| 1 | // Copyright 2009 Google Inc. All Rights Reserved. | 
|---|
| 2 |  | 
|---|
| 3 | #include "util/math/exactfloat/exactfloat.h" | 
|---|
| 4 |  | 
|---|
| 5 | #include <cstdarg> | 
|---|
| 6 | #include <cstddef> | 
|---|
| 7 | #include <cstdlib> | 
|---|
| 8 | #include <cstring> | 
|---|
| 9 | #include <cstdio> | 
|---|
| 10 |  | 
|---|
| 11 | #include <math.h> | 
|---|
| 12 | #include <algorithm> | 
|---|
| 13 | using std::min; | 
|---|
| 14 | using std::max; | 
|---|
| 15 | using std::swap; | 
|---|
| 16 | using std::reverse; | 
|---|
| 17 |  | 
|---|
| 18 | #include <limits> | 
|---|
| 19 | using std::numeric_limits; | 
|---|
| 20 |  | 
|---|
| 21 | #include "base/integral_types.h" | 
|---|
| 22 | #include "base/logging.h" | 
|---|
| 23 |  | 
|---|
| 24 | namespace bn { | 
|---|
| 25 | #include "bn/crypto.h" | 
|---|
| 26 | #include "bn/bn.c" | 
|---|
| 27 | #include "bn/bn_asm.c" | 
|---|
| 28 | #include "bn/bn_ctx.c" | 
|---|
| 29 | #include "bn/bn_mul.c" | 
|---|
| 30 | #include "bn/bn_sqr.c" | 
|---|
| 31 | } | 
|---|
| 32 |  | 
|---|
| 33 | using namespace bn; | 
|---|
| 34 |  | 
|---|
| 35 | // Define storage for constants. | 
|---|
| 36 | const int ExactFloat::kMinExp; | 
|---|
| 37 | const int ExactFloat::kMaxExp; | 
|---|
| 38 | const int ExactFloat::kMaxPrec; | 
|---|
| 39 | const int32 ExactFloat::kExpNaN; | 
|---|
| 40 | const int32 ExactFloat::kExpInfinity; | 
|---|
| 41 | const int32 ExactFloat::kExpZero; | 
|---|
| 42 | const int ExactFloat::kDoubleMantissaBits; | 
|---|
| 43 |  | 
|---|
| 44 | // To simplify the overflow/underflow logic, we limit the exponent and | 
|---|
| 45 | // precision range so that (2 * bn_exp_) does not overflow an "int".  We take | 
|---|
| 46 | // advantage of this, for example, by only checking for overflow/underflow | 
|---|
| 47 | // *after* multiplying two numbers. | 
|---|
| 48 | COMPILE_ASSERT( | 
|---|
| 49 | ExactFloat::kMaxExp <= INT_MAX / 2 && | 
|---|
| 50 | ExactFloat::kMinExp - ExactFloat::kMaxPrec >= INT_MIN / 2, | 
|---|
| 51 | exactfloat_exponent_might_overflow); | 
|---|
| 52 |  | 
|---|
| 53 | // We define a few simple extensions to the BIGNUM interface.  In some cases | 
|---|
| 54 | // these depend on BIGNUM internal fields, so they might require tweaking if | 
|---|
| 55 | // the BIGNUM implementation changes significantly. | 
|---|
| 56 |  | 
|---|
| 57 | // Set a BIGNUM to the given unsigned 64-bit value. | 
|---|
| 58 | inline static void BN_ext_set_uint64(BIGNUM* bn, uint64 v) { | 
|---|
| 59 | #if BN_BITS2 == 64 | 
|---|
| 60 | CHECK(BN_set_word(bn, v)); | 
|---|
| 61 | #else | 
|---|
| 62 | COMPILE_ASSERT(BN_BITS2 == 32, at_least_32_bit_openssl_build_needed); | 
|---|
| 63 | CHECK(BN_set_word(bn, static_cast<uint32>(v >> 32))); | 
|---|
| 64 | CHECK(BN_lshift(bn, bn, 32)); | 
|---|
| 65 | CHECK(BN_add_word(bn, static_cast<uint32>(v))); | 
|---|
| 66 | #endif | 
|---|
| 67 | } | 
|---|
| 68 |  | 
|---|
| 69 | // Return the absolute value of a BIGNUM as a 64-bit unsigned integer. | 
|---|
| 70 | // Requires that BIGNUM fits into 64 bits. | 
|---|
| 71 | inline static uint64 BN_ext_get_uint64(const BIGNUM* bn) { | 
|---|
| 72 | DCHECK_LE(BN_num_bytes(bn), sizeof(uint64)); | 
