| 1 | /* crypto/bn/bn_asm.c */ |
| 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * This package is an SSL implementation written |
| 6 | * by Eric Young (eay@cryptsoft.com). |
| 7 | * The implementation was written so as to conform with Netscapes SSL. |
| 8 | * |
| 9 | * This library is free for commercial and non-commercial use as long as |
| 10 | * the following conditions are aheared to. The following conditions |
| 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 13 | * included with this distribution is covered by the same copyright terms |
| 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 15 | * |
| 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 17 | * the code are not to be removed. |
| 18 | * If this package is used in a product, Eric Young should be given attribution |
| 19 | * as the author of the parts of the library used. |
| 20 | * This can be in the form of a textual message at program startup or |
| 21 | * in documentation (online or textual) provided with the package. |
| 22 | * |
| 23 | * Redistribution and use in source and binary forms, with or without |
| 24 | * modification, are permitted provided that the following conditions |
| 25 | * are met: |
| 26 | * 1. Redistributions of source code must retain the copyright |
| 27 | * notice, this list of conditions and the following disclaimer. |
| 28 | * 2. Redistributions in binary form must reproduce the above copyright |
| 29 | * notice, this list of conditions and the following disclaimer in the |
| 30 | * documentation and/or other materials provided with the distribution. |
| 31 | * 3. All advertising materials mentioning features or use of this software |
| 32 | * must display the following acknowledgement: |
| 33 | * "This product includes cryptographic software written by |
| 34 | * Eric Young (eay@cryptsoft.com)" |
| 35 | * The word 'cryptographic' can be left out if the rouines from the library |
| 36 | * being used are not cryptographic related :-). |
| 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 38 | * the apps directory (application code) you must include an acknowledgement: |
| 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 40 | * |
| 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 51 | * SUCH DAMAGE. |
| 52 | * |
| 53 | * The licence and distribution terms for any publically available version or |
| 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 55 | * copied and put under another distribution licence |
| 56 | * [including the GNU Public Licence.] |
| 57 | */ |
| 58 | |
| 59 | #ifndef BN_DEBUG |
| 60 | # undef NDEBUG /* avoid conflicting definitions */ |
| 61 | # define NDEBUG |
| 62 | #endif |
| 63 | |
| 64 | #include <stdio.h> |
| 65 | #include <assert.h> |
| 66 | #include "../bn/bn_lcl.h" |
| 67 | |
| 68 | #if defined(BN_LLONG) || defined(BN_UMULT_HIGH) |
| 69 | |
| 70 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, |
| 71 | BN_ULONG w) |
| 72 | { |
| 73 | BN_ULONG c1 = 0; |
| 74 | |
| 75 | assert(num >= 0); |
| 76 | if (num <= 0) |
| 77 | return (c1); |
| 78 | |
| 79 | # ifndef OPENSSL_SMALL_FOOTPRINT |
| 80 | while (num & ~3) { |
| 81 | mul_add(rp[0], ap[0], w, c1); |
| 82 | mul_add(rp[1], ap[1], w, c1); |
| 83 | mul_add(rp[2], ap[2], w, c1); |
| 84 | mul_add(rp[3], ap[3], w, c1); |
| 85 | ap += 4; |
| 86 | rp += 4; |
| 87 | num -= 4; |
| 88 | } |
| 89 | # endif |
| 90 | while (num) { |
| 91 | mul_add(rp[0], ap[0], w, c1); |
| 92 | ap++; |
| 93 | rp++; |
| 94 | num--; |
| 95 | } |
| 96 | |
| 97 | return (c1); |
| 98 | } |
| 99 | |
| 100 | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) |
| 101 | { |
| 102 | BN_ULONG c1 = 0; |
| 103 | |
| 104 | assert(num >= 0); |
| 105 | if (num <= 0) |
| 106 | return (c1); |
| 107 | |
| 108 | # ifndef OPENSSL_SMALL_FOOTPRINT |
| 109 | while (num & ~3) { |
| 110 | mul(rp[0], ap[0], w, c1); |
| 111 | mul(rp[1], ap[1], w, c1); |
| 112 | mul(rp[2], ap[2], w, c1); |
| 113 | mul(rp[3], ap[3], w, c1); |
| 114 | ap += 4; |
| 115 | rp += 4; |
| 116 | num -= 4; |
| 117 | } |
| 118 | # endif |
| 119 | while (num) { |
| 120 | mul(rp[0], ap[0], w, c1); |
| 121 | ap++; |
| 122 | rp++; |
| 123 | num--; |
| 124 | } |
| 125 | return (c1); |
| 126 | } |
| 127 | |
| 128 | void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) |
