| 1 | // Copyright 2005 Google Inc. All Rights Reserved. |
| 2 | |
| 3 | #ifndef UTIL_GEOMETRY_R1INTERVAL_H_ |
| 4 | #define UTIL_GEOMETRY_R1INTERVAL_H_ |
| 5 | |
| 6 | #include <math.h> |
| 7 | |
| 8 | #include <algorithm> |
| 9 | using std::min; |
| 10 | using std::max; |
| 11 | using std::swap; |
| 12 | using std::reverse; |
| 13 | |
| 14 | #include <iostream> |
| 15 | using std::ostream; |
| 16 | using std::cout; |
| 17 | using std::endl; |
| 18 | |
| 19 | #include "base/basictypes.h" |
| 20 | #include "base/logging.h" |
| 21 | #include "util/math/vector2-inl.h" |
| 22 | |
| 23 | // An R1Interval represents a closed, bounded interval on the real line. |
| 24 | // It is capable of representing the empty interval (containing no points) |
| 25 | // and zero-length intervals (containing a single point). |
| 26 | // |
| 27 | // This class is intended to be copied by value as desired. It uses |
| 28 | // the default copy constructor and assignment operator. |
| 29 | class R1Interval { |
| 30 | public: |
| 31 | // Constructor. If lo > hi, the interval is empty. |
| 32 | R1Interval(double lo, double hi) : bounds_(lo, hi) {} |
| 33 | |
| 34 | // The default constructor creates an empty interval. (Any interval where |
| 35 | // lo > hi is considered to be empty.) |
| 36 | // |
| 37 | // Note: Don't construct an interval using the default constructor and |
| 38 | // set_lo()/set_hi(), since this technique doesn't work with S1Interval and |
| 39 | // is bad programming style anyways. If you need to set both endpoints, use |
| 40 | // the constructor above: |
| 41 | // |
| 42 | // lat_bounds_ = R1Interval(lat_lo, lat_hi); |
| 43 | R1Interval() : bounds_(1, 0) {} |
| 44 | |
| 45 | // Returns an empty interval. |
| 46 | static inline R1Interval Empty() { return R1Interval(); } |
| 47 | |
| 48 | // Convenience method to construct an interval containing a single point. |
| 49 | static R1Interval FromPoint(double p) { |
| 50 | return R1Interval(p, p); |
| 51 | } |
| 52 | |
| 53 | // Convenience method to construct the minimal interval containing |
| 54 | // the two given points. This is equivalent to starting with an empty |
| 55 | // interval and calling AddPoint() twice, but it is more efficient. |
| 56 | static R1Interval FromPointPair(double p1, double p2) { |
| 57 | if (p1 <= p2) { |
| 58 | return R1Interval(p1, p2); |
| 59 | } else { |
| 60 | return R1Interval(p2, p1); |
| 61 | } |
| 62 | } |
| 63 | |
| 64 | double lo() const { return bounds_[0]; } |
| 65 | double hi() const { return bounds_[1]; } |
| 66 | double bound(int i) const { return bounds_[i]; } |
| 67 | Vector2_d const& bounds() const { return bounds_; } |
| 68 | |
| 69 | // Methods to modify one endpoint of an existing R1Interval. Do not use |
| 70 | // these methods if you want to replace both endpoints of the interval; use |
| 71 | // a constructor instead. For example: |
| 72 | // |
| 73 | // *lat_bounds = R1Interval(lat_lo, lat_hi); |
| 74 | void set_lo(double p) { bounds_[0] = p; } |
| 75 | void set_hi(double p) { bounds_[1] = p; } |
| 76 | |
| 77 | // Return true if the interval is empty, i.e. it contains no points. |
| 78 | bool is_empty() const { return lo() > hi(); } |
| 79 | |
| 80 | // Return the center of the interval. For empty intervals, |
| 81 | // the result is arbitrary. |
| 82 | double GetCenter() const { return 0.5 * (lo() + hi()); } |
| 83 | |
| 84 | // Return the length of the interval. The length of an empty interval |
| 85 | // is negative. |
| 86 | double GetLength() const { return hi() - lo(); } |
| 87 | |
| 88 | bool Contains(double p) const { |
| 89 | return p >= lo() && p <= hi(); |
| 90 | } |
| 91 | |
| 92 | bool InteriorContains(double p) const { |
| 93 | return p > lo() && p < hi(); |
| 94 | } |
| 95 | |
| 96 | // Return true if this interval contains the interval 'y'. |
| 97 | bool Contains(R1Interval const& y) const { |
