1 | /* crypto/bn/bn_lcl.h */ |
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
3 | * All rights reserved. |
4 | * |
5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * |
9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. |
22 | * |
23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions |
25 | * are met: |
26 | * 1. Redistributions of source code must retain the copyright |
27 | * notice, this list of conditions and the following disclaimer. |
28 | * 2. Redistributions in binary form must reproduce the above copyright |
29 | * notice, this list of conditions and the following disclaimer in the |
30 | * documentation and/or other materials provided with the distribution. |
31 | * 3. All advertising materials mentioning features or use of this software |
32 | * must display the following acknowledgement: |
33 | * "This product includes cryptographic software written by |
34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. |
52 | * |
53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence |
56 | * [including the GNU Public Licence.] |
57 | */ |
58 | /* ==================================================================== |
59 | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. |
60 | * |
61 | * Redistribution and use in source and binary forms, with or without |
62 | * modification, are permitted provided that the following conditions |
63 | * are met: |
64 | * |
65 | * 1. Redistributions of source code must retain the above copyright |
66 | * notice, this list of conditions and the following disclaimer. |
67 | * |
68 | * 2. Redistributions in binary form must reproduce the above copyright |
69 | * notice, this list of conditions and the following disclaimer in |
70 | * the documentation and/or other materials provided with the |
71 | * distribution. |
72 | * |
73 | * 3. All advertising materials mentioning features or use of this |
74 | * software must display the following acknowledgment: |
75 | * "This product includes software developed by the OpenSSL Project |
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
77 | * |
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
79 | * endorse or promote products derived from this software without |
80 | * prior written permission. For written permission, please contact |
81 | * openssl-core@openssl.org. |
82 | * |
83 | * 5. Products derived from this software may not be called "OpenSSL" |
84 | * nor may "OpenSSL" appear in their names without prior written |
85 | * permission of the OpenSSL Project. |
86 | * |
87 | * 6. Redistributions of any form whatsoever must retain the following |
88 | * acknowledgment: |
89 | * "This product includes software developed by the OpenSSL Project |
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
91 | * |
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
104 | * ==================================================================== |
105 | * |
106 | * This product includes cryptographic software written by Eric Young |
107 | * (eay@cryptsoft.com). This product includes software written by Tim |
108 | * Hudson (tjh@cryptsoft.com). |
109 | * |
110 | */ |
111 | |
112 | #ifndef HEADER_BN_LCL_H |
113 | # define |
114 | |
115 | # include "../bn/bn.h" |
116 | |
117 | /*- |
118 | * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions |
119 | * |
120 | * |
121 | * For window size 'w' (w >= 2) and a random 'b' bits exponent, |
122 | * the number of multiplications is a constant plus on average |
123 | * |
124 | * 2^(w-1) + (b-w)/(w+1); |
125 | * |
126 | * here 2^(w-1) is for precomputing the table (we actually need |