| 129 | { |
| 130 | assert(n >= 0); |
| 131 | if (n <= 0) |
| 132 | return; |
| 133 | |
| 134 | # ifndef OPENSSL_SMALL_FOOTPRINT |
| 135 | while (n & ~3) { |
| 136 | sqr(r[0], r[1], a[0]); |
| 137 | sqr(r[2], r[3], a[1]); |
| 138 | sqr(r[4], r[5], a[2]); |
| 139 | sqr(r[6], r[7], a[3]); |
| 140 | a += 4; |
| 141 | r += 8; |
| 142 | n -= 4; |
| 143 | } |
| 144 | # endif |
| 145 | while (n) { |
| 146 | sqr(r[0], r[1], a[0]); |
| 147 | a++; |
| 148 | r += 2; |
| 149 | n--; |
| 150 | } |
| 151 | } |
| 152 | |
| 153 | #else /* !(defined(BN_LLONG) || |
| 154 | * defined(BN_UMULT_HIGH)) */ |
| 155 | |
| 156 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, |
| 157 | BN_ULONG w) |
| 158 | { |
| 159 | BN_ULONG c = 0; |
| 160 | BN_ULONG bl, bh; |
| 161 | |
| 162 | assert(num >= 0); |
| 163 | if (num <= 0) |
| 164 | return ((BN_ULONG)0); |
| 165 | |
| 166 | bl = LBITS(w); |
| 167 | bh = HBITS(w); |
| 168 | |
| 169 | # ifndef OPENSSL_SMALL_FOOTPRINT |
| 170 | while (num & ~3) { |
| 171 | mul_add(rp[0], ap[0], bl, bh, c); |
| 172 | mul_add(rp[1], ap[1], bl, bh, c); |
| 173 | mul_add(rp[2], ap[2], bl, bh, c); |
| 174 | mul_add(rp[3], ap[3], bl, bh, c); |
| 175 | ap += 4; |
| 176 | rp += 4; |
| 177 | num -= 4; |
| 178 | } |
| 179 | # endif |
| 180 | while (num) { |
| 181 | mul_add(rp[0], ap[0], bl, bh, c); |
| 182 | ap++; |
| 183 | rp++; |
| 184 | num--; |
| 185 | } |
| 186 | return (c); |
| 187 | } |
| 188 | |
| 189 | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) |
| 190 | { |
| 191 | BN_ULONG carry = 0; |
| 192 | BN_ULONG bl, bh; |
| 193 | |
| 194 | assert(num >= 0); |
| 195 | if (num <= 0) |
| 196 | return ((BN_ULONG)0); |
| 197 | |
| 198 | bl = LBITS(w); |
| 199 | bh = HBITS(w); |
| 200 | |
| 201 | # ifndef OPENSSL_SMALL_FOOTPRINT |
| 202 | while (num & ~3) { |
| 203 | mul(rp[0], ap[0], bl, bh, carry); |
| 204 | mul(rp[1], ap[1], bl, bh, carry); |
| 205 | mul(rp[2], ap[2], bl, bh, carry); |
| 206 | mul(rp[3], ap[3], bl, bh, carry); |
| 207 | ap += 4; |
| 208 | rp += 4; |
| 209 | num -= 4; |
| 210 | } |
| 211 | # endif |
| 212 | while (num) { |
| 213 | mul(rp[0], ap[0], bl, bh, carry); |
| 214 | ap++; |
| 215 | rp++; |
| 216 | num--; |
| 217 | } |
| 218 | return (carry); |
| 219 | } |
| 220 | |
| 221 | void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) |
| 222 | { |
| 223 | assert(n >= 0); |
| 224 | if (n <= 0) |
| 225 | return; |
| 226 | |
| 227 | # ifndef OPENSSL_SMALL_FOOTPRINT |
| 228 | while (n & ~3) { |
| 229 | sqr64(r[0], r[1], a[0]); |
| 230 | sqr64(r[2], r[3], a[1]); |
| 231 | sqr64(r[4], r[5], a[2]); |
| 232 | sqr64(r[6], r[7], a[3]); |
| 233 | a += 4; |
| 234 | r += 8; |
| 235 | n -= 4; |
| 236 | } |
| 237 | # endif |
| 238 | while (n) { |
| 239 | sqr64(r[0], r[1], a[0]); |
| 240 | a++; |
| 241 | r += 2; |
| 242 | n--; |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | #endif /* !(defined(BN_LLONG) || |
| 247 | * defined(BN_UMULT_HIGH)) */ |
| 248 | |
| 249 | #if defined(BN_LLONG) && defined(BN_DIV2W) |
| 250 | |
| 251 | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) |
| 252 | { |
| 253 | return ((BN_ULONG)(((((BN_ULLONG) h) << BN_BITS2) | l) / (BN_ULLONG) d)); |
| 254 | } |
| 255 | |
| 256 | #else |
| 257 | |
| 258 | /* Divide h,l by d and return the result. */ |
| 259 | /* I need to test this some more :-( */ |
| 260 | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) |
| 261 | { |
| 262 | BN_ULONG dh, dl, q, ret = 0, th, tl, t; |
| 263 | int i, count = 2; |
| 264 | |
| 265 | if (d == 0) |
| 266 | return (BN_MASK2); |
| 267 | |
| 268 | i = BN_num_bits_word(d); |
| 269 | assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i)); |
| 270 | |
| 271 | i = BN_BITS2 - i; |
| 272 | if (h >= d) |
| 273 | h -= d; |
| 274 | |
| 275 | if (i) { |
| 276 | d <<= i; |
| 277 | h = (h << i) | (l >> (BN_BITS2 - i)); |
| 278 | l <<= i; |
| 279 | } |
| 280 | dh = (d & BN_MASK2h) >> BN_BITS4; |
| 281 | dl = (d & BN_MASK2l); |
| 282 | for (;;) { |
| 283 | if ((h >> BN_BITS4) == dh) |
| 284 | q = BN_MASK2l; |
| 285 | else |
| 286 | q = h / dh; |
| 287 | |
| 288 | th = q * dh; |
| 289 | tl = dl * q; |
| 290 | for (;;) { |
| 291 | t = h - th; |
| 292 | if ((t & BN_MASK2h) || |
| 293 | ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4)))) |