|---|
| 73 | #if BN_BITS2 == 64 | 
|---|
| 74 | return BN_get_word(bn); | 
|---|
| 75 | #else | 
|---|
| 76 | COMPILE_ASSERT(BN_BITS2 == 32, at_least_32_bit_openssl_build_needed); | 
|---|
| 77 | if (bn->top == 0) return 0; | 
|---|
| 78 | if (bn->top == 1) return BN_get_word(bn); | 
|---|
| 79 | DCHECK_EQ(bn->top, 2); | 
|---|
| 80 | return (static_cast<uint64>(bn->d[1]) << 32) + bn->d[0]; | 
|---|
| 81 | #endif | 
|---|
| 82 | } | 
|---|
| 83 |  | 
|---|
| 84 | // Count the number of low-order zero bits in the given BIGNUM (ignoring its | 
|---|
| 85 | // sign).  Returns 0 if the argument is zero. | 
|---|
| 86 | static int BN_ext_count_low_zero_bits(const BIGNUM* bn) { | 
|---|
| 87 | int count = 0; | 
|---|
| 88 | for (int i = 0; i < bn->top; ++i) { | 
|---|
| 89 | BN_ULONG w = bn->d[i]; | 
|---|
| 90 | if (w == 0) { | 
|---|
| 91 | count += 8 * sizeof(BN_ULONG); | 
|---|
| 92 | } else { | 
|---|
| 93 | for (; (w & 1) == 0; w >>= 1) { | 
|---|
| 94 | ++count; | 
|---|
| 95 | } | 
|---|
| 96 | break; | 
|---|
| 97 | } | 
|---|
| 98 | } | 
|---|
| 99 | return count; | 
|---|
| 100 | } | 
|---|
| 101 |  | 
|---|
| 102 | ExactFloat::ExactFloat(double v) { | 
|---|
| 103 | BN_init(&bn_); | 
|---|
| 104 | sign_ = signbit(v) ? -1 : 1; | 
|---|
| 105 | if (isnan(v)) { | 
|---|
| 106 | set_nan(); | 
|---|
| 107 | } else if (isinf(v)) { | 
|---|
| 108 | set_inf(sign_); | 
|---|
| 109 | } else { | 
|---|
| 110 | // The following code is much simpler than messing about with bit masks, | 
|---|
| 111 | // has the advantage of handling denormalized numbers and zero correctly, | 
|---|
| 112 | // and is actually quite efficient (at least compared to the rest of this | 
|---|
| 113 | // code).  "f" is a fraction in the range [0.5, 1), so if we shift it left | 
|---|
| 114 | // by the number of mantissa bits in a double (53, including the leading | 
|---|
| 115 | // "1") then the result is always an integer. | 
|---|
| 116 | int exp; | 
|---|
| 117 | double f = frexp(fabs(v), &exp); | 
|---|
| 118 | uint64 m = static_cast<uint64>(ldexp(f, kDoubleMantissaBits)); | 
|---|
| 119 | BN_ext_set_uint64(&bn_, m); | 
|---|
| 120 | bn_exp_ = exp - kDoubleMantissaBits; | 
|---|
| 121 | Canonicalize(); | 
|---|
| 122 | } | 
|---|
| 123 | } | 
|---|
| 124 |  | 
|---|
| 125 | ExactFloat::ExactFloat(int v) { | 
|---|
| 126 | BN_init(&bn_); | 
|---|
| 127 | sign_ = (v >= 0) ? 1 : -1; | 
|---|
| 128 | // Note that this works even for INT_MIN because the parameter type for | 
|---|
| 129 | // BN_set_word() is unsigned. | 
|---|
| 130 | CHECK(BN_set_word(&bn_, abs(v))); | 
|---|
| 131 | bn_exp_ = 0; | 
|---|
| 132 | Canonicalize(); | 
|---|
| 133 | } | 
|---|
| 134 |  | 
|---|
| 135 | ExactFloat::ExactFloat(const ExactFloat& b) | 
|---|
| 136 | : sign_(b.sign_), | 
|---|
| 137 | bn_exp_(b.bn_exp_) { | 
|---|
| 138 | BN_init(&bn_); | 
|---|
| 139 | BN_copy(&bn_, &b.bn_); | 
|---|
| 140 | } | 
|---|
| 141 |  | 
|---|
| 142 | ExactFloat ExactFloat::SignedZero(int sign) { | 
|---|
| 143 | ExactFloat r; | 
|---|
| 144 | r.set_zero(sign); | 
|---|
| 145 | return r; | 
|---|
| 146 | } | 
|---|
| 147 |  | 
|---|
| 148 | ExactFloat ExactFloat::Infinity(int sign) { | 
|---|
