| 1 | // Copyright 2003 Google, Inc. |
| 2 | // All Rights Reserved. |
| 3 | // |
| 4 | // |
| 5 | // A simple class to handle vectors in 3D |
| 6 | // The aim of this class is to be able to manipulate vectors in 3D |
| 7 | // as naturally as possible and make calculations readable. |
| 8 | // For that reason, the operators +, -, * are overloaded. |
| 9 | // (Reading a = a + b*2 - c is much easier to read than |
| 10 | // a = Sub(Add(a, Mul(b,2)),c) ) |
| 11 | // The code generated using this vector class is easily optimized by |
| 12 | // the compiler and does not generate overhead compared to manually |
| 13 | // writing the operations component by component |
| 14 | // (e.g a.x = b.x + c.x; a.y = b.y + c.y...) |
| 15 | // |
| 16 | // Operator overload is not usually allowed, but in this case an |
| 17 | // exemption has been granted by the C++ style committee. |
| 18 | // |
| 19 | // Please be careful about overflows when using those vectors with integer types |
| 20 | // The calculations are carried with the same type as the vector's components |
| 21 | // type. eg : if you are using uint8 as the base type, all values will be modulo |
| 22 | // 256. |
| 23 | // This feature is necessary to use the class in a more general framework with |
| 24 | // VType != plain old data type. |
| 25 | |
| 26 | #ifndef UTIL_MATH_VECTOR3_INL_H__ |
| 27 | #define UTIL_MATH_VECTOR3_INL_H__ |
| 28 | |
| 29 | #include "util/math/vector3.h" |
| 30 | |
| 31 | #include <algorithm> |
| 32 | using std::min; |
| 33 | using std::max; |
| 34 | using std::swap; |
| 35 | using std::reverse; |
| 36 | |
| 37 | #include <math.h> |
| 38 | #include "base/basictypes.h" |
| 39 | #include "base/logging.h" |
| 40 | #include "base/template_util.h" |
| 41 | #include "base/type_traits.h" |
| 42 | #include "util/math/mathutil.h" |
| 43 | #include "util/math/vector2.h" |
| 44 | #include "util/math/vector4.h" |
| 45 | |
| 46 | template <typename VType> |
| 47 | Vector3<VType>::Vector3() { |
| 48 | Clear(); |
| 49 | } |
| 50 | |
| 51 | template <typename VType> |
| 52 | Vector3<VType>::Vector3(const VType x, const VType y, const VType z) { |
| 53 | c_[0] = x; |
| 54 | c_[1] = y; |
| 55 | c_[2] = z; |
| 56 | } |
| 57 | |
| 58 | template <typename VType> |
| 59 | Vector3<VType>::Vector3(const Vector2<VType> &vb, VType z) { |
| 60 | c_[0] = vb.x(); |
| 61 | c_[1] = vb.y(); |
| 62 | c_[2] = z; |
| 63 | } |
| 64 | |
| 65 | template <typename VType> |
| 66 | Vector3<VType>::Vector3(const Self &vb) { |
| 67 | c_[0] = vb.c_[0]; |
| 68 | c_[1] = vb.c_[1]; |
| 69 | c_[2] = vb.c_[2]; |
| 70 | } |
| 71 | |
| 72 | template <typename VType> |
| 73 | Vector3<VType>::Vector3(const Vector4<VType> &vb) { |
| 74 | c_[0] = vb.x(); |
| 75 | c_[1] = vb.y(); |
| 76 | c_[2] = vb.z(); |
| 77 | } |
| 78 | |
| 79 | template <typename VType> template <typename VType2> |
| 80 | Vector3<VType> Vector3<VType>::Cast(const Vector3<VType2> &vb) { |
