| 1 | // Copyright 2019 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | // |
| 15 | // ----------------------------------------------------------------------------- |
| 16 | // File: inlined_vector.h |
| 17 | // ----------------------------------------------------------------------------- |
| 18 | // |
| 19 | // This header file contains the declaration and definition of an "inlined |
| 20 | // vector" which behaves in an equivalent fashion to a `std::vector`, except |
| 21 | // that storage for small sequences of the vector are provided inline without |
| 22 | // requiring any heap allocation. |
| 23 | // |
| 24 | // An `absl::InlinedVector<T, N>` specifies the default capacity `N` as one of |
| 25 | // its template parameters. Instances where `size() <= N` hold contained |
| 26 | // elements in inline space. Typically `N` is very small so that sequences that |
| 27 | // are expected to be short do not require allocations. |
| 28 | // |
| 29 | // An `absl::InlinedVector` does not usually require a specific allocator. If |
| 30 | // the inlined vector grows beyond its initial constraints, it will need to |
| 31 | // allocate (as any normal `std::vector` would). This is usually performed with |
| 32 | // the default allocator (defined as `std::allocator<T>`). Optionally, a custom |
| 33 | // allocator type may be specified as `A` in `absl::InlinedVector<T, N, A>`. |
| 34 | |
| 35 | #ifndef ABSL_CONTAINER_INLINED_VECTOR_H_ |
| 36 | #define ABSL_CONTAINER_INLINED_VECTOR_H_ |
| 37 | |
| 38 | #include <algorithm> |
| 39 | #include <cassert> |
| 40 | #include <cstddef> |
| 41 | #include <cstdlib> |
| 42 | #include <cstring> |
| 43 | #include <initializer_list> |
| 44 | #include <iterator> |
| 45 | #include <memory> |
| 46 | #include <type_traits> |
| 47 | #include <utility> |
| 48 | |
| 49 | #include "absl/algorithm/algorithm.h" |
| 50 | #include "absl/base/internal/throw_delegate.h" |
| 51 | #include "absl/base/optimization.h" |
| 52 | #include "absl/base/port.h" |
| 53 | #include "absl/container/internal/inlined_vector.h" |
| 54 | #include "absl/memory/memory.h" |
| 55 | |
| 56 | namespace absl { |
| 57 | // ----------------------------------------------------------------------------- |
| 58 | // InlinedVector |
| 59 | // ----------------------------------------------------------------------------- |
| 60 | // |
| 61 | // An `absl::InlinedVector` is designed to be a drop-in replacement for |
| 62 | // `std::vector` for use cases where the vector's size is sufficiently small |
| 63 | // that it can be inlined. If the inlined vector does grow beyond its estimated |
| 64 | // capacity, it will trigger an initial allocation on the heap, and will behave |
| 65 | // as a `std:vector`. The API of the `absl::InlinedVector` within this file is |
| 66 | // designed to cover the same API footprint as covered by `std::vector`. |
| 67 | template <typename T, size_t N, typename A = std::allocator<T>> |
| 68 | class InlinedVector { |
| 69 | static_assert( |
| 70 | N > 0, "InlinedVector cannot be instantiated with `0` inlined elements." ); |
| 71 | |
| 72 | using Storage = inlined_vector_internal::Storage<T, N, A>; |
| 73 | using rvalue_reference = typename Storage::rvalue_reference; |
| 74 | using MoveIterator = typename Storage::MoveIterator; |
| 75 | using AllocatorTraits = typename Storage::AllocatorTraits; |
| 76 | using IsMemcpyOk = typename Storage::IsMemcpyOk; |
| 77 | |
| 78 | template <typename Iterator> |
| 79 | using IteratorValueAdapter = |
| 80 | typename Storage::template IteratorValueAdapter<Iterator>; |
| 81 | using CopyValueAdapter = typename Storage::CopyValueAdapter; |
| 82 | using DefaultValueAdapter = typename Storage::DefaultValueAdapter; |
| 83 | |
| 84 | template <typename Iterator> |
| 85 | using EnableIfAtLeastForwardIterator = absl::enable_if_t< |
| 86 | inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>; |
| 87 | |
| 88 | template <typename Iterator> |
| 89 | using DisableIfAtLeastForwardIterator = absl::enable_if_t< |
| 90 | !inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>; |
| 91 | |
| 92 | public: |
| 93 | using allocator_type = typename Storage::allocator_type; |
| 94 | using value_type = typename Storage::value_type; |
| 95 | using pointer = typename Storage::pointer; |
| 96 | using const_pointer = typename Storage::const_pointer; |
| 97 | using reference = typename Storage::reference; |
| 98 | using const_reference = typename Storage::const_reference; |
| 99 | using size_type = typename Storage::size_type; |
| 100 | using difference_type = typename Storage::difference_type; |
| 101 | using iterator = typename Storage::iterator; |
| 102 | using const_iterator = typename Storage::const_iterator; |
| 103 | using reverse_iterator = typename Storage::reverse_iterator; |
| 104 | using const_reverse_iterator = typename Storage::const_reverse_iterator; |
| 105 | |
| 106 | // --------------------------------------------------------------------------- |
| 107 | // InlinedVector Constructors and Destructor |
| 108 | // --------------------------------------------------------------------------- |
| 109 | |
| 110 | // Creates an empty inlined vector with a value-initialized allocator. |
| 111 | InlinedVector() noexcept(noexcept(allocator_type())) : storage_() {} |
| 112 | |
| 113 | // Creates an empty inlined vector with a specified allocator. |
| 114 | explicit InlinedVector(const allocator_type& alloc) noexcept |
| 115 | : storage_(alloc) {} |
| 116 | |
| 117 | // Creates an inlined vector with `n` copies of `value_type()`. |
| 118 | explicit InlinedVector(size_type n, |
| 119 | const allocator_type& alloc = allocator_type()) |
| 120 | : storage_(alloc) { |
| 121 | storage_.Initialize(DefaultValueAdapter(), n); |
| 122 | } |
| 123 | |
| 124 | // Creates an inlined vector with `n` copies of `v`. |
| 125 | InlinedVector(size_type n, const_reference v, |
| 126 | const allocator_type& alloc = allocator_type()) |
| 127 | : storage_(alloc) { |
| 128 | storage_.Initialize(CopyValueAdapter(v), n); |
| 129 | } |
| 130 | |
| 131 | // Creates an inlined vector of copies of the values in `list`. |