| 149 | ExactFloat r; | 
|---|
| 150 | r.set_inf(sign); | 
|---|
| 151 | return r; | 
|---|
| 152 | } | 
|---|
| 153 |  | 
|---|
| 154 | ExactFloat ExactFloat::NaN() { | 
|---|
| 155 | ExactFloat r; | 
|---|
| 156 | r.set_nan(); | 
|---|
| 157 | return r; | 
|---|
| 158 | } | 
|---|
| 159 |  | 
|---|
| 160 | int ExactFloat::prec() const { | 
|---|
| 161 | return BN_num_bits(&bn_); | 
|---|
| 162 | } | 
|---|
| 163 |  | 
|---|
| 164 | int ExactFloat::exp() const { | 
|---|
| 165 | DCHECK(is_normal()); | 
|---|
| 166 | return bn_exp_ + BN_num_bits(&bn_); | 
|---|
| 167 | } | 
|---|
| 168 |  | 
|---|
| 169 | void ExactFloat::set_zero(int sign) { | 
|---|
| 170 | sign_ = sign; | 
|---|
| 171 | bn_exp_ = kExpZero; | 
|---|
| 172 | if (!BN_is_zero(&bn_)) BN_zero(&bn_); | 
|---|
| 173 | } | 
|---|
| 174 |  | 
|---|
| 175 | void ExactFloat::set_inf(int sign) { | 
|---|
| 176 | sign_ = sign; | 
|---|
| 177 | bn_exp_ = kExpInfinity; | 
|---|
| 178 | if (!BN_is_zero(&bn_)) BN_zero(&bn_); | 
|---|
| 179 | } | 
|---|
| 180 |  | 
|---|
| 181 | void ExactFloat::set_nan() { | 
|---|
| 182 | sign_ = 1; | 
|---|
| 183 | bn_exp_ = kExpNaN; | 
|---|
| 184 | if (!BN_is_zero(&bn_)) BN_zero(&bn_); | 
|---|
| 185 | } | 
|---|
| 186 |  | 
|---|
| 187 | double ExactFloat::ToDouble() const { | 
|---|
| 188 | // If the mantissa has too many bits, we need to round it. | 
|---|
| 189 | if (prec() <= kDoubleMantissaBits) { | 
|---|
| 190 | return ToDoubleHelper(); | 
|---|
| 191 | } else { | 
|---|
| 192 | ExactFloat r = RoundToMaxPrec(kDoubleMantissaBits, kRoundTiesToEven); | 
|---|
| 193 | return r.ToDoubleHelper(); | 
|---|
| 194 | } | 
|---|
| 195 | } | 
|---|
| 196 |  | 
|---|
| 197 | double ExactFloat::ToDoubleHelper() const { | 
|---|
| 198 | DCHECK_LE(BN_num_bits(&bn_), kDoubleMantissaBits); | 
|---|
| 199 | if (!is_normal()) { | 
|---|
| 200 | if (is_zero()) return copysign(0, sign_); | 
|---|
| 201 | if (is_inf()) return copysign(INFINITY, sign_); | 
|---|
| 202 | return copysign(NAN, sign_); | 
|---|
| 203 | } | 
|---|
| 204 | uint64 d_mantissa = BN_ext_get_uint64(&bn_); | 
|---|
| 205 | // We rely on ldexp() to handle overflow and underflow.  (It will return a | 
|---|
| 206 | // signed zero or infinity if the result is too small or too large.) | 
|---|
| 207 | return sign_ * ldexp(static_cast<double>(d_mantissa), bn_exp_); | 
|---|
| 208 | } | 
|---|
| 209 |  | 
|---|
| 210 | ExactFloat ExactFloat::RoundToMaxPrec(int max_prec, RoundingMode mode) const { | 
|---|
| 211 | // The "kRoundTiesToEven" mode requires at least 2 bits of precision | 
|---|
| 212 | // (otherwise both adjacent representable values may be odd). | 
|---|
| 213 | DCHECK_GE(max_prec, 2); | 
|---|
| 214 | DCHECK_LE(max_prec, kMaxPrec); | 
|---|
| 215 |  | 
|---|
| 216 | // The following test also catches zero, infinity, and NaN. | 
|---|
| 217 | int shift = prec() - max_prec; | 
|---|
| 218 | if (shift <= 0) return *this; | 
|---|
| 219 |  | 
|---|
| 220 | // Round by removing the appropriate number of bits from the mantissa.  Note | 
|---|
| 221 | // that if the value is rounded up to a power of 2, the high-order bit | 
|---|
| 222 | // position may increase, but in that case Canonicalize() will remove at | 