| 294 | break; |
| 295 | q--; |
| 296 | th -= dh; |
| 297 | tl -= dl; |
| 298 | } |
| 299 | t = (tl >> BN_BITS4); |
| 300 | tl = (tl << BN_BITS4) & BN_MASK2h; |
| 301 | th += t; |
| 302 | |
| 303 | if (l < tl) |
| 304 | th++; |
| 305 | l -= tl; |
| 306 | if (h < th) { |
| 307 | h += d; |
| 308 | q--; |
| 309 | } |
| 310 | h -= th; |
| 311 | |
| 312 | if (--count == 0) |
| 313 | break; |
| 314 | |
| 315 | ret = q << BN_BITS4; |
| 316 | h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2; |
| 317 | l = (l & BN_MASK2l) << BN_BITS4; |
| 318 | } |
| 319 | ret |= q; |
| 320 | return (ret); |
| 321 | } |
| 322 | #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */ |
| 323 | |
| 324 | #ifdef BN_LLONG |
| 325 | BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
| 326 | int n) |
| 327 | { |
| 328 | BN_ULLONG ll = 0; |
| 329 | |
| 330 | assert(n >= 0); |
| 331 | if (n <= 0) |
| 332 | return ((BN_ULONG)0); |
| 333 | |
| 334 | # ifndef OPENSSL_SMALL_FOOTPRINT |
| 335 | while (n & ~3) { |
| 336 | ll += (BN_ULLONG) a[0] + b[0]; |
| 337 | r[0] = (BN_ULONG)ll & BN_MASK2; |
| 338 | ll >>= BN_BITS2; |
| 339 | ll += (BN_ULLONG) a[1] + b[1]; |
| 340 | r[1] = (BN_ULONG)ll & BN_MASK2; |
| 341 | ll >>= BN_BITS2; |
| 342 | ll += (BN_ULLONG) a[2] + b[2]; |
| 343 | r[2] = (BN_ULONG)ll & BN_MASK2; |
| 344 | ll >>= BN_BITS2; |
| 345 | ll += (BN_ULLONG) a[3] + b[3]; |
| 346 | r[3] = (BN_ULONG)ll & BN_MASK2; |
| 347 | ll >>= BN_BITS2; |
| 348 | a += 4; |
| 349 | b += 4; |
| 350 | r += 4; |
| 351 | n -= 4; |
| 352 | } |
| 353 | # endif |
| 354 | while (n) { |
| 355 | ll += (BN_ULLONG) a[0] + b[0]; |
| 356 | r[0] = (BN_ULONG)ll & BN_MASK2; |
| 357 | ll >>= BN_BITS2; |
| 358 | a++; |
| 359 | b++; |
| 360 | r++; |
| 361 | n--; |
| 362 | } |
| 363 | return ((BN_ULONG)ll); |
| 364 | } |
| 365 | #else /* !BN_LLONG */ |
| 366 | BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
| 367 | int n) |
| 368 | { |
| 369 | BN_ULONG c, l, t; |
| 370 | |
| 371 | assert(n >= 0); |
| 372 | if (n <= 0) |
| 373 | return ((BN_ULONG)0); |
| 374 | |
| 375 | c = 0; |
| 376 | # ifndef OPENSSL_SMALL_FOOTPRINT |
| 377 | while (n & ~3) { |
| 378 | t = a[0]; |
| 379 | t = (t + c) & BN_MASK2; |
| 380 | c = (t < c); |
| 381 | l = (t + b[0]) & BN_MASK2; |
| 382 | c += (l < t); |
| 383 | r[0] = l; |
| 384 | t = a[1]; |
| 385 | t = (t + c) & BN_MASK2; |
| 386 | c = (t < c); |
| 387 | l = (t + b[1]) & BN_MASK2; |
| 388 | c += (l < t); |
| 389 | r[1] = l; |
| 390 | t = a[2]; |
| 391 | t = (t + c) & BN_MASK2; |
| 392 | c = (t < c); |
| 393 | l = (t + b[2]) & BN_MASK2; |
| 394 | c += (l < t); |
| 395 | r[2] = l; |
| 396 | t = a[3]; |
| 397 | t = (t + c) & BN_MASK2; |
| 398 | c = (t < c); |
| 399 | l = (t + b[3]) & BN_MASK2; |
| 400 | c += (l < t); |
| 401 | r[3] = l; |
| 402 | a += 4; |
| 403 | b += 4; |
| 404 | r += 4; |
| 405 | n -= 4; |
| 406 | } |
| 407 | # endif |
| 408 | while (n) { |
| 409 | t = a[0]; |
| 410 | t = (t + c) & BN_MASK2; |
| 411 | c = (t < c); |
| 412 | l = (t + b[0]) & BN_MASK2; |
| 413 | c += (l < t); |
| 414 | r[0] = l; |
| 415 | a++; |
| 416 | b++; |
| 417 | r++; |
| 418 | n--; |
| 419 | } |
| 420 | return ((BN_ULONG)c); |
| 421 | } |
| 422 | #endif /* !BN_LLONG */ |
| 423 | |
| 424 | BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
| 425 | int n) |
| 426 | { |
| 427 | BN_ULONG t1, t2; |
| 428 | int c = 0; |
| 429 | |
| 430 | assert(n >= 0); |
| 431 | if (n <= 0) |
| 432 | return ((BN_ULONG)0); |
| 433 | |
| 434 | #ifndef OPENSSL_SMALL_FOOTPRINT |
| 435 | while (n & ~3) { |
| 436 | t1 = a[0]; |
| 437 | t2 = b[0]; |
| 438 | r[0] = (t1 - t2 - c) & BN_MASK2; |
| 439 | if (t1 != t2) |
| 440 | c = (t1 < t2); |
| 441 | t1 = a[1]; |
| 442 | t2 = b[1]; |
| 443 | r[1] = (t1 - t2 - c) & BN_MASK2; |
| 444 | if (t1 != t2) |
| 445 | c = (t1 < t2); |
| 446 | t1 = a[2]; |
| 447 | t2 = b[2]; |
| 448 | r[2] = (t1 - t2 - c) & BN_MASK2; |
| 449 | if (t1 != t2) |
| 450 | c = (t1 < t2); |
| 451 | t1 = a[3]; |
| 452 | t2 = b[3]; |
| 453 | r[3] = (t1 - t2 - c) & BN_MASK2; |
| 454 | if (t1 != t2) |
| 455 | c = (t1 < t2); |
| 456 | a += 4; |
| 457 | b += 4; |
| 458 | r += 4; |
| 459 | n -= 4; |
| 460 | } |
| 461 | #endif |
| 462 | while (n) { |
| 463 | t1 = a[0]; |
| 464 | t2 = b[0]; |
| 465 | r[0] = (t1 - t2 - c) & BN_MASK2; |