| 81 | return Self(VType(vb[0]), |
| 82 | VType(vb[1]), |
| 83 | VType(vb[2])); |
| 84 | } |
| 85 | |
| 86 | template <typename VType> |
| 87 | bool Vector3<VType>::operator==(const Self& vb) const { |
| 88 | return (c_[0] == vb.c_[0]) && (c_[1] == vb.c_[1]) && (c_[2] == vb.c_[2]); |
| 89 | } |
| 90 | |
| 91 | template <typename VType> |
| 92 | bool Vector3<VType>::operator!=(const Self& vb) const { |
| 93 | return (c_[0] != vb.c_[0]) || (c_[1] != vb.c_[1]) || (c_[2] != vb.c_[2]); |
| 94 | } |
| 95 | |
| 96 | template <typename VType> |
| 97 | bool Vector3<VType>::aequal(const Self &vb, FloatType margin) const { |
| 98 | return (fabs(c_[0] - vb.c_[0]) < margin) |
| 99 | && (fabs(c_[1] - vb.c_[1]) < margin) |
| 100 | && (fabs(c_[2] - vb.c_[2]) < margin); |
| 101 | } |
| 102 | |
| 103 | template <typename VType> |
| 104 | bool Vector3<VType>::operator<(const Self &vb) const { |
| 105 | if ( c_[0] < vb.c_[0] ) return true; |
| 106 | if ( vb.c_[0] < c_[0] ) return false; |
| 107 | if ( c_[1] < vb.c_[1] ) return true; |
| 108 | if ( vb.c_[1] < c_[1] ) return false; |
| 109 | if ( c_[2] < vb.c_[2] ) return true; |
| 110 | return false; |
| 111 | } |
| 112 | |
| 113 | template <typename VType> |
| 114 | bool Vector3<VType>::operator>(const Self &vb) const { |
| 115 | return vb.operator<(*this); |
| 116 | } |
| 117 | |
| 118 | template <typename VType> |
| 119 | bool Vector3<VType>::operator<=(const Self &vb) const { |
| 120 | return !operator>(vb); |
| 121 | } |
| 122 | |
| 123 | template <typename VType> |
| 124 | bool Vector3<VType>::operator>=(const Self &vb) const { |
| 125 | return !operator<(vb); |
| 126 | } |
| 127 | |
| 128 | template <typename VType> |
| 129 | void Vector3<VType>::Set(const VType x, const VType y, const VType z) { |
| 130 | c_[0] = x; |
| 131 | c_[1] = y; |
| 132 | c_[2] = z; |
| 133 | } |
| 134 | |
| 135 | template <typename VType> |
| 136 | Vector3<VType>& Vector3<VType>::operator=(const Self& vb) { |
| 137 | c_[0] = vb.c_[0]; |
| 138 | c_[1] = vb.c_[1]; |
| 139 | c_[2] = vb.c_[2]; |
| 140 | return (*this); |
| 141 | } |
| 142 | |
| 143 | template <typename VType> |
| 144 | Vector3<VType>& Vector3<VType>::operator+=(const Self &vb) { |
| 145 | c_[0] += vb.c_[0]; |
| 146 | c_[1] += vb.c_[1]; |
| 147 | c_[2] += vb.c_[2]; |
| 148 | return (*this); |
| 149 | } |
| 150 | |
| 151 | template <typename VType> |
| 152 | Vector3<VType>& Vector3<VType>::operator-=(const Self &vb) { |
| 153 | c_[0] -= vb.c_[0]; |
| 154 | c_[1] -= vb.c_[1]; |
| 155 | c_[2] -= vb.c_[2]; |
| 156 | return (*this); |
| 157 | } |
| 158 | |
| 159 | template <typename VType> |
| 160 | Vector3<VType>& Vector3<VType>::operator*=(const VType k) { |
| 161 | c_[0] *= k; |
| 162 | c_[1] *= k; |
| 163 | c_[2] *= k; |
| 164 | return (*this); |
| 165 | } |
| 166 | |
| 167 | template <typename VType> |
| 168 | Vector3<VType>& Vector3<VType>::operator/=(const VType k) { |
| 169 | c_[0] /= k; |
| 170 | c_[1] /= k; |
| 171 | c_[2] /= k; |