|---|
| 223 | // least one zero bit and so the output will still have prec() <= max_prec. | 
|---|
| 224 | return RoundToPowerOf2(bn_exp_ + shift, mode); | 
|---|
| 225 | } | 
|---|
| 226 |  | 
|---|
| 227 | ExactFloat ExactFloat::RoundToPowerOf2(int bit_exp, RoundingMode mode) const { | 
|---|
| 228 | DCHECK_GE(bit_exp, kMinExp - kMaxPrec); | 
|---|
| 229 | DCHECK_LE(bit_exp, kMaxExp); | 
|---|
| 230 |  | 
|---|
| 231 | // If the exponent is already large enough, or the value is zero, infinity, | 
|---|
| 232 | // or NaN, then there is nothing to do. | 
|---|
| 233 | int shift = bit_exp - bn_exp_; | 
|---|
| 234 | if (shift <= 0) return *this; | 
|---|
| 235 | DCHECK(is_normal()); | 
|---|
| 236 |  | 
|---|
| 237 | // Convert rounding up/down to toward/away from zero, so that we don't need | 
|---|
| 238 | // to consider the sign of the number from this point onward. | 
|---|
| 239 | if (mode == kRoundTowardPositive) { | 
|---|
| 240 | mode = (sign_ > 0) ? kRoundAwayFromZero : kRoundTowardZero; | 
|---|
| 241 | } else if (mode == kRoundTowardNegative) { | 
|---|
| 242 | mode = (sign_ > 0) ? kRoundTowardZero : kRoundAwayFromZero; | 
|---|
| 243 | } | 
|---|
| 244 |  | 
|---|
| 245 | // Rounding consists of right-shifting the mantissa by "shift", and then | 
|---|
| 246 | // possibly incrementing the result (depending on the rounding mode, the | 
|---|
| 247 | // bits that were discarded, and sometimes the lowest kept bit).  The | 
|---|
| 248 | // following code figures out whether we need to increment. | 
|---|
| 249 | ExactFloat r; | 
|---|
| 250 | bool increment = false; | 
|---|
| 251 | if (mode == kRoundTowardZero) { | 
|---|
| 252 | // Never increment. | 
|---|
| 253 | } else if (mode == kRoundTiesAwayFromZero) { | 
|---|
| 254 | // Increment if the highest discarded bit is 1. | 
|---|
| 255 | if (BN_is_bit_set(&bn_, shift - 1)) | 
|---|
| 256 | increment = true; | 
|---|
| 257 | } else if (mode == kRoundAwayFromZero) { | 
|---|
| 258 | // Increment unless all discarded bits are zero. | 
|---|
| 259 | if (BN_ext_count_low_zero_bits(&bn_) < shift) | 
|---|
| 260 | increment = true; | 
|---|
| 261 | } else { | 
|---|
| 262 | DCHECK_EQ(mode, kRoundTiesToEven); | 
|---|
| 263 | // Let "w/xyz" denote a mantissa where "w" is the lowest kept bit and | 
|---|
| 264 | // "xyz" are the discarded bits.  Then using regexp notation: | 
|---|
| 265 | //    ./0.*       ->    Don't increment (fraction < 1/2) | 
|---|
| 266 | //    0/10*       ->    Don't increment (fraction = 1/2, kept part even) | 
|---|
| 267 | //    1/10*       ->    Increment (fraction = 1/2, kept part odd) | 
|---|
| 268 | //    ./1.*1.*    ->    Increment (fraction > 1/2) | 
|---|
| 269 | if (BN_is_bit_set(&bn_, shift - 1) && | 
|---|
| 270 | ((BN_is_bit_set(&bn_, shift) || | 
|---|
| 271 | BN_ext_count_low_zero_bits(&bn_) < shift - 1))) { | 
|---|
| 272 | increment = true; | 
|---|
| 273 | } | 
|---|
| 274 | } | 
|---|
| 275 | r.bn_exp_ = bn_exp_ + shift; | 
|---|
| 276 | CHECK(BN_rshift(&r.bn_, &bn_, shift)); | 
|---|
| 277 | if (increment) { | 
|---|
| 278 | CHECK(BN_add_word(&r.bn_, 1)); | 
|---|
| 279 | } | 
|---|
| 280 | r.sign_ = sign_; | 
|---|
