { |
1310 | output->WriteVarint32(value: ZigZagEncode32(n: value)); |
1311 | } |
1312 | inline void WireFormatLite::WriteSInt64NoTag(int64_t value, |
1313 | io::CodedOutputStream* output) { |
1314 | output->WriteVarint64(value: ZigZagEncode64(n: value)); |
1315 | } |
1316 | inline void WireFormatLite::WriteFixed32NoTag(uint32_t value, |
1317 | io::CodedOutputStream* output) { |
1318 | output->WriteLittleEndian32(value); |
1319 | } |
1320 | inline void WireFormatLite::WriteFixed64NoTag(uint64_t value, |
1321 | io::CodedOutputStream* output) { |
1322 | output->WriteLittleEndian64(value); |
1323 | } |
1324 | inline void WireFormatLite::WriteSFixed32NoTag(int32_t value, |
1325 | io::CodedOutputStream* output) { |
1326 | output->WriteLittleEndian32(value: static_cast<uint32_t>(value)); |
1327 | } |
1328 | inline void WireFormatLite::WriteSFixed64NoTag(int64_t value, |
1329 | io::CodedOutputStream* output) { |
1330 | output->WriteLittleEndian64(value: static_cast<uint64_t>(value)); |
1331 | } |
1332 | inline void WireFormatLite::WriteFloatNoTag(float value, |
1333 | io::CodedOutputStream* output) { |
1334 | output->WriteLittleEndian32(value: EncodeFloat(value)); |
1335 | } |
1336 | inline void WireFormatLite::WriteDoubleNoTag(double value, |
1337 | io::CodedOutputStream* output) { |
1338 | output->WriteLittleEndian64(value: EncodeDouble(value)); |
1339 | } |
1340 | inline void WireFormatLite::WriteBoolNoTag(bool value, |
1341 | io::CodedOutputStream* output) { |
1342 | output->WriteVarint32(value: value ? 1 : 0); |
1343 | } |
1344 | inline void WireFormatLite::WriteEnumNoTag(int value, |
1345 | io::CodedOutputStream* output) { |
1346 | output->WriteVarint32SignExtended(value); |
1347 | } |
1348 | |
1349 | // See comment on ReadGroupNoVirtual to understand the need for this template |
1350 | // parameter name. |
1351 | template <typename MessageType_WorkAroundCppLookupDefect> |
1352 | inline void WireFormatLite::WriteGroupNoVirtual( |
1353 | int field_number, const MessageType_WorkAroundCppLookupDefect& value, |
1354 | io::CodedOutputStream* output) { |
1355 | WriteTag(field_number, type: WIRETYPE_START_GROUP, output); |
1356 | value.MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizes(output); |
1357 | WriteTag(field_number, type: WIRETYPE_END_GROUP, output); |
1358 | } |
1359 | template <typename MessageType_WorkAroundCppLookupDefect> |
1360 | inline void WireFormatLite::WriteMessageNoVirtual( |
1361 | int field_number, const MessageType_WorkAroundCppLookupDefect& value, |
1362 | io::CodedOutputStream* output) { |
1363 | WriteTag(field_number, type: WIRETYPE_LENGTH_DELIMITED, output); |
1364 | output->WriteVarint32( |
1365 | value: value.MessageType_WorkAroundCppLookupDefect::GetCachedSize()); |
1366 | value.MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizes(output); |
1367 | } |
1368 | |
1369 | // =================================================================== |
1370 | |
1371 | inline uint8_t* WireFormatLite::WriteTagToArray(int field_number, WireType type, |
1372 | uint8_t* target) { |
1373 | return io::CodedOutputStream::WriteTagToArray(value: MakeTag(field_number, type), |
1374 | target); |
1375 | } |
1376 | |
1377 | inline uint8_t* WireFormatLite::WriteInt32NoTagToArray(int32_t value, |
1378 | uint8_t* target) { |
1379 | return io::CodedOutputStream::WriteVarint32SignExtendedToArray(value, target); |
1380 | } |
1381 | inline uint8_t* WireFormatLite::WriteInt64NoTagToArray(int64_t value, |
