1 | // Copyright 2018 The Abseil Authors. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | // |
15 | // ----------------------------------------------------------------------------- |
16 | // File: fixed_array.h |
17 | // ----------------------------------------------------------------------------- |
18 | // |
19 | // A `FixedArray<T>` represents a non-resizable array of `T` where the length of |
20 | // the array can be determined at run-time. It is a good replacement for |
21 | // non-standard and deprecated uses of `alloca()` and variable length arrays |
22 | // within the GCC extension. (See |
23 | // https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html). |
24 | // |
25 | // `FixedArray` allocates small arrays inline, keeping performance fast by |
26 | // avoiding heap operations. It also helps reduce the chances of |
27 | // accidentally overflowing your stack if large input is passed to |
28 | // your function. |
29 | |
30 | #ifndef ABSL_CONTAINER_FIXED_ARRAY_H_ |
31 | #define ABSL_CONTAINER_FIXED_ARRAY_H_ |
32 | |
33 | #include <algorithm> |
34 | #include <array> |
35 | #include <cassert> |
36 | #include <cstddef> |
37 | #include <initializer_list> |
38 | #include <iterator> |
39 | #include <limits> |
40 | #include <memory> |
41 | #include <new> |
42 | #include <type_traits> |
43 | |
44 | #include "absl/algorithm/algorithm.h" |
45 | #include "absl/base/dynamic_annotations.h" |
46 | #include "absl/base/internal/throw_delegate.h" |
47 | #include "absl/base/macros.h" |
48 | #include "absl/base/optimization.h" |
49 | #include "absl/base/port.h" |
50 | #include "absl/container/internal/compressed_tuple.h" |
51 | #include "absl/memory/memory.h" |
52 | |
53 | namespace absl { |
54 | |
55 | constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1); |
56 | |
57 | // ----------------------------------------------------------------------------- |
58 | // FixedArray |
59 | // ----------------------------------------------------------------------------- |
60 | // |
61 | // A `FixedArray` provides a run-time fixed-size array, allocating a small array |
62 | // inline for efficiency. |
63 | // |
64 | // Most users should not specify an `inline_elements` argument and let |
65 | // `FixedArray` automatically determine the number of elements |
66 | // to store inline based on `sizeof(T)`. If `inline_elements` is specified, the |
67 | // `FixedArray` implementation will use inline storage for arrays with a |
68 | // length <= `inline_elements`. |
69 | // |
70 | // Note that a `FixedArray` constructed with a `size_type` argument will |
71 | // default-initialize its values by leaving trivially constructible types |
72 | // uninitialized (e.g. int, int[4], double), and others default-constructed. |
73 | // This matches the behavior of c-style arrays and `std::array`, but not |
74 | // `std::vector`. |
75 | // |
76 | // Note that `FixedArray` does not provide a public allocator; if it requires a |
77 | // heap allocation, it will do so with global `::operator new[]()` and |
78 | // `::operator delete[]()`, even if T provides class-scope overrides for these |
79 | // operators. |
80 | template <typename T, size_t N = kFixedArrayUseDefault, |
81 | typename A = std::allocator<T>> |
82 | class FixedArray { |
83 | static_assert(!std::is_array<T>::value || std::extent<T>::value > 0, |
84 | "Arrays with unknown bounds cannot be used with FixedArray." ); |
85 | |
86 | static constexpr size_t kInlineBytesDefault = 256; |
87 | |
88 | using AllocatorTraits = std::allocator_traits<A>; |
89 | // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17, |
90 | // but this seems to be mostly pedantic. |
91 | template <typename Iterator> |
92 | using EnableIfForwardIterator = absl::enable_if_t<std::is_convertible< |
93 | typename std::iterator_traits<Iterator>::iterator_category, |
94 | std::forward_iterator_tag>::value>; |
95 | static constexpr bool NoexceptCopyable() { |
96 | return std::is_nothrow_copy_constructible<StorageElement>::value && |
97 | absl::allocator_is_nothrow<allocator_type>::value; |
98 | } |
99 | static constexpr bool NoexceptMovable() { |
100 | return std::is_nothrow_move_constructible<StorageElement>::value && |