| 172 | return (*this); |
| 173 | } |
| 174 | |
| 175 | template <typename VType> |
| 176 | Vector3<VType> Vector3<VType>::MulComponents(const Self &vb) const { |
| 177 | return Self(c_[0] * vb.c_[0], c_[1] * vb.c_[1], c_[2] * vb.c_[2]); |
| 178 | } |
| 179 | |
| 180 | template <typename VType> |
| 181 | Vector3<VType> Vector3<VType>::DivComponents(const Self &vb) const { |
| 182 | return Self(c_[0] / vb.c_[0], c_[1] / vb.c_[1], c_[2] / vb.c_[2]); |
| 183 | } |
| 184 | |
| 185 | template <typename VType> |
| 186 | Vector3<VType> Vector3<VType>::operator+(const Self &vb) const { |
| 187 | return Self(*this) += vb; |
| 188 | } |
| 189 | |
| 190 | template <typename VType> |
| 191 | Vector3<VType> Vector3<VType>::operator-(const Self &vb) const { |
| 192 | return Self(*this) -= vb; |
| 193 | } |
| 194 | |
| 195 | template <typename VType> |
| 196 | VType Vector3<VType>::DotProd(const Self &vb) const { |
| 197 | return c_[0]*vb.c_[0] + c_[1]*vb.c_[1] + c_[2]*vb.c_[2]; |
| 198 | } |
| 199 | |
| 200 | template <typename VType> |
| 201 | Vector3<VType> Vector3<VType>::operator*(const VType k) const { |
| 202 | return Self(*this) *= k; |
| 203 | } |
| 204 | |
| 205 | template <typename VType> |
| 206 | Vector3<VType> Vector3<VType>::operator/(const VType k) const { |
| 207 | return Self(*this) /= k; |
| 208 | } |
| 209 | |
| 210 | template <typename VType> |
| 211 | Vector3<VType> Vector3<VType>::CrossProd(const Self& vb) const { |
| 212 | return Self( c_[1] * vb.c_[2] - c_[2] * vb.c_[1], |
| 213 | c_[2] * vb.c_[0] - c_[0] * vb.c_[2], |
| 214 | c_[0] * vb.c_[1] - c_[1] * vb.c_[0]); |
| 215 | } |
| 216 | |
| 217 | template <typename VType> |
| 218 | VType& Vector3<VType>::operator[](const int b) { |
| 219 | DCHECK(b >=0); |
| 220 | DCHECK(b <=2); |
| 221 | return c_[b]; |
| 222 | } |
| 223 | |
| 224 | template <typename VType> |
| 225 | VType Vector3<VType>::operator[](const int b) const { |
| 226 | DCHECK(b >=0); |
| 227 | DCHECK(b <=2); |
| 228 | return c_[b]; |
| 229 | } |
| 230 | |
| 231 | template <typename VType> |
| 232 | void Vector3<VType>::x(const VType &v) { |
| 233 | c_[0] = v; |
| 234 | } |
| 235 | |
| 236 | template <typename VType> |
| 237 | VType Vector3<VType>::x() const { |
| 238 | return c_[0]; |
| 239 | } |
| 240 | |
| 241 | template <typename VType> |
| 242 | void Vector3<VType>::y(const VType &v) { |
| 243 | c_[1] = v; |
| 244 | } |
| 245 | |
| 246 | template <typename VType> |
| 247 | VType Vector3<VType>::y() const { |
| 248 | return c_[1]; |
| 249 | } |
| 250 | |
| 251 | template <typename VType> |
| 252 | void Vector3<VType>::z(const VType &v) { |
| 253 | c_[2] = v; |
| 254 | } |
| 255 | |
| 256 | template <typename VType> |
| 257 | VType Vector3<VType>::z() const { |
| 258 | return c_[2]; |
| 259 | } |
| 260 | |
| 261 | template <typename VType> |
| 262 | VType* Vector3<VType>::Data() { |
| 263 | return reinterpret_cast<VType*>(c_); |
| 264 | } |
| 265 | |