127 | * entries only for windows that have the lowest bit set), and |
128 | * (b-w)/(w+1) is an approximation for the expected number of |
129 | * w-bit windows, not counting the first one. |
130 | * |
131 | * Thus we should use |
132 | * |
133 | * w >= 6 if b > 671 |
134 | * w = 5 if 671 > b > 239 |
135 | * w = 4 if 239 > b > 79 |
136 | * w = 3 if 79 > b > 23 |
137 | * w <= 2 if 23 > b |
138 | * |
139 | * (with draws in between). Very small exponents are often selected |
140 | * with low Hamming weight, so we use w = 1 for b <= 23. |
141 | */ |
142 | # if 1 |
143 | # define BN_window_bits_for_exponent_size(b) \ |
144 | ((b) > 671 ? 6 : \ |
145 | (b) > 239 ? 5 : \ |
146 | (b) > 79 ? 4 : \ |
147 | (b) > 23 ? 3 : 1) |
148 | # else |
149 | /* |
150 | * Old SSLeay/OpenSSL table. Maximum window size was 5, so this table differs |
151 | * for b==1024; but it coincides for other interesting values (b==160, |
152 | * b==512). |
153 | */ |
154 | # define BN_window_bits_for_exponent_size(b) \ |
155 | ((b) > 255 ? 5 : \ |
156 | (b) > 127 ? 4 : \ |
157 | (b) > 17 ? 3 : 1) |
158 | # endif |
159 | |
160 | /* |
161 | * BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache |
162 | * line width of the target processor is at least the following value. |
163 | */ |
164 | # define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 ) |
165 | # define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1) |
166 | |
167 | /* |
168 | * Window sizes optimized for fixed window size modular exponentiation |
169 | * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of |
170 | * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed |
171 | * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are |
172 | * defined for cache line sizes of 32 and 64, cache line sizes where |
173 | * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be |
174 | * used on processors that have a 128 byte or greater cache line size. |
175 | */ |
176 | # if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64 |
177 | |
178 | # define BN_window_bits_for_ctime_exponent_size(b) \ |
179 | ((b) > 937 ? 6 : \ |
180 | (b) > 306 ? 5 : \ |
181 | (b) > 89 ? 4 : \ |
182 | (b) > 22 ? 3 : 1) |
183 | # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6) |
184 | |
185 | # elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32 |
186 | |
187 | # define BN_window_bits_for_ctime_exponent_size(b) \ |
188 | ((b) > 306 ? 5 : \ |
189 | (b) > 89 ? 4 : \ |
190 | (b) > 22 ? 3 : 1) |
191 | # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5) |
192 | |
193 | # endif |
194 | |
195 | /* Pentium pro 16,16,16,32,64 */ |
196 | /* Alpha 16,16,16,16.64 */ |
197 | # define BN_MULL_SIZE_NORMAL (16)/* 32 */ |
198 | # define BN_MUL_RECURSIVE_SIZE_NORMAL (16)/* 32 less than */ |
199 | # define BN_SQR_RECURSIVE_SIZE_NORMAL (16)/* 32 */ |
200 | # define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32)/* 32 */ |
201 | # define BN_MONT_CTX_SET_SIZE_WORD (64)/* 32 */ |
202 | |
203 | /* |
204 | * 2011-02-22 SMS. In various places, a size_t variable or a type cast to |
205 | * size_t was used to perform integer-only operations on pointers. This |
206 | * failed on VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t |
207 | * is still only 32 bits. What's needed in these cases is an integer type |
208 | * with the same size as a pointer, which size_t is not certain to be. The |
209 | * only fix here is VMS-specific. |
210 | */ |
211 | # if defined(OPENSSL_SYS_VMS) |
212 | # if __INITIAL_POINTER_SIZE == 64 |
213 | # define PTR_SIZE_INT long long |