101 | absl::allocator_is_nothrow<allocator_type>::value; |
102 | } |
103 | static constexpr bool DefaultConstructorIsNonTrivial() { |
104 | return !absl::is_trivially_default_constructible<StorageElement>::value; |
105 | } |
106 | |
107 | public: |
108 | using allocator_type = typename AllocatorTraits::allocator_type; |
109 | using value_type = typename allocator_type::value_type; |
110 | using pointer = typename allocator_type::pointer; |
111 | using const_pointer = typename allocator_type::const_pointer; |
112 | using reference = typename allocator_type::reference; |
113 | using const_reference = typename allocator_type::const_reference; |
114 | using size_type = typename allocator_type::size_type; |
115 | using difference_type = typename allocator_type::difference_type; |
116 | using iterator = pointer; |
117 | using const_iterator = const_pointer; |
118 | using reverse_iterator = std::reverse_iterator<iterator>; |
119 | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
120 | |
121 | static constexpr size_type inline_elements = |
122 | (N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type) |
123 | : static_cast<size_type>(N)); |
124 | |
125 | FixedArray( |
126 | const FixedArray& other, |
127 | const allocator_type& a = allocator_type()) noexcept(NoexceptCopyable()) |
128 | : FixedArray(other.begin(), other.end(), a) {} |
129 | |
130 | FixedArray( |
131 | FixedArray&& other, |
132 | const allocator_type& a = allocator_type()) noexcept(NoexceptMovable()) |
133 | : FixedArray(std::make_move_iterator(other.begin()), |
134 | std::make_move_iterator(other.end()), a) {} |
135 | |
136 | // Creates an array object that can store `n` elements. |
137 | // Note that trivially constructible elements will be uninitialized. |
138 | explicit FixedArray(size_type n, const allocator_type& a = allocator_type()) |
139 | : storage_(n, a) { |
140 | if (DefaultConstructorIsNonTrivial()) { |
141 | memory_internal::ConstructRange(storage_.alloc(), storage_.begin(), |
142 | storage_.end()); |
143 | } |
144 | } |
145 | |
146 | // Creates an array initialized with `n` copies of `val`. |
147 | FixedArray(size_type n, const value_type& val, |
148 | const allocator_type& a = allocator_type()) |
149 | : storage_(n, a) { |
150 | memory_internal::ConstructRange(storage_.alloc(), storage_.begin(), |
151 | storage_.end(), val); |
152 | } |
153 | |
154 | // Creates an array initialized with the size and contents of `init_list`. |
155 | FixedArray(std::initializer_list<value_type> init_list, |
156 | const allocator_type& a = allocator_type()) |
157 | : FixedArray(init_list.begin(), init_list.end(), a) {} |
158 | |
159 | // Creates an array initialized with the elements from the input |
160 | // range. The array's size will always be `std::distance(first, last)`. |
161 | // REQUIRES: Iterator must be a forward_iterator or better. |
162 | template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr> |
163 | FixedArray(Iterator first, Iterator last, |
164 | const allocator_type& a = allocator_type()) |
165 | : storage_(std::distance(first, last), a) { |
166 | memory_internal::CopyRange(storage_.alloc(), storage_.begin(), first, last); |
167 | } |
168 | |
169 | ~FixedArray() noexcept { |
170 | for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) { |
171 | AllocatorTraits::destroy(storage_.alloc(), cur); |
172 | } |
173 | } |
174 | |
175 | // Assignments are deleted because they break the invariant that the size of a |
176 | // `FixedArray` never changes. |
177 | void operator=(FixedArray&&) = delete; |
178 | void operator=(const FixedArray&) = delete; |
179 | |
180 | // FixedArray::size() |
181 | // |
182 | // Returns the length of the fixed array. |
183 | size_type size() const { return storage_.size(); } |
184 | |
185 | // FixedArray::max_size() |
186 | // |
187 | // Returns the largest possible value of `std::distance(begin(), end())` for a |
188 | // `FixedArray<T>`. This is equivalent to the most possible addressable bytes |
189 | // over the number of bytes taken by T. |
190 | constexpr size_type max_size() const { |
191 | return (std::numeric_limits<difference_type>::max)() / sizeof(value_type); |
192 | } |
193 | |
194 | // FixedArray::empty() |
195 | // |