| 281 | r.Canonicalize(); | 
|---|
| 282 | return r; | 
|---|
| 283 | } | 
|---|
| 284 |  | 
|---|
| 285 | int ExactFloat::NumSignificantDigitsForPrec(int prec) { | 
|---|
| 286 | // The simplest bound is | 
|---|
| 287 | // | 
|---|
| 288 | //    d <= 1 + ceil(prec * log10(2)) | 
|---|
| 289 | // | 
|---|
| 290 | // The following bound is tighter by 0.5 digits on average, but requires | 
|---|
| 291 | // the exponent to be known as well: | 
|---|
| 292 | // | 
|---|
| 293 | //    d <= ceil(exp * log10(2)) - floor((exp - prec) * log10(2)) | 
|---|
| 294 | // | 
|---|
| 295 | // Since either of these bounds can be too large by 0, 1, or 2 digits, we | 
|---|
| 296 | // stick with the simpler first bound. | 
|---|
| 297 | return static_cast<int>(1 + ceil(prec * (M_LN2 / M_LN10))); | 
|---|
| 298 | } | 
|---|
| 299 |  | 
|---|
| 300 | // Numbers are always formatted with at least this many significant digits. | 
|---|
| 301 | // This prevents small integers from being formatted in exponential notation | 
|---|
| 302 | // (e.g. 1024 formatted as 1e+03), and also avoids the confusion of having | 
|---|
| 303 | // supposedly "high precision" numbers formatted with just 1 or 2 digits | 
|---|
| 304 | // (e.g. 1/512 == 0.001953125 formatted as 0.002). | 
|---|
| 305 | static const int kMinSignificantDigits = 10; | 
|---|
| 306 |  | 
|---|
| 307 | string ExactFloat::ToString() const { | 
|---|
| 308 | int max_digits = max(kMinSignificantDigits, | 
|---|
| 309 | NumSignificantDigitsForPrec(prec())); | 
|---|
| 310 | return ToStringWithMaxDigits(max_digits); | 
|---|
| 311 | } | 
|---|
| 312 |  | 
|---|
| 313 | string ExactFloat::ToStringWithMaxDigits(int max_digits) const { | 
|---|
| 314 | DCHECK_GT(max_digits, 0); | 
|---|
| 315 | if (!is_normal()) { | 
|---|
| 316 | if (is_nan()) return "nan"; | 
|---|
| 317 | if (is_zero()) return (sign_ < 0) ? "-0": "0"; | 
|---|
| 318 | return (sign_ < 0) ? "-inf": "inf"; | 
|---|
| 319 | } | 
|---|
| 320 | string digits; | 
|---|
| 321 | int exp10 = GetDecimalDigits(max_digits, &digits); | 
|---|
| 322 | string str; | 
|---|
| 323 | if (sign_ < 0) str.push_back('-'); | 
|---|
| 324 |  | 
|---|
| 325 | // We use the standard '%g' formatting rules.  If the exponent is less than | 
|---|
| 326 | // -4 or greater than or equal to the requested precision (i.e., max_digits) | 
|---|
| 327 | // then we use exponential notation. | 
|---|
| 328 | // | 
|---|
| 329 | // But since "exp10" is the base-10 exponent corresponding to a mantissa in | 
|---|
| 330 | // the range [0.1, 1), whereas the '%g' rules assume a mantissa in the range | 
|---|
| 331 | // [1.0, 10), we need to adjust these parameters by 1. | 
|---|
| 332 | if (exp10 <= -4 || exp10 > max_digits) { | 
|---|
| 333 | // Use exponential format. | 
|---|
| 334 | str.push_back(digits[0]); | 
|---|
| 335 | if (digits.size() > 1) { | 
|---|
| 336 | str.push_back('.'); | 
|---|
| 337 | str.append(digits.begin() + 1, digits.end()); | 
|---|
| 338 | } | 
|---|
| 339 | char exp_buf[20]; | 
|---|
| 340 | sprintf(exp_buf, "e%+02d", exp10 - 1); | 
|---|
| 341 | str += exp_buf; | 
|---|
| 342 | } else { | 
|---|
| 343 | // Use fixed format.  We split this into two cases depending on whether | 