214 | # else /* __INITIAL_POINTER_SIZE == 64 */ |
215 | # define PTR_SIZE_INT int |
216 | # endif /* __INITIAL_POINTER_SIZE == 64 [else] */ |
217 | # elif !defined(PTR_SIZE_INT) /* defined(OPENSSL_SYS_VMS) */ |
218 | # define PTR_SIZE_INT size_t |
219 | # endif /* defined(OPENSSL_SYS_VMS) [else] */ |
220 | |
221 | # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC) |
222 | /* |
223 | * BN_UMULT_HIGH section. |
224 | * |
225 | * No, I'm not trying to overwhelm you when stating that the |
226 | * product of N-bit numbers is 2*N bits wide:-) No, I don't expect |
227 | * you to be impressed when I say that if the compiler doesn't |
228 | * support 2*N integer type, then you have to replace every N*N |
229 | * multiplication with 4 (N/2)*(N/2) accompanied by some shifts |
230 | * and additions which unavoidably results in severe performance |
231 | * penalties. Of course provided that the hardware is capable of |
232 | * producing 2*N result... That's when you normally start |
233 | * considering assembler implementation. However! It should be |
234 | * pointed out that some CPUs (most notably Alpha, PowerPC and |
235 | * upcoming IA-64 family:-) provide *separate* instruction |
236 | * calculating the upper half of the product placing the result |
237 | * into a general purpose register. Now *if* the compiler supports |
238 | * inline assembler, then it's not impossible to implement the |
239 | * "bignum" routines (and have the compiler optimize 'em) |
240 | * exhibiting "native" performance in C. That's what BN_UMULT_HIGH |
241 | * macro is about:-) |
242 | * |
243 | * <appro@fy.chalmers.se> |
244 | */ |
245 | # if defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT)) |
246 | # if defined(__DECC) |
247 | # include <c_asm.h> |
248 | # define BN_UMULT_HIGH(a,b) (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b)) |
249 | # elif defined(__GNUC__) && __GNUC__>=2 |
250 | # define BN_UMULT_HIGH(a,b) ({ \ |
251 | register BN_ULONG ret; \ |
252 | asm ("umulh %1,%2,%0" \ |
253 | : "=r"(ret) \ |
254 | : "r"(a), "r"(b)); \ |
255 | ret; }) |
256 | # endif /* compiler */ |
257 | # elif defined(_ARCH_PPC) && defined(__64BIT__) && defined(SIXTY_FOUR_BIT_LONG) |
258 | # if defined(__GNUC__) && __GNUC__>=2 |
259 | # define BN_UMULT_HIGH(a,b) ({ \ |
260 | register BN_ULONG ret; \ |
261 | asm ("mulhdu %0,%1,%2" \ |
262 | : "=r"(ret) \ |
263 | : "r"(a), "r"(b)); \ |
264 | ret; }) |
265 | # endif /* compiler */ |
266 | # elif (defined(__x86_64) || defined(__x86_64__)) && \ |
267 | (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT)) |
268 | # if defined(__GNUC__) && __GNUC__>=2 |
269 | # define BN_UMULT_HIGH(a,b) ({ \ |
270 | register BN_ULONG ret,discard; \ |
271 | asm ("mulq %3" \ |
272 | : "=a"(discard),"=d"(ret) \ |
273 | : "a"(a), "g"(b) \ |
274 | : "cc"); \ |
275 | ret; }) |
276 | # define BN_UMULT_LOHI(low,high,a,b) \ |
277 | asm ("mulq %3" \ |
278 | : "=a"(low),"=d"(high) \ |
279 | : "a"(a),"g"(b) \ |
280 | : "cc"); |
281 | # endif |
282 | # elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT) |
283 | # if defined(_MSC_VER) && _MSC_VER>=1400 |
284 | unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b); |
285 | unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b, |
286 | unsigned __int64 *h); |
287 | # pragma intrinsic(__umulh,_umul128) |
288 | # define BN_UMULT_HIGH(a,b) __umulh((a),(b)) |
289 | # define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high))) |
290 | # endif |
291 | # elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)) |
292 | # if defined(__GNUC__) && __GNUC__>=2 |