| 132 | InlinedVector(std::initializer_list<value_type> list, |
| 133 | const allocator_type& alloc = allocator_type()) |
| 134 | : InlinedVector(list.begin(), list.end(), alloc) {} |
| 135 | |
| 136 | // Creates an inlined vector with elements constructed from the provided |
| 137 | // forward iterator range [`first`, `last`). |
| 138 | // |
| 139 | // NOTE: The `enable_if` prevents ambiguous interpretation between a call to |
| 140 | // this constructor with two integral arguments and a call to the above |
| 141 | // `InlinedVector(size_type, const_reference)` constructor. |
| 142 | template <typename ForwardIterator, |
| 143 | EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr> |
| 144 | InlinedVector(ForwardIterator first, ForwardIterator last, |
| 145 | const allocator_type& alloc = allocator_type()) |
| 146 | : storage_(alloc) { |
| 147 | storage_.Initialize(IteratorValueAdapter<ForwardIterator>(first), |
| 148 | std::distance(first, last)); |
| 149 | } |
| 150 | |
| 151 | // Creates an inlined vector with elements constructed from the provided input |
| 152 | // iterator range [`first`, `last`). |
| 153 | template <typename InputIterator, |
| 154 | DisableIfAtLeastForwardIterator<InputIterator>* = nullptr> |
| 155 | InlinedVector(InputIterator first, InputIterator last, |
| 156 | const allocator_type& alloc = allocator_type()) |
| 157 | : storage_(alloc) { |
| 158 | std::copy(first, last, std::back_inserter(*this)); |
| 159 | } |
| 160 | |
| 161 | // Creates a copy of an `other` inlined vector using `other`'s allocator. |
| 162 | InlinedVector(const InlinedVector& other) |
| 163 | : InlinedVector(other, *other.storage_.GetAllocPtr()) {} |
| 164 | |
| 165 | // Creates a copy of an `other` inlined vector using a specified allocator. |
| 166 | InlinedVector(const InlinedVector& other, const allocator_type& alloc) |
| 167 | : storage_(alloc) { |
| 168 | if (IsMemcpyOk::value && !other.storage_.GetIsAllocated()) { |
| 169 | storage_.MemcpyFrom(other.storage_); |
| 170 | } else { |
| 171 | storage_.Initialize(IteratorValueAdapter<const_pointer>(other.data()), |
| 172 | other.size()); |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | // Creates an inlined vector by moving in the contents of an `other` inlined |
| 177 | // vector without performing any allocations. If `other` contains allocated |
| 178 | // memory, the newly-created instance will take ownership of that memory |
| 179 | // (leaving `other` empty). However, if `other` does not contain allocated |
| 180 | // memory (i.e. is inlined), the new inlined vector will perform element-wise |
| 181 | // move construction of `other`'s elements. |
| 182 | // |
| 183 | // NOTE: since no allocation is performed for the inlined vector in either |
| 184 | // case, the `noexcept(...)` specification depends on whether moving the |
| 185 | // underlying objects can throw. We assume: |
| 186 | // a) Move constructors should only throw due to allocation failure. |
| 187 | // b) If `value_type`'s move constructor allocates, it uses the same |
| 188 | // allocation function as the `InlinedVector`'s allocator. Thus, the move |
| 189 | // constructor is non-throwing if the allocator is non-throwing or |
| 190 | // `value_type`'s move constructor is specified as `noexcept`. |
| 191 | InlinedVector(InlinedVector&& other) noexcept( |
| 192 | absl::allocator_is_nothrow<allocator_type>::value || |
| 193 | std::is_nothrow_move_constructible<value_type>::value) |
| 194 | : storage_(*other.storage_.GetAllocPtr()) { |
| 195 | if (IsMemcpyOk::value) { |
| 196 | storage_.MemcpyFrom(other.storage_); |
| 197 | other.storage_.SetInlinedSize(0); |
| 198 | } else if (other.storage_.GetIsAllocated()) { |
| 199 | storage_.SetAllocatedData(other.storage_.GetAllocatedData(), |
| 200 | other.storage_.GetAllocatedCapacity()); |
| 201 | storage_.SetAllocatedSize(other.storage_.GetSize()); |
| 202 | other.storage_.SetInlinedSize(0); |
| 203 | } else { |
| 204 | IteratorValueAdapter<MoveIterator> other_values( |
| 205 | MoveIterator(other.storage_.GetInlinedData())); |
| 206 | inlined_vector_internal::ConstructElements( |
| 207 | storage_.GetAllocPtr(), storage_.GetInlinedData(), &other_values, |
| 208 | other.storage_.GetSize()); |
| 209 | storage_.SetInlinedSize(other.storage_.GetSize()); |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | // Creates an inlined vector by moving in the contents of an `other` inlined |
| 214 | // vector, performing allocations with the specified `alloc` allocator. If |
| 215 | // `other`'s allocator is not equal to `alloc` and `other` contains allocated |
| 216 | // memory, this move constructor will create a new allocation. |
| 217 | // |
| 218 | // NOTE: since allocation is performed in this case, this constructor can |
| 219 | // only be `noexcept` if the specified allocator is also `noexcept`. If this |
| 220 | // is the case, or if `other` contains allocated memory, this constructor |
| 221 | // performs element-wise move construction of its contents. |
| 222 | // |
| 223 | // Only in the case where `other`'s allocator is equal to `alloc` and `other` |
| 224 | // contains allocated memory will the newly created inlined vector take |
| 225 | // ownership of `other`'s allocated memory. |
| 226 | InlinedVector(InlinedVector&& other, const allocator_type& alloc) noexcept( |
| 227 | absl::allocator_is_nothrow<allocator_type>::value) |
| 228 | : storage_(alloc) { |
| 229 | if (IsMemcpyOk::value) { |
| 230 | storage_.MemcpyFrom(other.storage_); |
| 231 | other.storage_.SetInlinedSize(0); |
| 232 | } else if ((*storage_.GetAllocPtr() == *other.storage_.GetAllocPtr()) && |
| 233 | other.storage_.GetIsAllocated()) { |
| 234 | storage_.SetAllocatedData(other.storage_.GetAllocatedData(), |
| 235 | other.storage_.GetAllocatedCapacity()); |
| 236 | storage_.SetAllocatedSize(other.storage_.GetSize()); |
| 237 | other.storage_.SetInlinedSize(0); |
| 238 | } else { |
| 239 | storage_.Initialize( |
| 240 | IteratorValueAdapter<MoveIterator>(MoveIterator(other.data())), |
| 241 | other.size()); |