1382 | uint8_t* target) { |
1383 | return io::CodedOutputStream::WriteVarint64ToArray( |
1384 | value: static_cast<uint64_t>(value), target); |
1385 | } |
1386 | inline uint8_t* WireFormatLite::WriteUInt32NoTagToArray(uint32_t value, |
1387 | uint8_t* target) { |
1388 | return io::CodedOutputStream::WriteVarint32ToArray(value, target); |
1389 | } |
1390 | inline uint8_t* WireFormatLite::WriteUInt64NoTagToArray(uint64_t value, |
1391 | uint8_t* target) { |
1392 | return io::CodedOutputStream::WriteVarint64ToArray(value, target); |
1393 | } |
1394 | inline uint8_t* WireFormatLite::WriteSInt32NoTagToArray(int32_t value, |
1395 | uint8_t* target) { |
1396 | return io::CodedOutputStream::WriteVarint32ToArray(value: ZigZagEncode32(n: value), |
1397 | target); |
1398 | } |
1399 | inline uint8_t* WireFormatLite::WriteSInt64NoTagToArray(int64_t value, |
1400 | uint8_t* target) { |
1401 | return io::CodedOutputStream::WriteVarint64ToArray(value: ZigZagEncode64(n: value), |
1402 | target); |
1403 | } |
1404 | inline uint8_t* WireFormatLite::WriteFixed32NoTagToArray(uint32_t value, |
1405 | uint8_t* target) { |
1406 | return io::CodedOutputStream::WriteLittleEndian32ToArray(value, target); |
1407 | } |
1408 | inline uint8_t* WireFormatLite::WriteFixed64NoTagToArray(uint64_t value, |
1409 | uint8_t* target) { |
1410 | return io::CodedOutputStream::WriteLittleEndian64ToArray(value, target); |
1411 | } |
1412 | inline uint8_t* WireFormatLite::WriteSFixed32NoTagToArray(int32_t value, |
1413 | uint8_t* target) { |
1414 | return io::CodedOutputStream::WriteLittleEndian32ToArray( |
1415 | value: static_cast<uint32_t>(value), target); |
1416 | } |
1417 | inline uint8_t* WireFormatLite::WriteSFixed64NoTagToArray(int64_t value, |
1418 | uint8_t* target) { |
1419 | return io::CodedOutputStream::WriteLittleEndian64ToArray( |
1420 | value: static_cast<uint64_t>(value), target); |
1421 | } |
1422 | inline uint8_t* WireFormatLite::WriteFloatNoTagToArray(float value, |
1423 | uint8_t* target) { |
1424 | return io::CodedOutputStream::WriteLittleEndian32ToArray(value: EncodeFloat(value), |
1425 | target); |
1426 | } |
1427 | inline uint8_t* WireFormatLite::WriteDoubleNoTagToArray(double value, |
1428 | uint8_t* target) { |
1429 | return io::CodedOutputStream::WriteLittleEndian64ToArray(value: EncodeDouble(value), |
1430 | target); |
1431 | } |
1432 | inline uint8_t* WireFormatLite::WriteBoolNoTagToArray(bool value, |
1433 | uint8_t* target) { |
1434 | return io::CodedOutputStream::WriteVarint32ToArray(value: value ? 1 : 0, target); |
1435 | } |
1436 | inline uint8_t* WireFormatLite::WriteEnumNoTagToArray(int value, |
1437 | uint8_t* target) { |
1438 | return io::CodedOutputStream::WriteVarint32SignExtendedToArray(value, target); |
1439 | } |
1440 | |
1441 | template <typename T> |
1442 | inline uint8_t* WireFormatLite::WritePrimitiveNoTagToArray( |
1443 | const RepeatedField<T>& value, uint8_t* (*Writer)(T, uint8_t*), |
1444 | uint8_t* target) { |
1445 | const int n = value.size(); |
1446 | GOOGLE_DCHECK_GT(n, 0); |
1447 | |
1448 | const T* ii = value.data(); |
1449 | int i = 0; |
1450 | do { |
1451 | target = Writer(ii[i], target); |
1452 | } while (++i < n); |
1453 | |
1454 | return target; |
1455 | } |
1456 | |
1457 | template <typename T> |
1458 | inline uint8_t* WireFormatLite::WriteFixedNoTagToArray( |
1459 | const RepeatedField<T>& value, uint8_t* (*Writer)(T, uint8_t*), |
1460 | uint8_t* target) { |