293 | # if __GNUC__>4 || (__GNUC__>=4 && __GNUC_MINOR__>=4) |
294 | /* "h" constraint is no more since 4.4 */ |
295 | # define BN_UMULT_HIGH(a,b) (((__uint128_t)(a)*(b))>>64) |
296 | # define BN_UMULT_LOHI(low,high,a,b) ({ \ |
297 | __uint128_t ret=(__uint128_t)(a)*(b); \ |
298 | (high)=ret>>64; (low)=ret; }) |
299 | # else |
300 | # define BN_UMULT_HIGH(a,b) ({ \ |
301 | register BN_ULONG ret; \ |
302 | asm ("dmultu %1,%2" \ |
303 | : "=h"(ret) \ |
304 | : "r"(a), "r"(b) : "l"); \ |
305 | ret; }) |
306 | # define BN_UMULT_LOHI(low,high,a,b)\ |
307 | asm ("dmultu %2,%3" \ |
308 | : "=l"(low),"=h"(high) \ |
309 | : "r"(a), "r"(b)); |
310 | # endif |
311 | # endif |
312 | # elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG) |
313 | # if defined(__GNUC__) && __GNUC__>=2 |
314 | # define BN_UMULT_HIGH(a,b) ({ \ |
315 | register BN_ULONG ret; \ |
316 | asm ("umulh %0,%1,%2" \ |
317 | : "=r"(ret) \ |
318 | : "r"(a), "r"(b)); \ |
319 | ret; }) |
320 | # endif |
321 | # endif /* cpu */ |
322 | # endif /* OPENSSL_NO_ASM */ |
323 | |
324 | /************************************************************* |
325 | * Using the long long type |
326 | */ |
327 | # define Lw(t) (((BN_ULONG)(t))&BN_MASK2) |
328 | # define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2) |
329 | |
330 | # ifdef BN_DEBUG_RAND |
331 | # define bn_clear_top2max(a) \ |
332 | { \ |
333 | int ind = (a)->dmax - (a)->top; \ |
334 | BN_ULONG *ftl = &(a)->d[(a)->top-1]; \ |
335 | for (; ind != 0; ind--) \ |
336 | *(++ftl) = 0x0; \ |
337 | } |
338 | # else |
339 | # define bn_clear_top2max(a) |
340 | # endif |
341 | |
342 | # ifdef BN_LLONG |
343 | # define mul_add(r,a,w,c) { \ |
344 | BN_ULLONG t; \ |
345 | t=(BN_ULLONG)w * (a) + (r) + (c); \ |
346 | (r)= Lw(t); \ |
347 | (c)= Hw(t); \ |
348 | } |
349 | |
350 | # define mul(r,a,w,c) { \ |
351 | BN_ULLONG t; \ |
352 | t=(BN_ULLONG)w * (a) + (c); \ |
353 | (r)= Lw(t); \ |
354 | (c)= Hw(t); \ |
355 | } |
356 | |
357 | # define sqr(r0,r1,a) { \ |
358 | BN_ULLONG t; \ |
359 | t=(BN_ULLONG)(a)*(a); \ |
360 | (r0)=Lw(t); \ |
361 | (r1)=Hw(t); \ |
362 | } |
363 | |
364 | # elif defined(BN_UMULT_LOHI) |
365 | # define mul_add(r,a,w,c) { \ |
366 | BN_ULONG high,low,ret,tmp=(a); \ |
367 | ret = (r); \ |
368 | BN_UMULT_LOHI(low,high,w,tmp); \ |
369 | ret += (c); \ |
370 | (c) = (ret<(c))?1:0; \ |
371 | (c) += high; \ |
372 | ret += low; \ |
373 | (c) += (ret<low)?1:0; \ |
374 | (r) = ret; \ |
375 | } |
376 | |
377 | # define mul(r,a,w,c) { \ |
378 | BN_ULONG high,low,ret,ta=(a); \ |
379 | BN_UMULT_LOHI(low,high,w,ta); \ |
380 | ret = low + (c); \ |
381 | (c) = high; \ |
382 | (c) += (ret<low)?1:0; \ |
383 | (r) = ret; \ |
384 | } |
385 | |
386 | # define sqr(r0,r1,a) { \ |
387 | BN_ULONG tmp=(a); \ |
388 | BN_UMULT_LOHI(r0,r1,tmp,tmp); \ |
389 | } |
390 | |
391 | # elif defined(BN_UMULT_HIGH) |
392 | # define mul_add(r,a,w,c) { \ |
393 | BN_ULONG high,low,ret,tmp=(a); \ |
394 | ret = (r); \ |
395 | high= BN_UMULT_HIGH(w,tmp); \ |
396 | ret += (c); \ |
397 | low = (w) * tmp; \ |
398 | (c) = (ret<(c))?1:0; \ |
399 | (c) += high; \ |
400 | ret += low; \ |
401 | (c) += (ret<low)?1:0; \ |
402 | (r) = ret; \ |
403 | } |
404 | |
405 | # define mul(r,a,w,c) { \ |
406 | BN_ULONG high,low,ret,ta=(a); \ |
407 | low = (w) * ta; \ |
408 | high= BN_UMULT_HIGH(w,ta); \ |
409 | ret = low + (c); \ |
410 | (c) = high; \ |
411 | (c) += (ret<low)?1:0; \ |
412 | (r) = ret; \ |
413 | } |
414 | |
415 | # define sqr(r0,r1,a) { \ |
416 | BN_ULONG tmp=(a); \ |
417 | (r0) = tmp * tmp; \ |
418 | (r1) = BN_UMULT_HIGH(tmp,tmp); \ |
419 | } |
420 | |
421 | # else |