| 242 | } |
| 243 | } |
| 244 | |
| 245 | ~InlinedVector() {} |
| 246 | |
| 247 | // --------------------------------------------------------------------------- |
| 248 | // InlinedVector Member Accessors |
| 249 | // --------------------------------------------------------------------------- |
| 250 | |
| 251 | // `InlinedVector::empty()` |
| 252 | // |
| 253 | // Checks if the inlined vector has no elements. |
| 254 | bool empty() const noexcept { return !size(); } |
| 255 | |
| 256 | // `InlinedVector::size()` |
| 257 | // |
| 258 | // Returns the number of elements in the inlined vector. |
| 259 | size_type size() const noexcept { return storage_.GetSize(); } |
| 260 | |
| 261 | // `InlinedVector::max_size()` |
| 262 | // |
| 263 | // Returns the maximum number of elements the vector can hold. |
| 264 | size_type max_size() const noexcept { |
| 265 | // One bit of the size storage is used to indicate whether the inlined |
| 266 | // vector is allocated. As a result, the maximum size of the container that |
| 267 | // we can express is half of the max for `size_type`. |
| 268 | return (std::numeric_limits<size_type>::max)() / 2; |
| 269 | } |
| 270 | |
| 271 | // `InlinedVector::capacity()` |
| 272 | // |
| 273 | // Returns the number of elements that can be stored in the inlined vector |
| 274 | // without requiring a reallocation of underlying memory. |
| 275 | // |
| 276 | // NOTE: For most inlined vectors, `capacity()` should equal the template |
| 277 | // parameter `N`. For inlined vectors which exceed this capacity, they |
| 278 | // will no longer be inlined and `capacity()` will equal its capacity on the |
| 279 | // allocated heap. |
| 280 | size_type capacity() const noexcept { |
| 281 | return storage_.GetIsAllocated() ? storage_.GetAllocatedCapacity() |
| 282 | : static_cast<size_type>(N); |
| 283 | } |
| 284 | |
| 285 | // `InlinedVector::data()` |
| 286 | // |
| 287 | // Returns a `pointer` to elements of the inlined vector. This pointer can be |
| 288 | // used to access and modify the contained elements. |
| 289 | // Only results within the range [`0`, `size()`) are defined. |
| 290 | pointer data() noexcept { |
| 291 | return storage_.GetIsAllocated() ? storage_.GetAllocatedData() |
| 292 | : storage_.GetInlinedData(); |
| 293 | } |
| 294 | |
| 295 | // Overload of `InlinedVector::data()` to return a `const_pointer` to elements |
| 296 | // of the inlined vector. This pointer can be used to access (but not modify) |
| 297 | // the contained elements. |
| 298 | const_pointer data() const noexcept { |
| 299 | return storage_.GetIsAllocated() ? storage_.GetAllocatedData() |
| 300 | : storage_.GetInlinedData(); |
| 301 | } |
| 302 | |
| 303 | // `InlinedVector::operator[]()` |
| 304 | // |
| 305 | // Returns a `reference` to the `i`th element of the inlined vector using the |
| 306 | // array operator. |
| 307 | reference operator[](size_type i) { |
| 308 | assert(i < size()); |
| 309 | return data()[i]; |
| 310 | } |
| 311 | |
| 312 | // Overload of `InlinedVector::operator[]()` to return a `const_reference` to |
| 313 | // the `i`th element of the inlined vector. |
| 314 | const_reference operator[](size_type i) const { |
| 315 | assert(i < size()); |
| 316 | return data()[i]; |
| 317 | } |
| 318 | |
| 319 | // `InlinedVector::at()` |
| 320 | // |
| 321 | // Returns a `reference` to the `i`th element of the inlined vector. |
| 322 | reference at(size_type i) { |
| 323 | if (ABSL_PREDICT_FALSE(i >= size())) { |
| 324 | base_internal::ThrowStdOutOfRange( |
| 325 | "`InlinedVector::at(size_type)` failed bounds check" ); |
| 326 | } |
| 327 | return data()[i]; |
| 328 | } |
| 329 | |
| 330 | // Overload of `InlinedVector::at()` to return a `const_reference` to the |
| 331 | // `i`th element of the inlined vector. |
| 332 | const_reference at(size_type i) const { |
| 333 | if (ABSL_PREDICT_FALSE(i >= size())) { |
| 334 | base_internal::ThrowStdOutOfRange( |
| 335 | "`InlinedVector::at(size_type) const` failed bounds check" ); |
| 336 | } |
| 337 | return data()[i]; |
| 338 | } |
| 339 | |
| 340 | // `InlinedVector::front()` |
| 341 | // |
| 342 | // Returns a `reference` to the first element of the inlined vector. |
| 343 | reference front() { |
| 344 | assert(!empty()); |
| 345 | return at(0); |
| 346 | } |
| 347 | |
| 348 | // Overload of `InlinedVector::front()` returns a `const_reference` to the |
| 349 | // first element of the inlined vector. |
| 350 | const_reference front() const { |
| 351 | assert(!empty()); |
| 352 | return at(0); |
| 353 | } |
| 354 | |
| 355 | // `InlinedVector::back()` |
| 356 | // |
| 357 | // Returns a `reference` to the last element of the inlined vector. |
| 358 | reference back() { |
| 359 | assert(!empty()); |
| 360 | return at(size() - 1); |
| 361 | } |
| 362 | |
| 363 | // Overload of `InlinedVector::back()` to return a `const_reference` to the |
| 364 | // last element of the inlined vector. |
| 365 | const_reference back() const { |
| 366 | assert(!empty()); |
| 367 | return at(size() - 1); |
| 368 | } |
| 369 | |
| 370 | // `InlinedVector::begin()` |
| 371 | // |
| 372 | // Returns an `iterator` to the beginning of the inlined vector. |
| 373 | iterator begin() noexcept { return data(); } |
| 374 | |
| 375 | // Overload of `InlinedVector::begin()` to return a `const_iterator` to |
| 376 | // the beginning of the inlined vector. |
| 377 | const_iterator begin() const noexcept { return data(); } |
| 378 | |
| 379 | // `InlinedVector::end()` |
| 380 | // |
| 381 | // Returns an `iterator` to the end of the inlined vector. |
| 382 | iterator end() noexcept { return data() + size(); } |
| 383 | |
| 384 | // Overload of `InlinedVector::end()` to return a `const_iterator` to the |
| 385 | // end of the inlined vector. |
| 386 | const_iterator end() const noexcept { return data() + size(); } |
| 387 | |
| 388 | // `InlinedVector::cbegin()` |
| 389 | // |
| 390 | // Returns a `const_iterator` to the beginning of the inlined vector. |
| 391 | const_iterator cbegin() const noexcept { return begin(); } |
| 392 | |
| 393 | // `InlinedVector::cend()` |