1461 | #if defined(PROTOBUF_LITTLE_ENDIAN) |
1462 | (void)Writer; |
1463 | |
1464 | const int n = value.size(); |
1465 | GOOGLE_DCHECK_GT(n, 0); |
1466 | |
1467 | const T* ii = value.data(); |
1468 | const int bytes = n * static_cast<int>(sizeof(ii[0])); |
1469 | memcpy(target, ii, static_cast<size_t>(bytes)); |
1470 | return target + bytes; |
1471 | #else |
1472 | return WritePrimitiveNoTagToArray(value, Writer, target); |
1473 | #endif |
1474 | } |
1475 | |
1476 | inline uint8_t* WireFormatLite::WriteInt32NoTagToArray( |
1477 | const RepeatedField<int32_t>& value, uint8_t* target) { |
1478 | return WritePrimitiveNoTagToArray(value, Writer: WriteInt32NoTagToArray, target); |
1479 | } |
1480 | inline uint8_t* WireFormatLite::WriteInt64NoTagToArray( |
1481 | const RepeatedField<int64_t>& value, uint8_t* target) { |
1482 | return WritePrimitiveNoTagToArray(value, Writer: WriteInt64NoTagToArray, target); |
1483 | } |
1484 | inline uint8_t* WireFormatLite::WriteUInt32NoTagToArray( |
1485 | const RepeatedField<uint32_t>& value, uint8_t* target) { |
1486 | return WritePrimitiveNoTagToArray(value, Writer: WriteUInt32NoTagToArray, target); |
1487 | } |
1488 | inline uint8_t* WireFormatLite::WriteUInt64NoTagToArray( |
1489 | const RepeatedField<uint64_t>& value, uint8_t* target) { |
1490 | return WritePrimitiveNoTagToArray(value, Writer: WriteUInt64NoTagToArray, target); |
1491 | } |
1492 | inline uint8_t* WireFormatLite::WriteSInt32NoTagToArray( |
1493 | const RepeatedField<int32_t>& value, uint8_t* target) { |
1494 | return WritePrimitiveNoTagToArray(value, Writer: WriteSInt32NoTagToArray, target); |
1495 | } |
1496 | inline uint8_t* WireFormatLite::WriteSInt64NoTagToArray( |
1497 | const RepeatedField<int64_t>& value, uint8_t* target) { |
1498 | return WritePrimitiveNoTagToArray(value, Writer: WriteSInt64NoTagToArray, target); |
1499 | } |
1500 | inline uint8_t* WireFormatLite::WriteFixed32NoTagToArray( |
1501 | const RepeatedField<uint32_t>& value, uint8_t* target) { |
1502 | return WriteFixedNoTagToArray(value, Writer: WriteFixed32NoTagToArray, target); |
1503 | } |
1504 | inline uint8_t* WireFormatLite::WriteFixed64NoTagToArray( |
1505 | const RepeatedField<uint64_t>& value, uint8_t* target) { |
1506 | return WriteFixedNoTagToArray(value, Writer: WriteFixed64NoTagToArray, target); |
1507 | } |
1508 | inline uint8_t* WireFormatLite::WriteSFixed32NoTagToArray( |
1509 | const RepeatedField<int32_t>& value, uint8_t* target) { |
1510 | return WriteFixedNoTagToArray(value, Writer: WriteSFixed32NoTagToArray, target); |
1511 | } |
1512 | inline uint8_t* WireFormatLite::WriteSFixed64NoTagToArray( |
1513 | const RepeatedField<int64_t>& value, uint8_t* target) { |
1514 | return WriteFixedNoTagToArray(value, Writer: WriteSFixed64NoTagToArray, target); |
1515 | } |
1516 | inline uint8_t* WireFormatLite::WriteFloatNoTagToArray( |
1517 | const RepeatedField<float>& value, uint8_t* target) { |
1518 | return WriteFixedNoTagToArray(value, Writer: WriteFloatNoTagToArray, target); |
1519 | } |
1520 | inline uint8_t* WireFormatLite::WriteDoubleNoTagToArray( |
1521 | const RepeatedField<double>& value, uint8_t* target) { |
1522 | return WriteFixedNoTagToArray(value, Writer: WriteDoubleNoTagToArray, target); |
1523 | } |
1524 | inline uint8_t* WireFormatLite::WriteBoolNoTagToArray( |
1525 | const RepeatedField<bool>& value, uint8_t* target) { |
1526 | return WritePrimitiveNoTagToArray(value, Writer: WriteBoolNoTagToArray, target); |
1527 | } |