196 | // Returns whether or not the fixed array is empty. |
197 | bool empty() const { return size() == 0; } |
198 | |
199 | // FixedArray::memsize() |
200 | // |
201 | // Returns the memory size of the fixed array in bytes. |
202 | size_t memsize() const { return size() * sizeof(value_type); } |
203 | |
204 | // FixedArray::data() |
205 | // |
206 | // Returns a const T* pointer to elements of the `FixedArray`. This pointer |
207 | // can be used to access (but not modify) the contained elements. |
208 | const_pointer data() const { return AsValueType(storage_.begin()); } |
209 | |
210 | // Overload of FixedArray::data() to return a T* pointer to elements of the |
211 | // fixed array. This pointer can be used to access and modify the contained |
212 | // elements. |
213 | pointer data() { return AsValueType(storage_.begin()); } |
214 | |
215 | // FixedArray::operator[] |
216 | // |
217 | // Returns a reference the ith element of the fixed array. |
218 | // REQUIRES: 0 <= i < size() |
219 | reference operator[](size_type i) { |
220 | assert(i < size()); |
221 | return data()[i]; |
222 | } |
223 | |
224 | // Overload of FixedArray::operator()[] to return a const reference to the |
225 | // ith element of the fixed array. |
226 | // REQUIRES: 0 <= i < size() |
227 | const_reference operator[](size_type i) const { |
228 | assert(i < size()); |
229 | return data()[i]; |
230 | } |
231 | |
232 | // FixedArray::at |
233 | // |
234 | // Bounds-checked access. Returns a reference to the ith element of the |
235 | // fiexed array, or throws std::out_of_range |
236 | reference at(size_type i) { |
237 | if (ABSL_PREDICT_FALSE(i >= size())) { |
238 | base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check" ); |
239 | } |
240 | return data()[i]; |
241 | } |
242 | |
243 | // Overload of FixedArray::at() to return a const reference to the ith element |
244 | // of the fixed array. |
245 | const_reference at(size_type i) const { |
246 | if (ABSL_PREDICT_FALSE(i >= size())) { |
247 | base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check" ); |
248 | } |
249 | return data()[i]; |
250 | } |
251 | |
252 | // FixedArray::front() |
253 | // |
254 | // Returns a reference to the first element of the fixed array. |
255 | reference front() { return *begin(); } |
256 | |
257 | // Overload of FixedArray::front() to return a reference to the first element |
258 | // of a fixed array of const values. |
259 | const_reference front() const { return *begin(); } |
260 | |
261 | // FixedArray::back() |
262 | // |
263 | // Returns a reference to the last element of the fixed array. |
264 | reference back() { return *(end() - 1); } |
265 | |
266 | // Overload of FixedArray::back() to return a reference to the last element |
267 | // of a fixed array of const values. |
268 | const_reference back() const { return *(end() - 1); } |
269 | |
270 | // FixedArray::begin() |
271 | // |
272 | // Returns an iterator to the beginning of the fixed array. |
273 | iterator begin() { return data(); } |
274 | |
275 | // Overload of FixedArray::begin() to return a const iterator to the |
276 | // beginning of the fixed array. |
277 | const_iterator begin() const { return data(); } |
278 | |
279 | // FixedArray::cbegin() |
280 | // |
281 | // Returns a const iterator to the beginning of the fixed array. |
282 | const_iterator cbegin() const { return begin(); } |
283 | |
284 | // FixedArray::end() |
285 | // |
286 | // Returns an iterator to the end of the fixed array. |
287 | iterator end() { return data() + size(); } |
288 | |
289 | // Overload of FixedArray::end() to return a const iterator to the end of the |
290 | // fixed array. |
291 | const_iterator end() const { return data() + size(); } |
292 | |
293 | // FixedArray::cend() |
294 | // |
295 | // Returns a const iterator to the end of the fixed array. |
296 | const_iterator cend() const { return end(); } |
297 | |
298 | // FixedArray::rbegin() |
299 | // |
300 | // Returns a reverse iterator from the end of the fixed array. |
301 | reverse_iterator rbegin() { return reverse_iterator(end()); } |
302 | |
303 | // Overload of FixedArray::rbegin() to return a const reverse iterator from |
304 | // the end of the fixed array. |