| 266 | template <typename VType> |
| 267 | const VType* Vector3<VType>::Data() const { |
| 268 | return reinterpret_cast<const VType*>(c_); |
| 269 | } |
| 270 | |
| 271 | template <typename VType> |
| 272 | VType Vector3<VType>::Norm2(void) const { |
| 273 | return c_[0]*c_[0] + c_[1]*c_[1] + c_[2]*c_[2]; |
| 274 | } |
| 275 | |
| 276 | template <typename VType> |
| 277 | typename Vector3<VType>::FloatType Vector3<VType>::Norm(void) const { |
| 278 | return sqrt(Norm2()); |
| 279 | } |
| 280 | |
| 281 | template <typename VType> |
| 282 | Vector3<VType> Vector3<VType>::Normalize() const { |
| 283 | COMPILE_ASSERT(!base::is_integral<VType>::value, must_be_floating_point); |
| 284 | VType n = Norm(); |
| 285 | if (n != 0) { |
| 286 | n = 1.0 / n; |
| 287 | } |
| 288 | return Self(*this) *= n; |
| 289 | } |
| 290 | |
| 291 | template <typename VType> |
| 292 | Vector3<VType> Vector3<VType>::Ortho() const { |
| 293 | int k = LargestAbsComponent() - 1; |
| 294 | if (k < 0) k = 2; |
| 295 | Self temp; |
| 296 | temp[k] = 1; |
| 297 | return (this->CrossProd(temp)).Normalize(); |
| 298 | } |
| 299 | |
| 300 | template <typename VType> |
| 301 | int Vector3<VType>::LargestAbsComponent() const { |
| 302 | Self temp = Fabs(); |
| 303 | if (temp[0] > temp[1]) { |
| 304 | if (temp[0] > temp[2]) { |
| 305 | return 0; |
| 306 | } else { |
| 307 | return 2; |
| 308 | } |
| 309 | } else { |
| 310 | if (temp[1] > temp[2]) { |
| 311 | return 1; |
| 312 | } else { |
| 313 | return 2; |
| 314 | } |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | template <typename VType> |
| 319 | Vector3<int> Vector3<VType>::ComponentOrder() const { |
| 320 | Vector3<int> temp(0, 1, 2); |
| 321 | if (c_[temp[0]] > c_[temp[1]]) swap(temp[0], temp[1]); |
| 322 | if (c_[temp[1]] > c_[temp[2]]) swap(temp[1], temp[2]); |
| 323 | if (c_[temp[0]] > c_[temp[1]]) swap(temp[0], temp[1]); |
| 324 | return temp; |
| 325 | } |
| 326 | |
| 327 | template <typename VType> |
| 328 | typename Vector3<VType>::FloatType Vector3<VType>::Angle(const Self &va) const { |
| 329 | return atan2(this->CrossProd(va).Norm(), this->DotProd(va)); |
| 330 | } |
| 331 | |
| 332 | template <typename VType> |
| 333 | Vector3<VType> Vector3<VType>::Sqrt() const { |
| 334 | return Self(sqrt(c_[0]), sqrt(c_[1]), sqrt(c_[2])); |
| 335 | } |
| 336 | |
| 337 | template <typename VType> |
| 338 | Vector3<VType> Vector3<VType>::Fabs() const { |
| 339 | return Self(fabs(c_[0]), fabs(c_[1]), fabs(c_[2])); |
| 340 | } |
| 341 | |
| 342 | template <typename VType> |
| 343 | Vector3<VType> Vector3<VType>::Abs() const { |
| 344 | COMPILE_ASSERT(base::is_integral<VType>::value, use_Fabs_for_float_types); |
| 345 | COMPILE_ASSERT(static_cast<VType>(-1) == -1, type_must_be_signed); |
| 346 | COMPILE_ASSERT(sizeof(VType) <= sizeof(int), Abs_truncates_to_int); |
| 347 | return Self(abs(c_[0]), abs(c_[1]), abs(c_[2])); |
| 348 | } |
| 349 | |
| 350 | template <typename VType> |