1528 | inline uint8_t* WireFormatLite::WriteEnumNoTagToArray( |
1529 | const RepeatedField<int>& value, uint8_t* target) { |
1530 | return WritePrimitiveNoTagToArray(value, Writer: WriteEnumNoTagToArray, target); |
1531 | } |
1532 | |
1533 | inline uint8_t* WireFormatLite::WriteInt32ToArray(int field_number, |
1534 | int32_t value, |
1535 | uint8_t* target) { |
1536 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
1537 | return WriteInt32NoTagToArray(value, target); |
1538 | } |
1539 | inline uint8_t* WireFormatLite::WriteInt64ToArray(int field_number, |
1540 | int64_t value, |
1541 | uint8_t* target) { |
1542 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
1543 | return WriteInt64NoTagToArray(value, target); |
1544 | } |
1545 | inline uint8_t* WireFormatLite::WriteUInt32ToArray(int field_number, |
1546 | uint32_t value, |
1547 | uint8_t* target) { |
1548 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
1549 | return WriteUInt32NoTagToArray(value, target); |
1550 | } |
1551 | inline uint8_t* WireFormatLite::WriteUInt64ToArray(int field_number, |
1552 | uint64_t value, |
1553 | uint8_t* target) { |
1554 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
1555 | return WriteUInt64NoTagToArray(value, target); |
1556 | } |
1557 | inline uint8_t* WireFormatLite::WriteSInt32ToArray(int field_number, |
1558 | int32_t value, |
1559 | uint8_t* target) { |
1560 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
1561 | return WriteSInt32NoTagToArray(value, target); |
1562 | } |
1563 | inline uint8_t* WireFormatLite::WriteSInt64ToArray(int field_number, |
1564 | int64_t value, |
1565 | uint8_t* target) { |
1566 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
1567 | return WriteSInt64NoTagToArray(value, target); |
1568 | } |
1569 | inline uint8_t* WireFormatLite::WriteFixed32ToArray(int field_number, |
1570 | uint32_t value, |
1571 | uint8_t* target) { |
1572 | target = WriteTagToArray(field_number, type: WIRETYPE_FIXED32, target); |
1573 | return WriteFixed32NoTagToArray(value, target); |
1574 | } |
1575 | inline uint8_t* WireFormatLite::WriteFixed64ToArray(int field_number, |
1576 | uint64_t value, |
1577 | uint8_t* target) { |
1578 | target = WriteTagToArray(field_number, type: WIRETYPE_FIXED64, target); |
1579 | return WriteFixed64NoTagToArray(value, target); |
1580 | } |
1581 | inline uint8_t* WireFormatLite::WriteSFixed32ToArray(int field_number, |
1582 | int32_t value, |
1583 | uint8_t* target) { |
1584 | target = WriteTagToArray(field_number, type: WIRETYPE_FIXED32, target); |
1585 | return WriteSFixed32NoTagToArray(value, target); |
1586 | } |
1587 | inline uint8_t* WireFormatLite::WriteSFixed64ToArray(int field_number, |
1588 | int64_t value, |
1589 | uint8_t* target) { |
1590 | target = WriteTagToArray(field_number, type: WIRETYPE_FIXED64, target); |
1591 | return WriteSFixed64NoTagToArray(value, target); |
1592 | } |
1593 | inline uint8_t* WireFormatLite::WriteFloatToArray(int field_number, float value, |
1594 | uint8_t* target) { |
1595 | target = WriteTagToArray(field_number, type: WIRETYPE_FIXED32, target); |
1596 | return WriteFloatNoTagToArray(value, target); |
1597 | } |
1598 | inline uint8_t* WireFormatLite::WriteDoubleToArray(int field_number, |
1599 | double value, |
1600 | uint8_t* target) { |
1601 | target = WriteTagToArray(field_number, type: WIRETYPE_FIXED64, target); |
1602 | return WriteDoubleNoTagToArray(value, target); |
1603 | } |