| 394 | // |
| 395 | // Returns a `const_iterator` to the end of the inlined vector. |
| 396 | const_iterator cend() const noexcept { return end(); } |
| 397 | |
| 398 | // `InlinedVector::rbegin()` |
| 399 | // |
| 400 | // Returns a `reverse_iterator` from the end of the inlined vector. |
| 401 | reverse_iterator rbegin() noexcept { return reverse_iterator(end()); } |
| 402 | |
| 403 | // Overload of `InlinedVector::rbegin()` to return a |
| 404 | // `const_reverse_iterator` from the end of the inlined vector. |
| 405 | const_reverse_iterator rbegin() const noexcept { |
| 406 | return const_reverse_iterator(end()); |
| 407 | } |
| 408 | |
| 409 | // `InlinedVector::rend()` |
| 410 | // |
| 411 | // Returns a `reverse_iterator` from the beginning of the inlined vector. |
| 412 | reverse_iterator rend() noexcept { return reverse_iterator(begin()); } |
| 413 | |
| 414 | // Overload of `InlinedVector::rend()` to return a `const_reverse_iterator` |
| 415 | // from the beginning of the inlined vector. |
| 416 | const_reverse_iterator rend() const noexcept { |
| 417 | return const_reverse_iterator(begin()); |
| 418 | } |
| 419 | |
| 420 | // `InlinedVector::crbegin()` |
| 421 | // |
| 422 | // Returns a `const_reverse_iterator` from the end of the inlined vector. |
| 423 | const_reverse_iterator crbegin() const noexcept { return rbegin(); } |
| 424 | |
| 425 | // `InlinedVector::crend()` |
| 426 | // |
| 427 | // Returns a `const_reverse_iterator` from the beginning of the inlined |
| 428 | // vector. |
| 429 | const_reverse_iterator crend() const noexcept { return rend(); } |
| 430 | |
| 431 | // `InlinedVector::get_allocator()` |
| 432 | // |
| 433 | // Returns a copy of the allocator of the inlined vector. |
| 434 | allocator_type get_allocator() const { return *storage_.GetAllocPtr(); } |
| 435 | |
| 436 | // --------------------------------------------------------------------------- |
| 437 | // InlinedVector Member Mutators |
| 438 | // --------------------------------------------------------------------------- |
| 439 | |
| 440 | // `InlinedVector::operator=()` |
| 441 | // |
| 442 | // Replaces the contents of the inlined vector with copies of the elements in |
| 443 | // the provided `std::initializer_list`. |
| 444 | InlinedVector& operator=(std::initializer_list<value_type> list) { |
| 445 | assign(list.begin(), list.end()); |
| 446 | return *this; |
| 447 | } |
| 448 | |
| 449 | // Overload of `InlinedVector::operator=()` to replace the contents of the |
| 450 | // inlined vector with the contents of `other`. |
| 451 | InlinedVector& operator=(const InlinedVector& other) { |
| 452 | if (ABSL_PREDICT_TRUE(this != std::addressof(other))) { |
| 453 | const_pointer other_data = other.data(); |
| 454 | assign(other_data, other_data + other.size()); |
| 455 | } |
| 456 | return *this; |
| 457 | } |
| 458 | |
| 459 | // Overload of `InlinedVector::operator=()` to replace the contents of the |
| 460 | // inlined vector with the contents of `other`. |
| 461 | // |
| 462 | // NOTE: As a result of calling this overload, `other` may be empty or it's |
| 463 | // contents may be left in a moved-from state. |
| 464 | InlinedVector& operator=(InlinedVector&& other) { |
| 465 | if (ABSL_PREDICT_FALSE(this == std::addressof(other))) return *this; |
| 466 | |
| 467 | if (IsMemcpyOk::value || other.storage_.GetIsAllocated()) { |
| 468 | inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(), |
| 469 | size()); |
| 470 | storage_.DeallocateIfAllocated(); |
| 471 | storage_.MemcpyFrom(other.storage_); |
| 472 | other.storage_.SetInlinedSize(0); |
| 473 | } else { |
| 474 | storage_.Assign(IteratorValueAdapter<MoveIterator>( |
| 475 | MoveIterator(other.storage_.GetInlinedData())), |
| 476 | other.size()); |
| 477 | } |
| 478 | |
| 479 | return *this; |
| 480 | } |
| 481 | |
| 482 | // `InlinedVector::assign()` |
| 483 | // |
| 484 | // Replaces the contents of the inlined vector with `n` copies of `v`. |
| 485 | void assign(size_type n, const_reference v) { |
| 486 | storage_.Assign(CopyValueAdapter(v), n); |
| 487 | } |
| 488 | |
| 489 | // Overload of `InlinedVector::assign()` to replace the contents of the |
| 490 | // inlined vector with copies of the values in the provided |
| 491 | // `std::initializer_list`. |
| 492 | void assign(std::initializer_list<value_type> list) { |
| 493 | assign(list.begin(), list.end()); |
| 494 | } |
| 495 | |
| 496 | // Overload of `InlinedVector::assign()` to replace the contents of the |
| 497 | // inlined vector with the forward iterator range [`first`, `last`). |
| 498 | template <typename ForwardIterator, |
| 499 | EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr> |
| 500 | void assign(ForwardIterator first, ForwardIterator last) { |
| 501 | storage_.Assign(IteratorValueAdapter<ForwardIterator>(first), |
| 502 | std::distance(first, last)); |
| 503 | } |
| 504 | |
| 505 | // Overload of `InlinedVector::assign()` to replace the contents of the |
| 506 | // inlined vector with the input iterator range [`first`, `last`). |
| 507 | template <typename InputIterator, |
| 508 | DisableIfAtLeastForwardIterator<InputIterator>* = nullptr> |
| 509 | void assign(InputIterator first, InputIterator last) { |
| 510 | size_type i = 0; |
| 511 | for (; i < size() && first != last; ++i, static_cast<void>(++first)) { |
| 512 | at(i) = *first; |
| 513 | } |
| 514 | |
| 515 | erase(data() + i, data() + size()); |
| 516 | |
| 517 | std::copy(first, last, std::back_inserter(*this)); |
| 518 | } |
| 519 | |
| 520 | // `InlinedVector::resize()` |
| 521 | // |
| 522 | // Resizes the inlined vector to contain `n` elements. If `n` is smaller than |
| 523 | // the inlined vector's current size, extra elements are destroyed. If `n` is |
| 524 | // larger than the initial size, new elements are value-initialized. |
| 525 | void resize(size_type n) { storage_.Resize(DefaultValueAdapter(), n); } |
| 526 | |
| 527 | // Overload of `InlinedVector::resize()` to resize the inlined vector to |
| 528 | // contain `n` elements where, if `n` is larger than `size()`, the new values |