| 466 | if (t1 != t2) |
| 467 | c = (t1 < t2); |
| 468 | a++; |
| 469 | b++; |
| 470 | r++; |
| 471 | n--; |
| 472 | } |
| 473 | return (c); |
| 474 | } |
| 475 | |
| 476 | #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT) |
| 477 | |
| 478 | # undef bn_mul_comba8 |
| 479 | # undef bn_mul_comba4 |
| 480 | # undef bn_sqr_comba8 |
| 481 | # undef bn_sqr_comba4 |
| 482 | |
| 483 | /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */ |
| 484 | /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */ |
| 485 | /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */ |
| 486 | /* |
| 487 | * sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number |
| 488 | * c=(c2,c1,c0) |
| 489 | */ |
| 490 | |
| 491 | # ifdef BN_LLONG |
| 492 | /* |
| 493 | * Keep in mind that additions to multiplication result can not |
| 494 | * overflow, because its high half cannot be all-ones. |
| 495 | */ |
| 496 | # define mul_add_c(a,b,c0,c1,c2) do { \ |
| 497 | BN_ULONG hi; \ |
| 498 | BN_ULLONG t = (BN_ULLONG)(a)*(b); \ |
| 499 | t += c0; /* no carry */ \ |
| 500 | c0 = (BN_ULONG)Lw(t); \ |
| 501 | hi = (BN_ULONG)Hw(t); \ |
| 502 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ |
| 503 | } while(0) |
| 504 | |
| 505 | # define mul_add_c2(a,b,c0,c1,c2) do { \ |
| 506 | BN_ULONG hi; \ |
| 507 | BN_ULLONG t = (BN_ULLONG)(a)*(b); \ |
| 508 | BN_ULLONG tt = t+c0; /* no carry */ \ |
| 509 | c0 = (BN_ULONG)Lw(tt); \ |
| 510 | hi = (BN_ULONG)Hw(tt); \ |
| 511 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ |
| 512 | t += c0; /* no carry */ \ |
| 513 | c0 = (BN_ULONG)Lw(t); \ |
| 514 | hi = (BN_ULONG)Hw(t); \ |
| 515 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ |
| 516 | } while(0) |
| 517 | |
| 518 | # define sqr_add_c(a,i,c0,c1,c2) do { \ |
| 519 | BN_ULONG hi; \ |
| 520 | BN_ULLONG t = (BN_ULLONG)a[i]*a[i]; \ |
| 521 | t += c0; /* no carry */ \ |
| 522 | c0 = (BN_ULONG)Lw(t); \ |
| 523 | hi = (BN_ULONG)Hw(t); \ |
| 524 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ |
| 525 | } while(0) |
| 526 | |
| 527 | # define sqr_add_c2(a,i,j,c0,c1,c2) \ |
| 528 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) |
| 529 | |
| 530 | # elif defined(BN_UMULT_LOHI) |
| 531 | /* |
| 532 | * Keep in mind that additions to hi can not overflow, because |
| 533 | * the high word of a multiplication result cannot be all-ones. |
| 534 | */ |
| 535 | # define mul_add_c(a,b,c0,c1,c2) do { \ |
| 536 | BN_ULONG ta = (a), tb = (b); \ |
| 537 | BN_ULONG lo, hi; \ |
| 538 | BN_UMULT_LOHI(lo,hi,ta,tb); \ |
| 539 | c0 += lo; hi += (c0<lo)?1:0; \ |
| 540 | c1 += hi; c2 += (c1<hi)?1:0; \ |
| 541 | } while(0) |
| 542 | |
| 543 | # define mul_add_c2(a,b,c0,c1,c2) do { \ |
| 544 | BN_ULONG ta = (a), tb = (b); \ |
| 545 | BN_ULONG lo, hi, tt; \ |
| 546 | BN_UMULT_LOHI(lo,hi,ta,tb); \ |
| 547 | c0 += lo; tt = hi+((c0<lo)?1:0); \ |
| 548 | c1 += tt; c2 += (c1<tt)?1:0; \ |
| 549 | c0 += lo; hi += (c0<lo)?1:0; \ |
| 550 | c1 += hi; c2 += (c1<hi)?1:0; \ |
| 551 | } while(0) |
| 552 | |
| 553 | # define sqr_add_c(a,i,c0,c1,c2) do { \ |
| 554 | BN_ULONG ta = (a)[i]; \ |
| 555 | BN_ULONG lo, hi; \ |
| 556 | BN_UMULT_LOHI(lo,hi,ta,ta); \ |
| 557 | c0 += lo; hi += (c0<lo)?1:0; \ |
| 558 | c1 += hi; c2 += (c1<hi)?1:0; \ |
| 559 | } while(0) |
| 560 | |
| 561 | # define sqr_add_c2(a,i,j,c0,c1,c2) \ |
| 562 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) |
| 563 | |
| 564 | # elif defined(BN_UMULT_HIGH) |
| 565 | /* |
| 566 | * Keep in mind that additions to hi can not overflow, because |
| 567 | * the high word of a multiplication result cannot be all-ones. |
| 568 | */ |
| 569 | # define mul_add_c(a,b,c0,c1,c2) do { \ |
| 570 | BN_ULONG ta = (a), tb = (b); \ |
| 571 | BN_ULONG lo = ta * tb; \ |
| 572 | BN_ULONG hi = BN_UMULT_HIGH(ta,tb); \ |
| 573 | c0 += lo; hi += (c0<lo)?1:0; \ |
| 574 | c1 += hi; c2 += (c1<hi)?1:0; \ |
| 575 | } while(0) |
| 576 | |
| 577 | # define mul_add_c2(a,b,c0,c1,c2) do { \ |
| 578 | BN_ULONG ta = (a), tb = (b), tt; \ |
| 579 | BN_ULONG lo = ta * tb; \ |
| 580 | BN_ULONG hi = BN_UMULT_HIGH(ta,tb); \ |
| 581 | c0 += lo; tt = hi + ((c0<lo)?1:0); \ |
| 582 | c1 += tt; c2 += (c1<tt)?1:0; \ |
| 583 | c0 += lo; hi += (c0<lo)?1:0; \ |
| 584 | c1 += hi; c2 += (c1<hi)?1:0; \ |