1604 | inline uint8_t* WireFormatLite::WriteBoolToArray(int field_number, bool value, |
1605 | uint8_t* target) { |
1606 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
1607 | return WriteBoolNoTagToArray(value, target); |
1608 | } |
1609 | inline uint8_t* WireFormatLite::WriteEnumToArray(int field_number, int value, |
1610 | uint8_t* target) { |
1611 | target = WriteTagToArray(field_number, type: WIRETYPE_VARINT, target); |
1612 | return WriteEnumNoTagToArray(value, target); |
1613 | } |
1614 | |
1615 | template <typename T> |
1616 | inline uint8_t* WireFormatLite::WritePrimitiveToArray( |
1617 | int field_number, const RepeatedField<T>& value, |
1618 | uint8_t* (*Writer)(int, T, uint8_t*), uint8_t* target) { |
1619 | const int n = value.size(); |
1620 | if (n == 0) { |
1621 | return target; |
1622 | } |
1623 | |
1624 | const T* ii = value.data(); |
1625 | int i = 0; |
1626 | do { |
1627 | target = Writer(field_number, ii[i], target); |
1628 | } while (++i < n); |
1629 | |
1630 | return target; |
1631 | } |
1632 | |
1633 | inline uint8_t* WireFormatLite::WriteInt32ToArray( |
1634 | int field_number, const RepeatedField<int32_t>& value, uint8_t* target) { |
1635 | return WritePrimitiveToArray(field_number, value, Writer: WriteInt32ToArray, target); |
1636 | } |
1637 | inline uint8_t* WireFormatLite::WriteInt64ToArray( |
1638 | int field_number, const RepeatedField<int64_t>& value, uint8_t* target) { |
1639 | return WritePrimitiveToArray(field_number, value, Writer: WriteInt64ToArray, target); |
1640 | } |
1641 | inline uint8_t* WireFormatLite::WriteUInt32ToArray( |
1642 | int field_number, const RepeatedField<uint32_t>& value, uint8_t* target) { |
1643 | return WritePrimitiveToArray(field_number, value, Writer: WriteUInt32ToArray, target); |
1644 | } |
1645 | inline uint8_t* WireFormatLite::WriteUInt64ToArray( |
1646 | int field_number, const RepeatedField<uint64_t>& value, uint8_t* target) { |
1647 | return WritePrimitiveToArray(field_number, value, Writer: WriteUInt64ToArray, target); |
1648 | } |
1649 | inline uint8_t* WireFormatLite::WriteSInt32ToArray( |
1650 | int field_number, const RepeatedField<int32_t>& value, uint8_t* target) { |
1651 | return WritePrimitiveToArray(field_number, value, Writer: WriteSInt32ToArray, target); |
1652 | } |
1653 | inline uint8_t* WireFormatLite::WriteSInt64ToArray( |
1654 | int field_number, const RepeatedField<int64_t>& value, uint8_t* target) { |
1655 | return WritePrimitiveToArray(field_number, value, Writer: WriteSInt64ToArray, target); |
1656 | } |
1657 | inline uint8_t* WireFormatLite::WriteFixed32ToArray( |
1658 | int field_number, const RepeatedField<uint32_t>& value, uint8_t* target) { |
1659 | return WritePrimitiveToArray(field_number, value, Writer: WriteFixed32ToArray, |
1660 | target); |
1661 | } |
1662 | inline uint8_t* WireFormatLite::WriteFixed64ToArray( |
1663 | int field_number, const RepeatedField<uint64_t>& value, uint8_t* target) { |
1664 | return WritePrimitiveToArray(field_number, value, Writer: WriteFixed64ToArray, |
1665 | target); |
1666 | } |
1667 | inline uint8_t* WireFormatLite::WriteSFixed32ToArray( |
1668 | int field_number, const RepeatedField<int32_t>& value, uint8_t* target) { |
1669 | return WritePrimitiveToArray(field_number, value, Writer: WriteSFixed32ToArray, |
1670 | target); |
1671 | } |
1672 | inline uint8_t* WireFormatLite::WriteSFixed64ToArray( |
1673 | int field_number, const RepeatedField<int64_t>& value, uint8_t* target) { |