| 529 | // will be copy-constructed from `v`. |
| 530 | void resize(size_type n, const_reference v) { |
| 531 | storage_.Resize(CopyValueAdapter(v), n); |
| 532 | } |
| 533 | |
| 534 | // `InlinedVector::insert()` |
| 535 | // |
| 536 | // Copies `v` into `pos`, returning an `iterator` pointing to the newly |
| 537 | // inserted element. |
| 538 | iterator insert(const_iterator pos, const_reference v) { |
| 539 | return emplace(pos, v); |
| 540 | } |
| 541 | |
| 542 | // Overload of `InlinedVector::insert()` for moving `v` into `pos`, returning |
| 543 | // an iterator pointing to the newly inserted element. |
| 544 | iterator insert(const_iterator pos, rvalue_reference v) { |
| 545 | return emplace(pos, std::move(v)); |
| 546 | } |
| 547 | |
| 548 | // Overload of `InlinedVector::insert()` for inserting `n` contiguous copies |
| 549 | // of `v` starting at `pos`. Returns an `iterator` pointing to the first of |
| 550 | // the newly inserted elements. |
| 551 | iterator insert(const_iterator pos, size_type n, const_reference v) { |
| 552 | assert(pos >= begin() && pos <= end()); |
| 553 | if (ABSL_PREDICT_FALSE(n == 0)) { |
| 554 | return const_cast<iterator>(pos); |
| 555 | } |
| 556 | value_type copy = v; |
| 557 | std::pair<iterator, iterator> it_pair = ShiftRight(pos, n); |
| 558 | std::fill(it_pair.first, it_pair.second, copy); |
| 559 | UninitializedFill(it_pair.second, it_pair.first + n, copy); |
| 560 | return it_pair.first; |
| 561 | } |
| 562 | |
| 563 | // Overload of `InlinedVector::insert()` for copying the contents of the |
| 564 | // `std::initializer_list` into the vector starting at `pos`. Returns an |
| 565 | // `iterator` pointing to the first of the newly inserted elements. |
| 566 | iterator insert(const_iterator pos, std::initializer_list<value_type> list) { |
| 567 | return insert(pos, list.begin(), list.end()); |
| 568 | } |
| 569 | |
| 570 | // Overload of `InlinedVector::insert()` for inserting elements constructed |
| 571 | // from the forward iterator range [`first`, `last`). Returns an `iterator` |
| 572 | // pointing to the first of the newly inserted elements. |
| 573 | // |
| 574 | // NOTE: The `enable_if` is intended to disambiguate the two three-argument |
| 575 | // overloads of `insert()`. |
| 576 | template <typename ForwardIterator, |
| 577 | EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr> |
| 578 | iterator insert(const_iterator pos, ForwardIterator first, |
| 579 | ForwardIterator last) { |
| 580 | assert(pos >= begin() && pos <= end()); |
| 581 | if (ABSL_PREDICT_FALSE(first == last)) { |
| 582 | return const_cast<iterator>(pos); |
| 583 | } |
| 584 | auto n = std::distance(first, last); |
| 585 | std::pair<iterator, iterator> it_pair = ShiftRight(pos, n); |
| 586 | size_type used_spots = it_pair.second - it_pair.first; |
| 587 | auto open_spot = std::next(first, used_spots); |
| 588 | std::copy(first, open_spot, it_pair.first); |
| 589 | UninitializedCopy(open_spot, last, it_pair.second); |
| 590 | return it_pair.first; |
| 591 | } |
| 592 | |
| 593 | // Overload of `InlinedVector::insert()` for inserting elements constructed |
| 594 | // from the input iterator range [`first`, `last`). Returns an `iterator` |
| 595 | // pointing to the first of the newly inserted elements. |
| 596 | template <typename InputIterator, |
| 597 | DisableIfAtLeastForwardIterator<InputIterator>* = nullptr> |
| 598 | iterator insert(const_iterator pos, InputIterator first, InputIterator last) { |
| 599 | assert(pos >= begin()); |
| 600 | assert(pos <= end()); |
| 601 | |
| 602 | size_type index = std::distance(cbegin(), pos); |
| 603 | for (size_type i = index; first != last; ++i, static_cast<void>(++first)) { |
| 604 | insert(data() + i, *first); |
| 605 | } |
| 606 | |
| 607 | return iterator(data() + index); |
| 608 | } |
| 609 | |
| 610 | // `InlinedVector::emplace()` |
| 611 | // |
| 612 | // Constructs and inserts an object in the inlined vector at the given `pos`, |
| 613 | // returning an `iterator` pointing to the newly emplaced element. |
| 614 | template <typename... Args> |
| 615 | iterator emplace(const_iterator pos, Args&&... args) { |
| 616 | assert(pos >= begin()); |
| 617 | assert(pos <= end()); |
| 618 | if (ABSL_PREDICT_FALSE(pos == end())) { |
| 619 | emplace_back(std::forward<Args>(args)...); |
| 620 | return end() - 1; |
| 621 | } |
| 622 | |
| 623 | T new_t = T(std::forward<Args>(args)...); |
| 624 | |
| 625 | auto range = ShiftRight(pos, 1); |
| 626 | if (range.first == range.second) { |
| 627 | // constructing into uninitialized memory |
| 628 | Construct(range.first, std::move(new_t)); |
| 629 | } else { |
| 630 | // assigning into moved-from object |
| 631 | *range.first = T(std::move(new_t)); |
| 632 | } |
| 633 | |
| 634 | return range.first; |
| 635 | } |
| 636 | |
| 637 | // `InlinedVector::emplace_back()` |
| 638 | // |
| 639 | // Constructs and appends a new element to the end of the inlined vector, |
| 640 | // returning a `reference` to the emplaced element. |
| 641 | template <typename... Args> |
| 642 | reference emplace_back(Args&&... args) { |
| 643 | size_type s = size(); |
| 644 | if (ABSL_PREDICT_FALSE(s == capacity())) { |
| 645 | size_type new_capacity = 2 * capacity(); |
| 646 | pointer new_data = |
| 647 | AllocatorTraits::allocate(*storage_.GetAllocPtr(), new_capacity); |
| 648 | reference new_element = |
| 649 | Construct(new_data + s, std::forward<Args>(args)...); |
| 650 | UninitializedCopy(std::make_move_iterator(data()), |
| 651 | std::make_move_iterator(data() + s), new_data); |
| 652 | ResetAllocation(new_data, new_capacity, s + 1); |
| 653 | return new_element; |
| 654 | } else { |
| 655 | pointer space; |
| 656 | if (storage_.GetIsAllocated()) { |
| 657 | storage_.SetAllocatedSize(s + 1); |
| 658 | space = storage_.GetAllocatedData(); |
| 659 | } else { |
| 660 | storage_.SetInlinedSize(s + 1); |
| 661 | space = storage_.GetInlinedData(); |
| 662 | } |
| 663 | return Construct(space + s, std::forward<Args>(args)...); |
| 664 | } |
| 665 | } |
| 666 | |
| 667 | // `InlinedVector::push_back()` |