| 585 | } while(0) |
| 586 | |
| 587 | # define sqr_add_c(a,i,c0,c1,c2) do { \ |
| 588 | BN_ULONG ta = (a)[i]; \ |
| 589 | BN_ULONG lo = ta * ta; \ |
| 590 | BN_ULONG hi = BN_UMULT_HIGH(ta,ta); \ |
| 591 | c0 += lo; hi += (c0<lo)?1:0; \ |
| 592 | c1 += hi; c2 += (c1<hi)?1:0; \ |
| 593 | } while(0) |
| 594 | |
| 595 | # define sqr_add_c2(a,i,j,c0,c1,c2) \ |
| 596 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) |
| 597 | |
| 598 | # else /* !BN_LLONG */ |
| 599 | /* |
| 600 | * Keep in mind that additions to hi can not overflow, because |
| 601 | * the high word of a multiplication result cannot be all-ones. |
| 602 | */ |
| 603 | # define mul_add_c(a,b,c0,c1,c2) do { \ |
| 604 | BN_ULONG lo = LBITS(a), hi = HBITS(a); \ |
| 605 | BN_ULONG bl = LBITS(b), bh = HBITS(b); \ |
| 606 | mul64(lo,hi,bl,bh); \ |
| 607 | c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \ |
| 608 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ |
| 609 | } while(0) |
| 610 | |
| 611 | # define mul_add_c2(a,b,c0,c1,c2) do { \ |
| 612 | BN_ULONG tt; \ |
| 613 | BN_ULONG lo = LBITS(a), hi = HBITS(a); \ |
| 614 | BN_ULONG bl = LBITS(b), bh = HBITS(b); \ |
| 615 | mul64(lo,hi,bl,bh); \ |
| 616 | tt = hi; \ |
| 617 | c0 = (c0+lo)&BN_MASK2; if (c0<lo) tt++; \ |
| 618 | c1 = (c1+tt)&BN_MASK2; if (c1<tt) c2++; \ |
| 619 | c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \ |
| 620 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ |
| 621 | } while(0) |
| 622 | |
| 623 | # define sqr_add_c(a,i,c0,c1,c2) do { \ |
| 624 | BN_ULONG lo, hi; \ |
| 625 | sqr64(lo,hi,(a)[i]); \ |
| 626 | c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \ |
| 627 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ |
| 628 | } while(0) |
| 629 | |
| 630 | # define sqr_add_c2(a,i,j,c0,c1,c2) \ |
| 631 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) |
| 632 | # endif /* !BN_LLONG */ |
| 633 | |
| 634 | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) |
| 635 | { |
| 636 | BN_ULONG c1, c2, c3; |
| 637 | |
| 638 | c1 = 0; |
| 639 | c2 = 0; |
| 640 | c3 = 0; |
| 641 | mul_add_c(a[0], b[0], c1, c2, c3); |
| 642 | r[0] = c1; |
| 643 | c1 = 0; |
| 644 | mul_add_c(a[0], b[1], c2, c3, c1); |
| 645 | mul_add_c(a[1], b[0], c2, c3, c1); |
| 646 | r[1] = c2; |
| 647 | c2 = 0; |
| 648 | mul_add_c(a[2], b[0], c3, c1, c2); |
| 649 | mul_add_c(a[1], b[1], c3, c1, c2); |
| 650 | mul_add_c(a[0], b[2], c3, c1, c2); |
| 651 | r[2] = c3; |
| 652 | c3 = 0; |
| 653 | mul_add_c(a[0], b[3], c1, c2, c3); |
| 654 | mul_add_c(a[1], b[2], c1, c2, c3); |
| 655 | mul_add_c(a[2], b[1], c1, c2, c3); |
| 656 | mul_add_c(a[3], b[0], c1, c2, c3); |
| 657 | r[3] = c1; |
| 658 | c1 = 0; |
| 659 | mul_add_c(a[4], b[0], c2, c3, c1); |
| 660 | mul_add_c(a[3], b[1], c2, c3, c1); |
| 661 | mul_add_c(a[2], b[2], c2, c3, c1); |
| 662 | mul_add_c(a[1], b[3], c2, c3, c1); |
| 663 | mul_add_c(a[0], b[4], c2, c3, c1); |
| 664 | r[4] = c2; |
| 665 | c2 = 0; |
| 666 | mul_add_c(a[0], b[5], c3, c1, c2); |
| 667 | mul_add_c(a[1], b[4], c3, c1, c2); |
| 668 | mul_add_c(a[2], b[3], c3, c1, c2); |
| 669 | mul_add_c(a[3], b[2], c3, c1, c2); |
| 670 | mul_add_c(a[4], b[1], c3, c1, c2); |
| 671 | mul_add_c(a[5], b[0], c3, c1, c2); |
| 672 | r[5] = c3; |
| 673 | c3 = 0; |
| 674 | mul_add_c(a[6], b[0], c1, c2, c3); |
| 675 | mul_add_c(a[5], b[1], c1, c2, c3); |
| 676 | mul_add_c(a[4], b[2], c1, c2, c3); |
| 677 | mul_add_c(a[3], b[3], c1, c2, c3); |
| 678 | mul_add_c(a[2], b[4], c1, c2, c3); |
| 679 | mul_add_c(a[1], b[5], c1, c2, c3); |
| 680 | mul_add_c(a[0], b[6], c1, c2, c3); |
| 681 | r[6] = c1; |
| 682 | c1 = 0; |
| 683 | mul_add_c(a[0], b[7], c2, c3, c1); |
| 684 | mul_add_c(a[1], b[6], c2, c3, c1); |
| 685 | mul_add_c(a[2], b[5], c2, c3, c1); |
| 686 | mul_add_c(a[3], b[4], c2, c3, c1); |
| 687 | mul_add_c(a[4], b[3], c2, c3, c1); |
| 688 | mul_add_c(a[5], b[2], c2, c3, c1); |
| 689 | mul_add_c(a[6], b[1], c2, c3, c1); |
| 690 | mul_add_c(a[7], b[0], c2, c3, c1); |
| 691 | r[7] = c2; |
| 692 | c2 = 0; |
| 693 | mul_add_c(a[7], b[1], c3, c1, c2); |
| 694 | mul_add_c(a[6], b[2], c3, c1, c2); |
| 695 | mul_add_c(a[5], b[3], c3, c1, c2); |
| 696 | mul_add_c(a[4], b[4], c3, c1, c2); |
| 697 | mul_add_c(a[3], b[5], c3, c1, c2); |