1674 | return WritePrimitiveToArray(field_number, value, Writer: WriteSFixed64ToArray, |
1675 | target); |
1676 | } |
1677 | inline uint8_t* WireFormatLite::WriteFloatToArray( |
1678 | int field_number, const RepeatedField<float>& value, uint8_t* target) { |
1679 | return WritePrimitiveToArray(field_number, value, Writer: WriteFloatToArray, target); |
1680 | } |
1681 | inline uint8_t* WireFormatLite::WriteDoubleToArray( |
1682 | int field_number, const RepeatedField<double>& value, uint8_t* target) { |
1683 | return WritePrimitiveToArray(field_number, value, Writer: WriteDoubleToArray, target); |
1684 | } |
1685 | inline uint8_t* WireFormatLite::WriteBoolToArray( |
1686 | int field_number, const RepeatedField<bool>& value, uint8_t* target) { |
1687 | return WritePrimitiveToArray(field_number, value, Writer: WriteBoolToArray, target); |
1688 | } |
1689 | inline uint8_t* WireFormatLite::WriteEnumToArray( |
1690 | int field_number, const RepeatedField<int>& value, uint8_t* target) { |
1691 | return WritePrimitiveToArray(field_number, value, Writer: WriteEnumToArray, target); |
1692 | } |
1693 | inline uint8_t* WireFormatLite::WriteStringToArray(int field_number, |
1694 | const std::string& value, |
1695 | uint8_t* target) { |
1696 | // String is for UTF-8 text only |
1697 | // WARNING: In wire_format.cc, both strings and bytes are handled by |
1698 | // WriteString() to avoid code duplication. If the implementations become |
1699 | // different, you will need to update that usage. |
1700 | target = WriteTagToArray(field_number, type: WIRETYPE_LENGTH_DELIMITED, target); |
1701 | return io::CodedOutputStream::WriteStringWithSizeToArray(str: value, target); |
1702 | } |
1703 | inline uint8_t* WireFormatLite::WriteBytesToArray(int field_number, |
1704 | const std::string& value, |
1705 | uint8_t* target) { |
1706 | target = WriteTagToArray(field_number, type: WIRETYPE_LENGTH_DELIMITED, target); |
1707 | return io::CodedOutputStream::WriteStringWithSizeToArray(str: value, target); |
1708 | } |
1709 | |
1710 | |
1711 | // See comment on ReadGroupNoVirtual to understand the need for this template |
1712 | // parameter name. |
1713 | template <typename MessageType_WorkAroundCppLookupDefect> |
1714 | inline uint8_t* WireFormatLite::InternalWriteGroupNoVirtualToArray( |
1715 | int field_number, const MessageType_WorkAroundCppLookupDefect& value, |
1716 | uint8_t* target) { |
1717 | target = WriteTagToArray(field_number, type: WIRETYPE_START_GROUP, target); |
1718 | target = value.MessageType_WorkAroundCppLookupDefect:: |
1719 | SerializeWithCachedSizesToArray(target); |
1720 | return WriteTagToArray(field_number, type: WIRETYPE_END_GROUP, target); |
1721 | } |
1722 | template <typename MessageType_WorkAroundCppLookupDefect> |
1723 | inline uint8_t* WireFormatLite::InternalWriteMessageNoVirtualToArray( |
1724 | int field_number, const MessageType_WorkAroundCppLookupDefect& value, |
1725 | uint8_t* target) { |
1726 | target = WriteTagToArray(field_number, type: WIRETYPE_LENGTH_DELIMITED, target); |
1727 | target = io::CodedOutputStream::WriteVarint32ToArray( |
1728 | value: static_cast<uint32_t>( |
1729 | value.MessageType_WorkAroundCppLookupDefect::GetCachedSize()), |
1730 | target); |
1731 | return value |
1732 | .MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizesToArray( |
1733 | target); |
1734 | } |
1735 | |
1736 | // =================================================================== |
1737 | |