| 668 | // |
| 669 | // Appends a copy of `v` to the end of the inlined vector. |
| 670 | void push_back(const_reference v) { static_cast<void>(emplace_back(v)); } |
| 671 | |
| 672 | // Overload of `InlinedVector::push_back()` for moving `v` into a newly |
| 673 | // appended element. |
| 674 | void push_back(rvalue_reference v) { |
| 675 | static_cast<void>(emplace_back(std::move(v))); |
| 676 | } |
| 677 | |
| 678 | // `InlinedVector::pop_back()` |
| 679 | // |
| 680 | // Destroys the element at the end of the inlined vector and shrinks the size |
| 681 | // by `1` (unless the inlined vector is empty, in which case this is a no-op). |
| 682 | void pop_back() noexcept { |
| 683 | assert(!empty()); |
| 684 | |
| 685 | AllocatorTraits::destroy(*storage_.GetAllocPtr(), data() + (size() - 1)); |
| 686 | storage_.SubtractSize(1); |
| 687 | } |
| 688 | |
| 689 | // `InlinedVector::erase()` |
| 690 | // |
| 691 | // Erases the element at `pos` of the inlined vector, returning an `iterator` |
| 692 | // pointing to the first element following the erased element. |
| 693 | // |
| 694 | // NOTE: May return the end iterator, which is not dereferencable. |
| 695 | iterator erase(const_iterator pos) { |
| 696 | assert(pos >= begin()); |
| 697 | assert(pos < end()); |
| 698 | |
| 699 | iterator position = const_cast<iterator>(pos); |
| 700 | std::move(position + 1, end(), position); |
| 701 | pop_back(); |
| 702 | return position; |
| 703 | } |
| 704 | |
| 705 | // Overload of `InlinedVector::erase()` for erasing all elements in the |
| 706 | // range [`from`, `to`) in the inlined vector. Returns an `iterator` pointing |
| 707 | // to the first element following the range erased or the end iterator if `to` |
| 708 | // was the end iterator. |
| 709 | iterator erase(const_iterator from, const_iterator to) { |
| 710 | assert(begin() <= from); |
| 711 | assert(from <= to); |
| 712 | assert(to <= end()); |
| 713 | |
| 714 | iterator range_start = const_cast<iterator>(from); |
| 715 | iterator range_end = const_cast<iterator>(to); |
| 716 | |
| 717 | size_type s = size(); |
| 718 | ptrdiff_t erase_gap = std::distance(range_start, range_end); |
| 719 | if (erase_gap > 0) { |
| 720 | pointer space; |
| 721 | if (storage_.GetIsAllocated()) { |
| 722 | space = storage_.GetAllocatedData(); |
| 723 | storage_.SetAllocatedSize(s - erase_gap); |
| 724 | } else { |
| 725 | space = storage_.GetInlinedData(); |
| 726 | storage_.SetInlinedSize(s - erase_gap); |
| 727 | } |
| 728 | std::move(range_end, space + s, range_start); |
| 729 | Destroy(space + s - erase_gap, space + s); |
| 730 | } |
| 731 | return range_start; |
| 732 | } |
| 733 | |
| 734 | // `InlinedVector::clear()` |
| 735 | // |
| 736 | // Destroys all elements in the inlined vector, sets the size of `0` and |
| 737 | // deallocates the heap allocation if the inlined vector was allocated. |
| 738 | void clear() noexcept { |
| 739 | inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(), |
| 740 | size()); |
| 741 | storage_.DeallocateIfAllocated(); |
| 742 | storage_.SetInlinedSize(0); |
| 743 | } |
| 744 | |
| 745 | // `InlinedVector::reserve()` |
| 746 | // |
| 747 | // Enlarges the underlying representation of the inlined vector so it can hold |
| 748 | // at least `n` elements. This method does not change `size()` or the actual |
| 749 | // contents of the vector. |
| 750 | // |
| 751 | // NOTE: If `n` does not exceed `capacity()`, `reserve()` will have no |
| 752 | // effects. Otherwise, `reserve()` will reallocate, performing an n-time |
| 753 | // element-wise move of everything contained. |
| 754 | void reserve(size_type n) { storage_.Reserve(n); } |
| 755 | |
| 756 | // `InlinedVector::shrink_to_fit()` |
| 757 | // |
| 758 | // Reduces memory usage by freeing unused memory. After this call, calls to |
| 759 | // `capacity()` will be equal to `max(N, size())`. |
| 760 | // |
| 761 | // If `size() <= N` and the elements are currently stored on the heap, they |
| 762 | // will be moved to the inlined storage and the heap memory will be |
| 763 | // deallocated. |
| 764 | // |
| 765 | // If `size() > N` and `size() < capacity()` the elements will be moved to a |
| 766 | // smaller heap allocation. |
| 767 | void shrink_to_fit() { |
| 768 | if (storage_.GetIsAllocated()) { |
| 769 | storage_.ShrinkToFit(); |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | // `InlinedVector::swap()` |
| 774 | // |
| 775 | // Swaps the contents of this inlined vector with the contents of `other`. |
| 776 | void swap(InlinedVector& other) { |
| 777 | using std::swap; |
| 778 | |
| 779 | if (ABSL_PREDICT_FALSE(this == std::addressof(other))) { |
| 780 | return; |
| 781 | } |
| 782 | |
| 783 | bool is_allocated = storage_.GetIsAllocated(); |
| 784 | bool other_is_allocated = other.storage_.GetIsAllocated(); |
| 785 | |
| 786 | if (is_allocated && other_is_allocated) { |
| 787 | // Both out of line, so just swap the tag, allocation, and allocator. |
| 788 | storage_.SwapSizeAndIsAllocated(std::addressof(other.storage_)); |
| 789 | storage_.SwapAllocatedSizeAndCapacity(std::addressof(other.storage_)); |
| 790 | swap(*storage_.GetAllocPtr(), *other.storage_.GetAllocPtr()); |
| 791 | |
| 792 | return; |
| 793 | } |
| 794 | |
| 795 | if (!is_allocated && !other_is_allocated) { |
| 796 | // Both inlined: swap up to smaller size, then move remaining elements. |
| 797 | InlinedVector* a = this; |
| 798 | InlinedVector* b = std::addressof(other); |
| 799 | if (size() < other.size()) { |
| 800 | swap(a, b); |
| 801 | } |
| 802 | |
| 803 | const size_type a_size = a->size(); |
| 804 | const size_type b_size = b->size(); |
| 805 | assert(a_size >= b_size); |
| 806 | // `a` is larger. Swap the elements up to the smaller array size. |
| 807 | std::swap_ranges(a->storage_.GetInlinedData(), |
| 808 | a->storage_.GetInlinedData() + b_size, |
| 809 | b->storage_.GetInlinedData()); |
| 810 | |
| 811 | // Move the remaining elements: |
| 812 | // [`b_size`, `a_size`) from `a` -> [`b_size`, `a_size`) from `b` |
| 813 | b->UninitializedCopy(a->storage_.GetInlinedData() + b_size, |