305 | const_reverse_iterator rbegin() const { |
306 | return const_reverse_iterator(end()); |
307 | } |
308 | |
309 | // FixedArray::crbegin() |
310 | // |
311 | // Returns a const reverse iterator from the end of the fixed array. |
312 | const_reverse_iterator crbegin() const { return rbegin(); } |
313 | |
314 | // FixedArray::rend() |
315 | // |
316 | // Returns a reverse iterator from the beginning of the fixed array. |
317 | reverse_iterator rend() { return reverse_iterator(begin()); } |
318 | |
319 | // Overload of FixedArray::rend() for returning a const reverse iterator |
320 | // from the beginning of the fixed array. |
321 | const_reverse_iterator rend() const { |
322 | return const_reverse_iterator(begin()); |
323 | } |
324 | |
325 | // FixedArray::crend() |
326 | // |
327 | // Returns a reverse iterator from the beginning of the fixed array. |
328 | const_reverse_iterator crend() const { return rend(); } |
329 | |
330 | // FixedArray::fill() |
331 | // |
332 | // Assigns the given `value` to all elements in the fixed array. |
333 | void fill(const value_type& val) { std::fill(begin(), end(), val); } |
334 | |
335 | // Relational operators. Equality operators are elementwise using |
336 | // `operator==`, while order operators order FixedArrays lexicographically. |
337 | friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) { |
338 | return absl::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); |
339 | } |
340 | |
341 | friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) { |
342 | return !(lhs == rhs); |
343 | } |
344 | |
345 | friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) { |
346 | return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), |
347 | rhs.end()); |
348 | } |
349 | |
350 | friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) { |
351 | return rhs < lhs; |
352 | } |
353 | |
354 | friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) { |
355 | return !(rhs < lhs); |
356 | } |
357 | |
358 | friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) { |
359 | return !(lhs < rhs); |
360 | } |
361 | |
362 | template <typename H> |
363 | friend H AbslHashValue(H h, const FixedArray& v) { |
364 | return H::combine(H::combine_contiguous(std::move(h), v.data(), v.size()), |
365 | v.size()); |
366 | } |
367 | |
368 | private: |
369 | // StorageElement |
370 | // |
371 | // For FixedArrays with a C-style-array value_type, StorageElement is a POD |
372 | // wrapper struct called StorageElementWrapper that holds the value_type |
373 | // instance inside. This is needed for construction and destruction of the |
374 | // entire array regardless of how many dimensions it has. For all other cases, |
375 | // StorageElement is just an alias of value_type. |
376 | // |
377 | // Maintainer's Note: The simpler solution would be to simply wrap value_type |
378 | // in a struct whether it's an array or not. That causes some paranoid |
379 | // diagnostics to misfire, believing that 'data()' returns a pointer to a |
380 | // single element, rather than the packed array that it really is. |
381 | // e.g.: |
382 | // |
383 | // FixedArray<char> buf(1); |
384 | // sprintf(buf.data(), "foo"); |
385 | // |
386 | // error: call to int __builtin___sprintf_chk(etc...) |
387 | // will always overflow destination buffer [-Werror] |
388 | // |
389 | template <typename OuterT = value_type, |
390 | typename InnerT = absl::remove_extent_t<OuterT>, |
391 | size_t InnerN = std::extent<OuterT>::value> |
392 | struct StorageElementWrapper { |
393 | InnerT array[InnerN]; |
394 | }; |
395 | |
396 | using StorageElement = |
397 | absl::conditional_t<std::is_array<value_type>::value, |
398 | StorageElementWrapper<value_type>, value_type>; |
399 | using StorageElementBuffer = |
400 | absl::aligned_storage_t<sizeof(StorageElement), alignof(StorageElement)>; |
401 | |
402 | static pointer AsValueType(pointer ptr) { return ptr; } |
403 | static pointer AsValueType(StorageElementWrapper<value_type>* ptr) { |
404 | return std::addressof(ptr->array); |
405 | } |
406 | |
407 | static_assert(sizeof(StorageElement) == sizeof(value_type), "" ); |
408 | static_assert(alignof(StorageElement) == alignof(value_type), "" ); |