| 698 | mul_add_c(a[2], b[6], c3, c1, c2); |
| 699 | mul_add_c(a[1], b[7], c3, c1, c2); |
| 700 | r[8] = c3; |
| 701 | c3 = 0; |
| 702 | mul_add_c(a[2], b[7], c1, c2, c3); |
| 703 | mul_add_c(a[3], b[6], c1, c2, c3); |
| 704 | mul_add_c(a[4], b[5], c1, c2, c3); |
| 705 | mul_add_c(a[5], b[4], c1, c2, c3); |
| 706 | mul_add_c(a[6], b[3], c1, c2, c3); |
| 707 | mul_add_c(a[7], b[2], c1, c2, c3); |
| 708 | r[9] = c1; |
| 709 | c1 = 0; |
| 710 | mul_add_c(a[7], b[3], c2, c3, c1); |
| 711 | mul_add_c(a[6], b[4], c2, c3, c1); |
| 712 | mul_add_c(a[5], b[5], c2, c3, c1); |
| 713 | mul_add_c(a[4], b[6], c2, c3, c1); |
| 714 | mul_add_c(a[3], b[7], c2, c3, c1); |
| 715 | r[10] = c2; |
| 716 | c2 = 0; |
| 717 | mul_add_c(a[4], b[7], c3, c1, c2); |
| 718 | mul_add_c(a[5], b[6], c3, c1, c2); |
| 719 | mul_add_c(a[6], b[5], c3, c1, c2); |
| 720 | mul_add_c(a[7], b[4], c3, c1, c2); |
| 721 | r[11] = c3; |
| 722 | c3 = 0; |
| 723 | mul_add_c(a[7], b[5], c1, c2, c3); |
| 724 | mul_add_c(a[6], b[6], c1, c2, c3); |
| 725 | mul_add_c(a[5], b[7], c1, c2, c3); |
| 726 | r[12] = c1; |
| 727 | c1 = 0; |
| 728 | mul_add_c(a[6], b[7], c2, c3, c1); |
| 729 | mul_add_c(a[7], b[6], c2, c3, c1); |
| 730 | r[13] = c2; |
| 731 | c2 = 0; |
| 732 | mul_add_c(a[7], b[7], c3, c1, c2); |
| 733 | r[14] = c3; |
| 734 | r[15] = c1; |
| 735 | } |
| 736 | |
| 737 | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) |
| 738 | { |
| 739 | BN_ULONG c1, c2, c3; |
| 740 | |
| 741 | c1 = 0; |
| 742 | c2 = 0; |
| 743 | c3 = 0; |
| 744 | mul_add_c(a[0], b[0], c1, c2, c3); |
| 745 | r[0] = c1; |
| 746 | c1 = 0; |
| 747 | mul_add_c(a[0], b[1], c2, c3, c1); |
| 748 | mul_add_c(a[1], b[0], c2, c3, c1); |
| 749 | r[1] = c2; |
| 750 | c2 = 0; |
| 751 | mul_add_c(a[2], b[0], c3, c1, c2); |
| 752 | mul_add_c(a[1], b[1], c3, c1, c2); |
| 753 | mul_add_c(a[0], b[2], c3, c1, c2); |
| 754 | r[2] = c3; |
| 755 | c3 = 0; |
| 756 | mul_add_c(a[0], b[3], c1, c2, c3); |
| 757 | mul_add_c(a[1], b[2], c1, c2, c3); |
| 758 | mul_add_c(a[2], b[1], c1, c2, c3); |
| 759 | mul_add_c(a[3], b[0], c1, c2, c3); |
| 760 | r[3] = c1; |
| 761 | c1 = 0; |
| 762 | mul_add_c(a[3], b[1], c2, c3, c1); |
| 763 | mul_add_c(a[2], b[2], c2, c3, c1); |
| 764 | mul_add_c(a[1], b[3], c2, c3, c1); |
| 765 | r[4] = c2; |
| 766 | c2 = 0; |
| 767 | mul_add_c(a[2], b[3], c3, c1, c2); |
| 768 | mul_add_c(a[3], b[2], c3, c1, c2); |
| 769 | r[5] = c3; |
| 770 | c3 = 0; |
| 771 | mul_add_c(a[3], b[3], c1, c2, c3); |
| 772 | r[6] = c1; |
| 773 | r[7] = c2; |
| 774 | } |
| 775 | |
| 776 | void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) |
| 777 | { |
| 778 | BN_ULONG c1, c2, c3; |
| 779 | |
| 780 | c1 = 0; |
| 781 | c2 = 0; |
| 782 | c3 = 0; |
| 783 | sqr_add_c(a, 0, c1, c2, c3); |
| 784 | r[0] = c1; |
| 785 | c1 = 0; |
| 786 | sqr_add_c2(a, 1, 0, c2, c3, c1); |
| 787 | r[1] = c2; |
| 788 | c2 = 0; |
| 789 | sqr_add_c(a, 1, c3, c1, c2); |
| 790 | sqr_add_c2(a, 2, 0, c3, c1, c2); |
| 791 | r[2] = c3; |
| 792 | c3 = 0; |
| 793 | sqr_add_c2(a, 3, 0, c1, c2, c3); |
| 794 | sqr_add_c2(a, 2, 1, c1, c2, c3); |
| 795 | r[3] = c1; |
| 796 | c1 = 0; |
| 797 | sqr_add_c(a, 2, c2, c3, c1); |
| 798 | sqr_add_c2(a, 3, 1, c2, c3, c1); |
| 799 | sqr_add_c2(a, 4, 0, c2, c3, c1); |
| 800 | r[4] = c2; |
| 801 | c2 = 0; |
| 802 | sqr_add_c2(a, 5, 0, c3, c1, c2); |
| 803 | sqr_add_c2(a, 4, 1, c3, c1, c2); |
| 804 | sqr_add_c2(a, 3, 2, c3, c1, c2); |
| 805 | r[5] = c3; |
| 806 | c3 = 0; |
| 807 | sqr_add_c(a, 3, c1, c2, c3); |
| 808 | sqr_add_c2(a, 4, 2, c1, c2, c3); |
| 809 | sqr_add_c2(a, 5, 1, c1, c2, c3); |
| 810 | sqr_add_c2(a, 6, 0, c1, c2, c3); |
| 811 | r[6] = c1; |
| 812 | c1 = 0; |
| 813 | sqr_add_c2(a, 7, 0, c2, c3, c1); |
| 814 | sqr_add_c2(a, 6, 1, c2, c3, c1); |
| 815 | sqr_add_c2(a, 5, 2, c2, c3, c1); |
| 816 | sqr_add_c2(a, 4, 3, c2, c3, c1); |
| 817 | r[7] = c2; |
| 818 | c2 = 0; |
| 819 | sqr_add_c(a, 4, c3, c1, c2); |
| 820 | sqr_add_c2(a, 5, 3, c3, c1, c2); |
| 821 | sqr_add_c2(a, 6, 2, c3, c1, c2); |
| 822 | sqr_add_c2(a, 7, 1, c3, c1, c2); |
| 823 | r[8] = c3; |
| 824 | c3 = 0; |
| 825 | sqr_add_c2(a, 7, 2, c1, c2, c3); |
| 826 | sqr_add_c2(a, 6, 3, c1, c2, c3); |
| 827 | sqr_add_c2(a, 5, 4, c1, c2, c3); |
| 828 | r[9] = c1; |
| 829 | c1 = 0; |
| 830 | sqr_add_c(a, 5, c2, c3, c1); |