| 814 | a->storage_.GetInlinedData() + a_size, |
| 815 | b->storage_.GetInlinedData() + b_size); |
| 816 | a->Destroy(a->storage_.GetInlinedData() + b_size, |
| 817 | a->storage_.GetInlinedData() + a_size); |
| 818 | |
| 819 | storage_.SwapSizeAndIsAllocated(std::addressof(other.storage_)); |
| 820 | swap(*storage_.GetAllocPtr(), *other.storage_.GetAllocPtr()); |
| 821 | |
| 822 | assert(b->size() == a_size); |
| 823 | assert(a->size() == b_size); |
| 824 | return; |
| 825 | } |
| 826 | |
| 827 | // One is out of line, one is inline. |
| 828 | // We first move the elements from the inlined vector into the |
| 829 | // inlined space in the other vector. We then put the other vector's |
| 830 | // pointer/capacity into the originally inlined vector and swap |
| 831 | // the tags. |
| 832 | InlinedVector* a = this; |
| 833 | InlinedVector* b = std::addressof(other); |
| 834 | if (a->storage_.GetIsAllocated()) { |
| 835 | swap(a, b); |
| 836 | } |
| 837 | |
| 838 | assert(!a->storage_.GetIsAllocated()); |
| 839 | assert(b->storage_.GetIsAllocated()); |
| 840 | |
| 841 | const size_type a_size = a->size(); |
| 842 | const size_type b_size = b->size(); |
| 843 | // In an optimized build, `b_size` would be unused. |
| 844 | static_cast<void>(b_size); |
| 845 | |
| 846 | // Made Local copies of `size()`, these can now be swapped |
| 847 | a->storage_.SwapSizeAndIsAllocated(std::addressof(b->storage_)); |
| 848 | |
| 849 | // Copy out before `b`'s union gets clobbered by `inline_space` |
| 850 | pointer b_data = b->storage_.GetAllocatedData(); |
| 851 | size_type b_capacity = b->storage_.GetAllocatedCapacity(); |
| 852 | |
| 853 | b->UninitializedCopy(a->storage_.GetInlinedData(), |
| 854 | a->storage_.GetInlinedData() + a_size, |
| 855 | b->storage_.GetInlinedData()); |
| 856 | a->Destroy(a->storage_.GetInlinedData(), |
| 857 | a->storage_.GetInlinedData() + a_size); |
| 858 | |
| 859 | a->storage_.SetAllocatedData(b_data, b_capacity); |
| 860 | |
| 861 | if (*a->storage_.GetAllocPtr() != *b->storage_.GetAllocPtr()) { |
| 862 | swap(*a->storage_.GetAllocPtr(), *b->storage_.GetAllocPtr()); |
| 863 | } |
| 864 | |
| 865 | assert(b->size() == a_size); |
| 866 | assert(a->size() == b_size); |
| 867 | } |
| 868 | |
| 869 | private: |
| 870 | template <typename H, typename TheT, size_t TheN, typename TheA> |
| 871 | friend H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a); |
| 872 | |
| 873 | void ResetAllocation(pointer new_data, size_type new_capacity, |
| 874 | size_type new_size) { |
| 875 | if (storage_.GetIsAllocated()) { |
| 876 | Destroy(storage_.GetAllocatedData(), |
| 877 | storage_.GetAllocatedData() + size()); |
| 878 | assert(begin() == storage_.GetAllocatedData()); |
| 879 | AllocatorTraits::deallocate(*storage_.GetAllocPtr(), |
| 880 | storage_.GetAllocatedData(), |
| 881 | storage_.GetAllocatedCapacity()); |
| 882 | } else { |
| 883 | Destroy(storage_.GetInlinedData(), storage_.GetInlinedData() + size()); |
| 884 | } |
| 885 | |
| 886 | storage_.SetAllocatedData(new_data, new_capacity); |
| 887 | storage_.SetAllocatedSize(new_size); |
| 888 | } |
| 889 | |
| 890 | template <typename... Args> |
| 891 | reference Construct(pointer p, Args&&... args) { |
| 892 | absl::allocator_traits<allocator_type>::construct( |
| 893 | *storage_.GetAllocPtr(), p, std::forward<Args>(args)...); |
| 894 | return *p; |
| 895 | } |
| 896 | |
| 897 | template <typename Iterator> |
| 898 | void UninitializedCopy(Iterator src, Iterator src_last, pointer dst) { |
| 899 | for (; src != src_last; ++dst, ++src) Construct(dst, *src); |
| 900 | } |
| 901 | |
| 902 | template <typename... Args> |
| 903 | void UninitializedFill(pointer dst, pointer dst_last, const Args&... args) { |
| 904 | for (; dst != dst_last; ++dst) Construct(dst, args...); |
| 905 | } |
| 906 | |
| 907 | // Destroy [`from`, `to`) in place. |
| 908 | void Destroy(pointer from, pointer to) { |
| 909 | for (pointer cur = from; cur != to; ++cur) { |
| 910 | absl::allocator_traits<allocator_type>::destroy(*storage_.GetAllocPtr(), |
| 911 | cur); |
| 912 | } |
| 913 | #if !defined(NDEBUG) |
| 914 | // Overwrite unused memory with `0xab` so we can catch uninitialized usage. |
| 915 | // Cast to `void*` to tell the compiler that we don't care that we might be |
| 916 | // scribbling on a vtable pointer. |
| 917 | if (from != to) { |
| 918 | auto len = sizeof(value_type) * std::distance(from, to); |
| 919 | std::memset(reinterpret_cast<void*>(from), 0xab, len); |
| 920 | } |
| 921 | #endif // !defined(NDEBUG) |
| 922 | } |
| 923 | |
| 924 | // Shift all elements from `position` to `end()` by `n` places to the right. |
| 925 | // If the vector needs to be enlarged, memory will be allocated. |
| 926 | // Returns `iterator`s pointing to the start of the previously-initialized |
| 927 | // portion and the start of the uninitialized portion of the created gap. |
| 928 | // The number of initialized spots is `pair.second - pair.first`. The number |
| 929 | // of raw spots is `n - (pair.second - pair.first)`. |
| 930 | // |
| 931 | // Updates the size of the InlinedVector internally. |
| 932 | std::pair<iterator, iterator> ShiftRight(const_iterator position, |
| 933 | size_type n) { |
| 934 | iterator start_used = const_cast<iterator>(position); |
| 935 | iterator start_raw = const_cast<iterator>(position); |
| 936 | size_type s = size(); |
| 937 | size_type required_size = s + n; |
| 938 | |
| 939 | if (required_size > capacity()) { |
| 940 | // Compute new capacity by repeatedly doubling current capacity |
| 941 | size_type new_capacity = capacity(); |
| 942 | while (new_capacity < required_size) { |
| 943 | new_capacity <<= 1; |
| 944 | } |
| 945 | // Move everyone into the new allocation, leaving a gap of `n` for the |
| 946 | // requested shift. |
| 947 | pointer new_data = |
| 948 | AllocatorTraits::allocate(*storage_.GetAllocPtr(), new_capacity); |
| 949 | size_type index = position - begin(); |
| 950 | UninitializedCopy(std::make_move_iterator(data()), |
| 951 | std::make_move_iterator(data() + index), new_data); |