| 351 | Vector3<VType> Vector3<VType>::Floor() const { |
| 352 | return Self(floor(c_[0]), floor(c_[1]), floor(c_[2])); |
| 353 | } |
| 354 | |
| 355 | template <typename VType> |
| 356 | Vector3<VType> Vector3<VType>::Ceil() const { |
| 357 | return Self(ceil(c_[0]), ceil(c_[1]), ceil(c_[2])); |
| 358 | } |
| 359 | |
| 360 | template <typename VType> |
| 361 | Vector3<VType> Vector3<VType>::FRound() const { |
| 362 | return Self(rint(c_[0]), rint(c_[1]), rint(c_[2])); |
| 363 | } |
| 364 | |
| 365 | template <typename VType> |
| 366 | Vector3<int> Vector3<VType>::IRound() const { |
| 367 | return Vector3<int>(lrint(c_[0]), lrint(c_[1]), lrint(c_[2])); |
| 368 | } |
| 369 | |
| 370 | template <typename VType> |
| 371 | void Vector3<VType>::Clear() { |
| 372 | c_[2] = c_[1] = c_[0] = VType(); |
| 373 | } |
| 374 | |
| 375 | template <typename VType> |
| 376 | bool Vector3<VType>::IsNaN() const { |
| 377 | return isnan(c_[0]) || isnan(c_[1]) || isnan(c_[2]); |
| 378 | } |
| 379 | |
| 380 | template <typename VType> |
| 381 | Vector3<VType> Vector3<VType>::NaN() { |
| 382 | return Self(MathUtil::NaN(), MathUtil::NaN(), MathUtil::NaN()); |
| 383 | } |
| 384 | |
| 385 | template <typename VType> |
| 386 | Vector3<VType> operator-(const Vector3<VType> &vb) { |
| 387 | return Vector3<VType>(-vb[0], -vb[1], -vb[2]); |
| 388 | } |
| 389 | |
| 390 | template <typename ScalarType, typename VType> |
| 391 | Vector3<VType> operator*(const ScalarType k, const Vector3<VType> &v) { |
| 392 | return Vector3<VType>(k*v[0], k*v[1], k*v[2]); |
| 393 | } |
| 394 | |
| 395 | template <typename ScalarType, typename VType> |
| 396 | Vector3<VType> operator/(const ScalarType k, const Vector3<VType> &v) { |
| 397 | return Vector3<VType>(k/v[0], k/v[1], k/v[2]); |
| 398 | } |
| 399 | |
| 400 | template <typename VType> |
| 401 | Vector3<VType> Max(const Vector3<VType> &v1, const Vector3<VType> &v2) { |
| 402 | return Vector3<VType>(max(v1[0], v2[0]), |
| 403 | max(v1[1], v2[1]), |
| 404 | max(v1[2], v2[2])); |
| 405 | } |
| 406 | |
| 407 | template <typename VType> |
| 408 | Vector3<VType> Min(const Vector3<VType> &v1, const Vector3<VType> &v2) { |
| 409 | return Vector3<VType>(min(v1[0], v2[0]), |
| 410 | min(v1[1], v2[1]), |
| 411 | min(v1[2], v2[2])); |
| 412 | } |
| 413 | |
| 414 | template <typename VType> |
| 415 | std::ostream &operator <<(std::ostream &out, const Vector3<VType> &va) { |
| 416 | out << "[" |
| 417 | << va[0] << ", " |
| 418 | << va[1] << ", " |
| 419 | << va[2] << "]" ; |
| 420 | return out; |
| 421 | } |
| 422 | |
| 423 | // TODO(user): Vector3<T> does not actually satisfy the definition of a POD |
| 424 | // type even when T is a POD. Pretending that Vector3<T> is a POD probably |
| 425 | // won't cause any immediate problems, but eventually this should be fixed. |
| 426 | PROPAGATE_POD_FROM_TEMPLATE_ARGUMENT(Vector3); |
| 427 | |
| 428 | #endif // UTIL_MATH_VECTOR3_INL_H__ |
| 429 | |