| 831 | sqr_add_c2(a, 6, 4, c2, c3, c1); |
| 832 | sqr_add_c2(a, 7, 3, c2, c3, c1); |
| 833 | r[10] = c2; |
| 834 | c2 = 0; |
| 835 | sqr_add_c2(a, 7, 4, c3, c1, c2); |
| 836 | sqr_add_c2(a, 6, 5, c3, c1, c2); |
| 837 | r[11] = c3; |
| 838 | c3 = 0; |
| 839 | sqr_add_c(a, 6, c1, c2, c3); |
| 840 | sqr_add_c2(a, 7, 5, c1, c2, c3); |
| 841 | r[12] = c1; |
| 842 | c1 = 0; |
| 843 | sqr_add_c2(a, 7, 6, c2, c3, c1); |
| 844 | r[13] = c2; |
| 845 | c2 = 0; |
| 846 | sqr_add_c(a, 7, c3, c1, c2); |
| 847 | r[14] = c3; |
| 848 | r[15] = c1; |
| 849 | } |
| 850 | |
| 851 | void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) |
| 852 | { |
| 853 | BN_ULONG c1, c2, c3; |
| 854 | |
| 855 | c1 = 0; |
| 856 | c2 = 0; |
| 857 | c3 = 0; |
| 858 | sqr_add_c(a, 0, c1, c2, c3); |
| 859 | r[0] = c1; |
| 860 | c1 = 0; |
| 861 | sqr_add_c2(a, 1, 0, c2, c3, c1); |
| 862 | r[1] = c2; |
| 863 | c2 = 0; |
| 864 | sqr_add_c(a, 1, c3, c1, c2); |
| 865 | sqr_add_c2(a, 2, 0, c3, c1, c2); |
| 866 | r[2] = c3; |
| 867 | c3 = 0; |
| 868 | sqr_add_c2(a, 3, 0, c1, c2, c3); |
| 869 | sqr_add_c2(a, 2, 1, c1, c2, c3); |
| 870 | r[3] = c1; |
| 871 | c1 = 0; |
| 872 | sqr_add_c(a, 2, c2, c3, c1); |
| 873 | sqr_add_c2(a, 3, 1, c2, c3, c1); |
| 874 | r[4] = c2; |
| 875 | c2 = 0; |
| 876 | sqr_add_c2(a, 3, 2, c3, c1, c2); |
| 877 | r[5] = c3; |
| 878 | c3 = 0; |
| 879 | sqr_add_c(a, 3, c1, c2, c3); |
| 880 | r[6] = c1; |
| 881 | r[7] = c2; |
| 882 | } |
| 883 | |
| 884 | # ifdef OPENSSL_NO_ASM |
| 885 | # ifdef OPENSSL_BN_ASM_MONT |
| 886 | # include <alloca.h> |
| 887 | /* |
| 888 | * This is essentially reference implementation, which may or may not |
| 889 | * result in performance improvement. E.g. on IA-32 this routine was |
| 890 | * observed to give 40% faster rsa1024 private key operations and 10% |
| 891 | * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only |
| 892 | * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a |
| 893 | * reference implementation, one to be used as starting point for |
| 894 | * platform-specific assembler. Mentioned numbers apply to compiler |
| 895 | * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and |
| 896 | * can vary not only from platform to platform, but even for compiler |
| 897 | * versions. Assembler vs. assembler improvement coefficients can |
| 898 | * [and are known to] differ and are to be documented elsewhere. |
| 899 | */ |
| 900 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
| 901 | const BN_ULONG *np, const BN_ULONG *n0p, int num) |
| 902 | { |
| 903 | BN_ULONG c0, c1, ml, *tp, n0; |
| 904 | # ifdef mul64 |
| 905 | BN_ULONG mh; |
| 906 | # endif |
| 907 | volatile BN_ULONG *vp; |
| 908 | int i = 0, j; |
| 909 | |
| 910 | # if 0 /* template for platform-specific |
| 911 | * implementation */ |
| 912 | if (ap == bp) |
| 913 | return bn_sqr_mont(rp, ap, np, n0p, num); |
| 914 | # endif |
| 915 | vp = tp = alloca((num + 2) * sizeof(BN_ULONG)); |
| 916 | |
| 917 | n0 = *n0p; |
| 918 | |
| 919 | c0 = 0; |
| 920 | ml = bp[0]; |
| 921 | # ifdef mul64 |
| 922 | mh = HBITS(ml); |
| 923 | ml = LBITS(ml); |
| 924 | for (j = 0; j < num; ++j) |
| 925 | mul(tp[j], ap[j], ml, mh, c0); |
| 926 | # else |
| 927 | for (j = 0; j < num; ++j) |
| 928 | mul(tp[j], ap[j], ml, c0); |
| 929 | # endif |
| 930 | |
| 931 | tp[num] = c0; |
| 932 | tp[num + 1] = 0; |
| 933 | goto enter; |
| 934 | |
| 935 | for (i = 0; i < num; i++) { |
| 936 | c0 = 0; |
| 937 | ml = bp[i]; |
| 938 | # ifdef mul64 |
| 939 | mh = HBITS(ml); |
| 940 | ml = LBITS(ml); |
| 941 | for (j = 0; j < num; ++j) |
| 942 | mul_add(tp[j], ap[j], ml, mh, c0); |
| 943 | # else |
| 944 | for (j = 0; j < num; ++j) |
| 945 | mul_add(tp[j], ap[j], ml, c0); |
| 946 | # endif |
| 947 | c1 = (tp[num] + c0) & BN_MASK2; |
| 948 | tp[num] = c1; |
| 949 | tp[num + 1] = (c1 < c0 ? 1 : 0); |
| 950 | enter: |
| 951 | c1 = tp[0]; |
| 952 | ml = (c1 * n0) & BN_MASK2; |
| 953 | c0 = 0; |
| 954 | # ifdef mul64 |
| 955 | mh = HBITS(ml); |
| 956 | ml = LBITS(ml); |
| 957 | mul_add(c1, np[0], ml, mh, c0); |
| 958 | # else |
| 959 | mul_add(c1, ml, np[0], c0); |
| 960 | # endif |
| 961 | for (j = 1; j < num; j++) { |
| 962 | c1 = tp[j]; |
| 963 | # ifdef mul64 |
| 964 | mul_add(c1, np[j], ml, mh, c0); |
| 965 | # else |