| 952 | UninitializedCopy(std::make_move_iterator(data() + index), |
| 953 | std::make_move_iterator(data() + s), |
| 954 | new_data + index + n); |
| 955 | ResetAllocation(new_data, new_capacity, s); |
| 956 | |
| 957 | // New allocation means our iterator is invalid, so we'll recalculate. |
| 958 | // Since the entire gap is in new space, there's no used space to reuse. |
| 959 | start_raw = begin() + index; |
| 960 | start_used = start_raw; |
| 961 | } else { |
| 962 | // If we had enough space, it's a two-part move. Elements going into |
| 963 | // previously-unoccupied space need an `UninitializedCopy()`. Elements |
| 964 | // going into a previously-occupied space are just a `std::move()`. |
| 965 | iterator pos = const_cast<iterator>(position); |
| 966 | iterator raw_space = end(); |
| 967 | size_type slots_in_used_space = raw_space - pos; |
| 968 | size_type new_elements_in_used_space = (std::min)(n, slots_in_used_space); |
| 969 | size_type new_elements_in_raw_space = n - new_elements_in_used_space; |
| 970 | size_type old_elements_in_used_space = |
| 971 | slots_in_used_space - new_elements_in_used_space; |
| 972 | |
| 973 | UninitializedCopy( |
| 974 | std::make_move_iterator(pos + old_elements_in_used_space), |
| 975 | std::make_move_iterator(raw_space), |
| 976 | raw_space + new_elements_in_raw_space); |
| 977 | std::move_backward(pos, pos + old_elements_in_used_space, raw_space); |
| 978 | |
| 979 | // If the gap is entirely in raw space, the used space starts where the |
| 980 | // raw space starts, leaving no elements in used space. If the gap is |
| 981 | // entirely in used space, the raw space starts at the end of the gap, |
| 982 | // leaving all elements accounted for within the used space. |
| 983 | start_used = pos; |
| 984 | start_raw = pos + new_elements_in_used_space; |
| 985 | } |
| 986 | storage_.AddSize(n); |
| 987 | return std::make_pair(start_used, start_raw); |
| 988 | } |
| 989 | |
| 990 | Storage storage_; |
| 991 | }; |
| 992 | |
| 993 | // ----------------------------------------------------------------------------- |
| 994 | // InlinedVector Non-Member Functions |
| 995 | // ----------------------------------------------------------------------------- |
| 996 | |
| 997 | // `swap()` |
| 998 | // |
| 999 | // Swaps the contents of two inlined vectors. This convenience function |
| 1000 | // simply calls `InlinedVector::swap()`. |
| 1001 | template <typename T, size_t N, typename A> |
| 1002 | void swap(absl::InlinedVector<T, N, A>& a, |
| 1003 | absl::InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) { |
| 1004 | a.swap(b); |
| 1005 | } |
| 1006 | |
| 1007 | // `operator==()` |
| 1008 | // |
| 1009 | // Tests the equivalency of the contents of two inlined vectors. |
| 1010 | template <typename T, size_t N, typename A> |
| 1011 | bool operator==(const absl::InlinedVector<T, N, A>& a, |
| 1012 | const absl::InlinedVector<T, N, A>& b) { |
| 1013 | auto a_data = a.data(); |
| 1014 | auto a_size = a.size(); |
| 1015 | auto b_data = b.data(); |
| 1016 | auto b_size = b.size(); |
| 1017 | return absl::equal(a_data, a_data + a_size, b_data, b_data + b_size); |
| 1018 | } |
| 1019 | |
| 1020 | // `operator!=()` |
| 1021 | // |
| 1022 | // Tests the inequality of the contents of two inlined vectors. |
| 1023 | template <typename T, size_t N, typename A> |
| 1024 | bool operator!=(const absl::InlinedVector<T, N, A>& a, |
| 1025 | const absl::InlinedVector<T, N, A>& b) { |
| 1026 | return !(a == b); |
| 1027 | } |
| 1028 | |
| 1029 | // `operator<()` |
| 1030 | // |
| 1031 | // Tests whether the contents of one inlined vector are less than the contents |
| 1032 | // of another through a lexicographical comparison operation. |
| 1033 | template <typename T, size_t N, typename A> |
| 1034 | bool operator<(const absl::InlinedVector<T, N, A>& a, |
| 1035 | const absl::InlinedVector<T, N, A>& b) { |
| 1036 | auto a_data = a.data(); |
| 1037 | auto a_size = a.size(); |
| 1038 | auto b_data = b.data(); |
| 1039 | auto b_size = b.size(); |
| 1040 | return std::lexicographical_compare(a_data, a_data + a_size, b_data, |
| 1041 | b_data + b_size); |
| 1042 | } |
| 1043 | |
| 1044 | // `operator>()` |
| 1045 | // |
| 1046 | // Tests whether the contents of one inlined vector are greater than the |
| 1047 | // contents of another through a lexicographical comparison operation. |
| 1048 | template <typename T, size_t N, typename A> |
| 1049 | bool operator>(const absl::InlinedVector<T, N, A>& a, |
| 1050 | const absl::InlinedVector<T, N, A>& b) { |
| 1051 | return b < a; |
| 1052 | } |
| 1053 | |
| 1054 | // `operator<=()` |
| 1055 | // |
| 1056 | // Tests whether the contents of one inlined vector are less than or equal to |
| 1057 | // the contents of another through a lexicographical comparison operation. |
| 1058 | template <typename T, size_t N, typename A> |
| 1059 | bool operator<=(const absl::InlinedVector<T, N, A>& a, |
| 1060 | const absl::InlinedVector<T, N, A>& b) { |
| 1061 | return !(b < a); |
| 1062 | } |
| 1063 | |
| 1064 | // `operator>=()` |
| 1065 | // |
| 1066 | // Tests whether the contents of one inlined vector are greater than or equal to |
| 1067 | // the contents of another through a lexicographical comparison operation. |
| 1068 | template <typename T, size_t N, typename A> |
| 1069 | bool operator>=(const absl::InlinedVector<T, N, A>& a, |
| 1070 | const absl::InlinedVector<T, N, A>& b) { |
| 1071 | return !(a < b); |
| 1072 | } |
| 1073 | |
| 1074 | // `AbslHashValue()` |
| 1075 | // |
| 1076 | // Provides `absl::Hash` support for `absl::InlinedVector`. You do not normally |
| 1077 | // call this function directly. |
| 1078 | template <typename H, typename TheT, size_t TheN, typename TheA> |
| 1079 | H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a) { |
| 1080 | auto a_data = a.data(); |
| 1081 | auto a_size = a.size(); |
| 1082 | return H::combine(H::combine_contiguous(std::move(h), a_data, a_size), |
| 1083 | a_size); |
| 1084 | } |
| 1085 | |
| 1086 | } // namespace absl |
| 1087 | |
| 1088 | #endif // ABSL_CONTAINER_INLINED_VECTOR_H_ |
| 1089 | |