1738 | inline size_t WireFormatLite::Int32Size(int32_t value) { |
1739 | return io::CodedOutputStream::VarintSize32SignExtended(value); |
1740 | } |
1741 | inline size_t WireFormatLite::Int64Size(int64_t value) { |
1742 | return io::CodedOutputStream::VarintSize64(value: static_cast<uint64_t>(value)); |
1743 | } |
1744 | inline size_t WireFormatLite::UInt32Size(uint32_t value) { |
1745 | return io::CodedOutputStream::VarintSize32(value); |
1746 | } |
1747 | inline size_t WireFormatLite::UInt64Size(uint64_t value) { |
1748 | return io::CodedOutputStream::VarintSize64(value); |
1749 | } |
1750 | inline size_t WireFormatLite::SInt32Size(int32_t value) { |
1751 | return io::CodedOutputStream::VarintSize32(value: ZigZagEncode32(n: value)); |
1752 | } |
1753 | inline size_t WireFormatLite::SInt64Size(int64_t value) { |
1754 | return io::CodedOutputStream::VarintSize64(value: ZigZagEncode64(n: value)); |
1755 | } |
1756 | inline size_t WireFormatLite::EnumSize(int value) { |
1757 | return io::CodedOutputStream::VarintSize32SignExtended(value); |
1758 | } |
1759 | inline size_t WireFormatLite::Int32SizePlusOne(int32_t value) { |
1760 | return io::CodedOutputStream::VarintSize32SignExtendedPlusOne(value); |
1761 | } |
1762 | inline size_t WireFormatLite::Int64SizePlusOne(int64_t value) { |
1763 | return io::CodedOutputStream::VarintSize64PlusOne( |
1764 | value: static_cast<uint64_t>(value)); |
1765 | } |
1766 | inline size_t WireFormatLite::UInt32SizePlusOne(uint32_t value) { |
1767 | return io::CodedOutputStream::VarintSize32PlusOne(value); |
1768 | } |
1769 | inline size_t WireFormatLite::UInt64SizePlusOne(uint64_t value) { |
1770 | return io::CodedOutputStream::VarintSize64PlusOne(value); |
1771 | } |
1772 | inline size_t WireFormatLite::SInt32SizePlusOne(int32_t value) { |
1773 | return io::CodedOutputStream::VarintSize32PlusOne(value: ZigZagEncode32(n: value)); |
1774 | } |
1775 | inline size_t WireFormatLite::SInt64SizePlusOne(int64_t value) { |
1776 | return io::CodedOutputStream::VarintSize64PlusOne(value: ZigZagEncode64(n: value)); |
1777 | } |
1778 | inline size_t WireFormatLite::EnumSizePlusOne(int value) { |
1779 | return io::CodedOutputStream::VarintSize32SignExtendedPlusOne(value); |
1780 | } |
1781 | |
1782 | inline size_t WireFormatLite::StringSize(const std::string& value) { |
1783 | return LengthDelimitedSize(length: value.size()); |
1784 | } |
1785 | inline size_t WireFormatLite::BytesSize(const std::string& value) { |
1786 | return LengthDelimitedSize(length: value.size()); |
1787 | } |
1788 | |
1789 | |
1790 | template <typename MessageType> |
1791 | inline size_t WireFormatLite::GroupSize(const MessageType& value) { |
1792 | return value.ByteSizeLong(); |
1793 | } |
1794 | template <typename MessageType> |
1795 | inline size_t WireFormatLite::MessageSize(const MessageType& value) { |
1796 | return LengthDelimitedSize(length: value.ByteSizeLong()); |
1797 | } |
1798 | |
1799 | // See comment on ReadGroupNoVirtual to understand the need for this template |
1800 | // parameter name. |
1801 | template <typename MessageType_WorkAroundCppLookupDefect> |
1802 | inline size_t WireFormatLite::GroupSizeNoVirtual( |
1803 | const MessageType_WorkAroundCppLookupDefect& value) { |
1804 | return value.MessageType_WorkAroundCppLookupDefect::ByteSizeLong(); |
1805 | } |
1806 | template <typename MessageType_WorkAroundCppLookupDefect> |
1807 | inline size_t WireFormatLite::MessageSizeNoVirtual( |