422 | /************************************************************* |
423 | * No long long type |
424 | */ |
425 | |
426 | # define LBITS(a) ((a)&BN_MASK2l) |
427 | # define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l) |
428 | # define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2) |
429 | |
430 | # define LLBITS(a) ((a)&BN_MASKl) |
431 | # define LHBITS(a) (((a)>>BN_BITS2)&BN_MASKl) |
432 | # define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2) |
433 | |
434 | # define mul64(l,h,bl,bh) \ |
435 | { \ |
436 | BN_ULONG m,m1,lt,ht; \ |
437 | \ |
438 | lt=l; \ |
439 | ht=h; \ |
440 | m =(bh)*(lt); \ |
441 | lt=(bl)*(lt); \ |
442 | m1=(bl)*(ht); \ |
443 | ht =(bh)*(ht); \ |
444 | m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \ |
445 | ht+=HBITS(m); \ |
446 | m1=L2HBITS(m); \ |
447 | lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \ |
448 | (l)=lt; \ |
449 | (h)=ht; \ |
450 | } |
451 | |
452 | # define sqr64(lo,ho,in) \ |
453 | { \ |
454 | BN_ULONG l,h,m; \ |
455 | \ |
456 | h=(in); \ |
457 | l=LBITS(h); \ |
458 | h=HBITS(h); \ |
459 | m =(l)*(h); \ |
460 | l*=l; \ |
461 | h*=h; \ |
462 | h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \ |
463 | m =(m&BN_MASK2l)<<(BN_BITS4+1); \ |
464 | l=(l+m)&BN_MASK2; if (l < m) h++; \ |
465 | (lo)=l; \ |
466 | (ho)=h; \ |
467 | } |
468 | |
469 | # define mul_add(r,a,bl,bh,c) { \ |
470 | BN_ULONG l,h; \ |
471 | \ |
472 | h= (a); \ |
473 | l=LBITS(h); \ |
474 | h=HBITS(h); \ |
475 | mul64(l,h,(bl),(bh)); \ |
476 | \ |
477 | /* non-multiply part */ \ |
478 | l=(l+(c))&BN_MASK2; if (l < (c)) h++; \ |
479 | (c)=(r); \ |
480 | l=(l+(c))&BN_MASK2; if (l < (c)) h++; \ |
481 | (c)=h&BN_MASK2; \ |
482 | (r)=l; \ |
483 | } |
484 | |
485 | # define mul(r,a,bl,bh,c) { \ |
486 | BN_ULONG l,h; \ |
487 | \ |
488 | h= (a); \ |
489 | l=LBITS(h); \ |
490 | h=HBITS(h); \ |
491 | mul64(l,h,(bl),(bh)); \ |
492 | \ |
493 | /* non-multiply part */ \ |
494 | l+=(c); if ((l&BN_MASK2) < (c)) h++; \ |
495 | (c)=h&BN_MASK2; \ |
496 | (r)=l&BN_MASK2; \ |
497 | } |
498 | # endif /* !BN_LLONG */ |
499 | |
500 | # if defined(OPENSSL_DOING_MAKEDEPEND) && defined(OPENSSL_FIPS) |
501 | # undef bn_div_words |
502 | # endif |
503 | |
504 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb); |
505 | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); |
506 | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); |
507 | void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp); |
508 | void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a); |
509 | void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a); |
510 | int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n); |
511 | int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl); |
512 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, |
513 | int dna, int dnb, BN_ULONG *t); |
514 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, |
515 | int n, int tna, int tnb, BN_ULONG *t); |
516 | void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t); |
517 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n); |
518 | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, |
519 | BN_ULONG *t); |
520 | void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, |
521 | BN_ULONG *t); |
522 | BN_ULONG bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
523 | int cl, int dl); |
524 | BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
525 | int cl, int dl); |
526 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
527 | const BN_ULONG *np, const BN_ULONG *n0, int num); |
528 | |
529 | #endif |
530 | |