409 | |
410 | struct NonEmptyInlinedStorage { |
411 | StorageElement* data() { |
412 | return reinterpret_cast<StorageElement*>(inlined_storage_.data()); |
413 | } |
414 | |
415 | #ifdef ADDRESS_SANITIZER |
416 | void* RedzoneBegin() { return &redzone_begin_; } |
417 | void* RedzoneEnd() { return &redzone_end_ + 1; } |
418 | #endif // ADDRESS_SANITIZER |
419 | |
420 | void AnnotateConstruct(size_type); |
421 | void AnnotateDestruct(size_type); |
422 | |
423 | ADDRESS_SANITIZER_REDZONE(redzone_begin_); |
424 | std::array<StorageElementBuffer, inline_elements> inlined_storage_; |
425 | ADDRESS_SANITIZER_REDZONE(redzone_end_); |
426 | }; |
427 | |
428 | struct EmptyInlinedStorage { |
429 | StorageElement* data() { return nullptr; } |
430 | void AnnotateConstruct(size_type) {} |
431 | void AnnotateDestruct(size_type) {} |
432 | }; |
433 | |
434 | using InlinedStorage = |
435 | absl::conditional_t<inline_elements == 0, EmptyInlinedStorage, |
436 | NonEmptyInlinedStorage>; |
437 | |
438 | // Storage |
439 | // |
440 | // An instance of Storage manages the inline and out-of-line memory for |
441 | // instances of FixedArray. This guarantees that even when construction of |
442 | // individual elements fails in the FixedArray constructor body, the |
443 | // destructor for Storage will still be called and out-of-line memory will be |
444 | // properly deallocated. |
445 | // |
446 | class Storage : public InlinedStorage { |
447 | public: |
448 | Storage(size_type n, const allocator_type& a) |
449 | : size_alloc_(n, a), data_(InitializeData()) {} |
450 | |
451 | ~Storage() noexcept { |
452 | if (UsingInlinedStorage(size())) { |
453 | InlinedStorage::AnnotateDestruct(size()); |
454 | } else { |
455 | AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size()); |
456 | } |
457 | } |
458 | |
459 | size_type size() const { return size_alloc_.template get<0>(); } |
460 | StorageElement* begin() const { return data_; } |
461 | StorageElement* end() const { return begin() + size(); } |
462 | allocator_type& alloc() { |
463 | return size_alloc_.template get<1>(); |
464 | } |
465 | |
466 | private: |
467 | static bool UsingInlinedStorage(size_type n) { |
468 | return n <= inline_elements; |
469 | } |
470 | |
471 | StorageElement* InitializeData() { |
472 | if (UsingInlinedStorage(size())) { |
473 | InlinedStorage::AnnotateConstruct(size()); |
474 | return InlinedStorage::data(); |
475 | } else { |
476 | return reinterpret_cast<StorageElement*>( |
477 | AllocatorTraits::allocate(alloc(), size())); |
478 | } |
479 | } |
480 | |
481 | // `CompressedTuple` takes advantage of EBCO for stateless `allocator_type`s |
482 | container_internal::CompressedTuple<size_type, allocator_type> size_alloc_; |
483 | StorageElement* data_; |
484 | }; |
485 | |
486 | Storage storage_; |
487 | }; |
488 | |
489 | template <typename T, size_t N, typename A> |
490 | constexpr size_t FixedArray<T, N, A>::kInlineBytesDefault; |
491 | |
492 | template <typename T, size_t N, typename A> |
493 | constexpr typename FixedArray<T, N, A>::size_type |
494 | FixedArray<T, N, A>::inline_elements; |
495 | |
496 | template <typename T, size_t N, typename A> |
497 | void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct( |
498 | typename FixedArray<T, N, A>::size_type n) { |
499 | #ifdef ADDRESS_SANITIZER |
500 | if (!n) return; |
501 | ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(), data() + n); |
502 | ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(), RedzoneBegin()); |
503 | #endif // ADDRESS_SANITIZER |
504 | static_cast<void>(n); // Mark used when not in asan mode |
505 | } |
506 | |
507 | template <typename T, size_t N, typename A> |
508 | void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct( |
509 | typename FixedArray<T, N, A>::size_type n) { |
510 | #ifdef ADDRESS_SANITIZER |
511 | if (!n) return; |
512 | ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n, RedzoneEnd()); |
513 | ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(), data()); |
514 | #endif // ADDRESS_SANITIZER |
515 | static_cast<void>(n); // Mark used when not in asan mode |
516 | } |
517 | } // namespace absl |
518 | |
519 | #endif // ABSL_CONTAINER_FIXED_ARRAY_H_ |
520 | |