1808 | const MessageType_WorkAroundCppLookupDefect& value) { |
1809 | return LengthDelimitedSize( |
1810 | length: value.MessageType_WorkAroundCppLookupDefect::ByteSizeLong()); |
1811 | } |
1812 | |
1813 | inline size_t WireFormatLite::LengthDelimitedSize(size_t length) { |
1814 | // The static_cast here prevents an error in certain compiler configurations |
1815 | // but is not technically correct--if length is too large to fit in a uint32_t |
1816 | // then it will be silently truncated. We will need to fix this if we ever |
1817 | // decide to start supporting serialized messages greater than 2 GiB in size. |
1818 | return length + |
1819 | io::CodedOutputStream::VarintSize32(value: static_cast<uint32_t>(length)); |
1820 | } |
1821 | |
1822 | template <typename MS> |
1823 | bool ParseMessageSetItemImpl(io::CodedInputStream* input, MS ms) { |
1824 | // This method parses a group which should contain two fields: |
1825 | // required int32 type_id = 2; |
1826 | // required data message = 3; |
1827 | |
1828 | uint32_t last_type_id = 0; |
1829 | |
1830 | // If we see message data before the type_id, we'll append it to this so |
1831 | // we can parse it later. |
1832 | std::string message_data; |
1833 | |
1834 | while (true) { |
1835 | const uint32_t tag = input->ReadTagNoLastTag(); |
1836 | if (tag == 0) return false; |
1837 | |
1838 | switch (tag) { |
1839 | case WireFormatLite::kMessageSetTypeIdTag: { |
1840 | uint32_t type_id; |
1841 | if (!input->ReadVarint32(value: &type_id)) return false; |
1842 | last_type_id = type_id; |
1843 | |
1844 | if (!message_data.empty()) { |
1845 | // We saw some message data before the type_id. Have to parse it |
1846 | // now. |
1847 | io::CodedInputStream sub_input( |
1848 | reinterpret_cast<const uint8_t*>(message_data.data()), |
1849 | static_cast<int>(message_data.size())); |
1850 | sub_input.SetRecursionLimit(input->RecursionBudget()); |
1851 | if (!ms.ParseField(last_type_id, &sub_input)) { |
1852 | return false; |
1853 | } |
1854 | message_data.clear(); |
1855 | } |
1856 | |
1857 | break; |
1858 | } |
1859 | |
1860 | case WireFormatLite::kMessageSetMessageTag: { |
1861 | if (last_type_id == 0) { |
1862 | // We haven't seen a type_id yet. Append this data to message_data. |
1863 | uint32_t length; |
1864 | if (!input->ReadVarint32(value: &length)) return false; |
1865 | if (static_cast<int32_t>(length) < 0) return false; |
1866 | uint32_t size = static_cast<uint32_t>( |
1867 | length + io::CodedOutputStream::VarintSize32(value: length)); |
1868 | message_data.resize(n: size); |
1869 | auto ptr = reinterpret_cast<uint8_t*>(&message_data[0]); |
1870 | ptr = io::CodedOutputStream::WriteVarint32ToArray(value: length, target: ptr); |
1871 | if (!input->ReadRaw(buffer: ptr, size: length)) return false; |
1872 | } else { |
1873 | // Already saw type_id, so we can parse this directly. |
1874 | if (!ms.ParseField(last_type_id, input)) { |
1875 | return false; |
1876 | } |
1877 | } |
1878 | |
1879 | break; |
1880 | } |
1881 | |
1882 | case WireFormatLite::kMessageSetItemEndTag: { |
1883 | return true; |
1884 | } |
1885 | |
1886 | default: { |
1887 | if (!ms.SkipField(tag, input)) return false; |
1888 | } |
1889 | } |
1890 | } |
1891 | } |
1892 | |
1893 | } // namespace internal |
1894 | } // namespace protobuf |
1895 | } // namespace google |
1896 | |
1897 | #include <google/protobuf/port_undef.inc> |
1898 | |
1899 | #endif // GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__ |
1900 | |