| 98 | if (y.is_empty()) return true; |
| 99 | return y.lo() >= lo() && y.hi() <= hi(); |
| 100 | } |
| 101 | |
| 102 | // Return true if the interior of this interval contains the entire |
| 103 | // interval 'y' (including its boundary). |
| 104 | bool InteriorContains(R1Interval const& y) const { |
| 105 | if (y.is_empty()) return true; |
| 106 | return y.lo() > lo() && y.hi() < hi(); |
| 107 | } |
| 108 | |
| 109 | // Return true if this interval intersects the given interval, |
| 110 | // i.e. if they have any points in common. |
| 111 | bool Intersects(R1Interval const& y) const { |
| 112 | if (lo() <= y.lo()) { |
| 113 | return y.lo() <= hi() && y.lo() <= y.hi(); |
| 114 | } else { |
| 115 | return lo() <= y.hi() && lo() <= hi(); |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | // Return true if the interior of this interval intersects |
| 120 | // any point of the given interval (including its boundary). |
| 121 | bool InteriorIntersects(R1Interval const& y) const { |
| 122 | return y.lo() < hi() && lo() < y.hi() && lo() < hi() && y.lo() <= y.hi(); |
| 123 | } |
| 124 | |
| 125 | // Return the Hausdorff distance to the given interval 'y'. For two |
| 126 | // R1Intervals x and y, this distance is defined as |
| 127 | // h(x, y) = max_{p in x} min_{q in y} d(p, q). |
| 128 | double GetDirectedHausdorffDistance(R1Interval const& y) const { |
| 129 | if (is_empty()) return 0.0; |
| 130 | if (y.is_empty()) return HUGE_VAL; |
| 131 | return max(0.0, max(hi() - y.hi(), y.lo() - lo())); |
| 132 | } |
| 133 | |
| 134 | // Expand the interval so that it contains the given point "p". |
| 135 | void AddPoint(double p) { |
| 136 | if (is_empty()) { set_lo(p); set_hi(p); } |
| 137 | else if (p < lo()) { set_lo(p); } |
| 138 | else if (p > hi()) { set_hi(p); } |
| 139 | } |
| 140 | |
| 141 | // Return an interval that contains all points with a distance "radius" of |
| 142 | // a point in this interval. Note that the expansion of an empty interval |
| 143 | // is always empty. |
| 144 | R1Interval Expanded(double radius) const { |
| 145 | DCHECK_GE(radius, 0); |
| 146 | if (is_empty()) return *this; |
| 147 | return R1Interval(lo() - radius, hi() + radius); |
| 148 | } |
| 149 | |
| 150 | // Return the smallest interval that contains this interval and the |
| 151 | // given interval "y". |
| 152 | R1Interval Union(R1Interval const& y) const { |
| 153 | if (is_empty()) return y; |
| 154 | if (y.is_empty()) return *this; |
| 155 | return R1Interval(min(lo(), y.lo()), max(hi(), y.hi())); |
| 156 | } |
| 157 | |
| 158 | // Return the intersection of this interval with the given interval. |
| 159 | // Empty intervals do not need to be special-cased. |
| 160 | R1Interval Intersection(R1Interval const& y) const { |
| 161 | return R1Interval(max(lo(), y.lo()), min(hi(), y.hi())); |
| 162 | } |
| 163 | |
| 164 | // Return true if two intervals contain the same set of points. |
| 165 | bool operator==(R1Interval const& y) const { |
| 166 | return (lo() == y.lo() && hi() == y.hi()) || (is_empty() && y.is_empty()); |
| 167 | } |
| 168 | |
| 169 | // Return true if length of the symmetric difference between the two |
| 170 | // intervals is at most the given tolerance. |
| 171 | bool ApproxEquals(R1Interval const& y, double max_error = 1e-15) const { |
| 172 | if (is_empty()) return y.GetLength() <= max_error; |
| 173 | if (y.is_empty()) return GetLength() <= max_error; |
| 174 | return fabs(y.lo() - lo()) + fabs(y.hi() - hi()) <= max_error; |
| 175 | } |
| 176 | |
| 177 | private: |
| 178 | Vector2_d bounds_; |
| 179 | }; |
| 180 | DECLARE_POD(R1Interval); |
| 181 | |
| 182 | inline ostream& operator<<(ostream& os, R1Interval const& x) { |
| 183 | return os << "[" << x.lo() << ", " << x.hi() << "]" ; |
| 184 | } |
| 185 | |
| 186 | #endif // UTIL_GEOMETRY_R1INTERVAL_H_ |
| 187 | |