| 966 | mul_add(c1, ml, np[j], c0); |
| 967 | # endif |
| 968 | tp[j - 1] = c1 & BN_MASK2; |
| 969 | } |
| 970 | c1 = (tp[num] + c0) & BN_MASK2; |
| 971 | tp[num - 1] = c1; |
| 972 | tp[num] = tp[num + 1] + (c1 < c0 ? 1 : 0); |
| 973 | } |
| 974 | |
| 975 | if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) { |
| 976 | c0 = bn_sub_words(rp, tp, np, num); |
| 977 | if (tp[num] != 0 || c0 == 0) { |
| 978 | for (i = 0; i < num + 2; i++) |
| 979 | vp[i] = 0; |
| 980 | return 1; |
| 981 | } |
| 982 | } |
| 983 | for (i = 0; i < num; i++) |
| 984 | rp[i] = tp[i], vp[i] = 0; |
| 985 | vp[num] = 0; |
| 986 | vp[num + 1] = 0; |
| 987 | return 1; |
| 988 | } |
| 989 | # else |
| 990 | /* |
| 991 | * Return value of 0 indicates that multiplication/convolution was not |
| 992 | * performed to signal the caller to fall down to alternative/original |
| 993 | * code-path. |
| 994 | */ |
| 995 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
| 996 | const BN_ULONG *np, const BN_ULONG *n0, int num) |
| 997 | { |
| 998 | return 0; |
| 999 | } |
| 1000 | # endif /* OPENSSL_BN_ASM_MONT */ |
| 1001 | # endif |
| 1002 | |
| 1003 | #else /* !BN_MUL_COMBA */ |
| 1004 | |
| 1005 | /* hmm... is it faster just to do a multiply? */ |
| 1006 | # undef bn_sqr_comba4 |
| 1007 | void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) |
| 1008 | { |
| 1009 | BN_ULONG t[8]; |
| 1010 | bn_sqr_normal(r, a, 4, t); |
| 1011 | } |
| 1012 | |
| 1013 | # undef bn_sqr_comba8 |
| 1014 | void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) |
| 1015 | { |
| 1016 | BN_ULONG t[16]; |
| 1017 | bn_sqr_normal(r, a, 8, t); |
| 1018 | } |
| 1019 | |
| 1020 | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) |
| 1021 | { |
| 1022 | r[4] = bn_mul_words(&(r[0]), a, 4, b[0]); |
| 1023 | r[5] = bn_mul_add_words(&(r[1]), a, 4, b[1]); |
| 1024 | r[6] = bn_mul_add_words(&(r[2]), a, 4, b[2]); |
| 1025 | r[7] = bn_mul_add_words(&(r[3]), a, 4, b[3]); |
| 1026 | } |
| 1027 | |
| 1028 | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) |
| 1029 | { |
| 1030 | r[8] = bn_mul_words(&(r[0]), a, 8, b[0]); |
| 1031 | r[9] = bn_mul_add_words(&(r[1]), a, 8, b[1]); |
| 1032 | r[10] = bn_mul_add_words(&(r[2]), a, 8, b[2]); |
| 1033 | r[11] = bn_mul_add_words(&(r[3]), a, 8, b[3]); |
| 1034 | r[12] = bn_mul_add_words(&(r[4]), a, 8, b[4]); |
| 1035 | r[13] = bn_mul_add_words(&(r[5]), a, 8, b[5]); |
| 1036 | r[14] = bn_mul_add_words(&(r[6]), a, 8, b[6]); |
| 1037 | r[15] = bn_mul_add_words(&(r[7]), a, 8, b[7]); |
| 1038 | } |
| 1039 | |
| 1040 | # ifdef OPENSSL_NO_ASM |
| 1041 | # ifdef OPENSSL_BN_ASM_MONT |
| 1042 | # include <alloca.h> |
| 1043 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
| 1044 | const BN_ULONG *np, const BN_ULONG *n0p, int num) |
| 1045 | { |
| 1046 | BN_ULONG c0, c1, *tp, n0 = *n0p; |
| 1047 | volatile BN_ULONG *vp; |
| 1048 | int i = 0, j; |
| 1049 | |
| 1050 | vp = tp = alloca((num + 2) * sizeof(BN_ULONG)); |
| 1051 | |
| 1052 | for (i = 0; i <= num; i++) |
| 1053 | tp[i] = 0; |
| 1054 | |
| 1055 | for (i = 0; i < num; i++) { |
| 1056 | c0 = bn_mul_add_words(tp, ap, num, bp[i]); |
| 1057 | c1 = (tp[num] + c0) & BN_MASK2; |
| 1058 | tp[num] = c1; |
| 1059 | tp[num + 1] = (c1 < c0 ? 1 : 0); |
| 1060 | |
| 1061 | c0 = bn_mul_add_words(tp, np, num, tp[0] * n0); |
| 1062 | c1 = (tp[num] + c0) & BN_MASK2; |
| 1063 | tp[num] = c1; |
| 1064 | tp[num + 1] += (c1 < c0 ? 1 : 0); |
| 1065 | for (j = 0; j <= num; j++) |
| 1066 | tp[j] = tp[j + 1]; |
| 1067 | } |
| 1068 | |
| 1069 | if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) { |
| 1070 | c0 = bn_sub_words(rp, tp, np, num); |
| 1071 | if (tp[num] != 0 || c0 == 0) { |
| 1072 | for (i = 0; i < num + 2; i++) |
| 1073 | vp[i] = 0; |
| 1074 | return 1; |
| 1075 | } |
| 1076 | } |
| 1077 | for (i = 0; i < num; i++) |
| 1078 | rp[i] = tp[i], vp[i] = 0; |
| 1079 | vp[num] = 0; |
| 1080 | vp[num + 1] = 0; |
| 1081 | return 1; |
| 1082 | } |
| 1083 | # else |
| 1084 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
| 1085 | const BN_ULONG *np, const BN_ULONG *n0, int num) |
| 1086 | { |
| 1087 | return 0; |
| 1088 | } |
| 1089 | # endif /* OPENSSL_BN_ASM_MONT */ |
| 1090 | # endif |
| 1091 | |
| 1092 | #endif /* !BN_MUL_COMBA */ |
| 1093 | |