|---|
| 344 | // the integer portion is non-zero or not. | 
|---|
| 345 | if (exp10 > 0) { | 
|---|
| 346 | if ((size_t)exp10 >= digits.size()) { | 
|---|
| 347 | str += digits; | 
|---|
| 348 | for (int i = exp10 - digits.size(); i > 0; --i) { | 
|---|
| 349 | str.push_back('0'); | 
|---|
| 350 | } | 
|---|
| 351 | } else { | 
|---|
| 352 | str.append(digits.begin(), digits.begin() + exp10); | 
|---|
| 353 | str.push_back('.'); | 
|---|
| 354 | str.append(digits.begin() + exp10, digits.end()); | 
|---|
| 355 | } | 
|---|
| 356 | } else { | 
|---|
| 357 | str += "0."; | 
|---|
| 358 | for (int i = exp10; i < 0; ++i) { | 
|---|
| 359 | str.push_back('0'); | 
|---|
| 360 | } | 
|---|
| 361 | str += digits; | 
|---|
| 362 | } | 
|---|
| 363 | } | 
|---|
| 364 | return str; | 
|---|
| 365 | } | 
|---|
| 366 |  | 
|---|
| 367 | // Increment an unsigned integer represented as a string of ASCII digits. | 
|---|
| 368 | static void IncrementDecimalDigits(string* digits) { | 
|---|
| 369 | string::iterator pos = digits->end(); | 
|---|
| 370 | while (--pos >= digits->begin()) { | 
|---|
| 371 | if (*pos < '9') { ++*pos; return; } | 
|---|
| 372 | *pos = '0'; | 
|---|
| 373 | } | 
|---|
| 374 | digits->insert(0, "1"); | 
|---|
| 375 | } | 
|---|
| 376 |  | 
|---|
| 377 | int ExactFloat::GetDecimalDigits(int max_digits, string* digits) const { | 
|---|
| 378 | DCHECK(is_normal()); | 
|---|
| 379 | // Convert the value to the form (bn * (10 ** bn_exp10)) where "bn" is a | 
|---|
| 380 | // positive integer (BIGNUM). | 
|---|
| 381 | BIGNUM* bn = BN_new(); | 
|---|
| 382 | int bn_exp10; | 
|---|
| 383 | if (bn_exp_ >= 0) { | 
|---|
| 384 | // The easy case: bn = bn_ * (2 ** bn_exp_)), bn_exp10 = 0. | 
|---|
| 385 | CHECK(BN_lshift(bn, &bn_, bn_exp_)); | 
|---|
| 386 | bn_exp10 = 0; | 
|---|
| 387 | } else { | 
|---|
| 388 | // Set bn = bn_ * (5 ** -bn_exp_) and bn_exp10 = bn_exp_.  This is | 
|---|
| 389 | // equivalent to the original value of (bn_ * (2 ** bn_exp_)). | 
|---|
| 390 | BIGNUM* power = BN_new(); | 
|---|
| 391 | CHECK(BN_set_word(power, -bn_exp_)); | 
|---|
| 392 | CHECK(BN_set_word(bn, 5)); | 
|---|
| 393 | BN_CTX* ctx = BN_CTX_new(); | 
|---|
| 394 | CHECK(BN_exp(bn, bn, power, ctx)); | 
|---|
| 395 | CHECK(BN_mul(bn, bn, &bn_, ctx)); | 
|---|
| 396 | BN_CTX_free(ctx); | 
|---|
| 397 | BN_free(power); | 
|---|
| 398 | bn_exp10 = bn_exp_; | 
|---|
| 399 | } | 
|---|
| 400 | // Now convert "bn" to a decimal string. | 
|---|
| 401 | char* all_digits = BN_bn2dec(bn); | 
|---|
| 402 | DCHECK(all_digits != NULL); | 
|---|
| 403 | BN_free(bn); | 
|---|
| 404 | // Check whether we have too many digits and round if necessary. | 
|---|
| 405 | int num_digits = strlen(all_digits); | 
|---|
| 406 | if (num_digits <= max_digits) { | 
|---|
| 407 | *digits = all_digits; | 
|---|
| 408 | } else { | 
|---|
| 409 | digits->assign(all_digits, max_digits); | 
|---|
| 410 | // Standard "printf" formatting rounds ties to an even number.  This means | 
|---|
| 411 | // that we round up (away from zero) if highest discarded digit is '5' or | 
|---|
| 412 | // more, unless all other discarded digits are zero in which case we round | 
|---|
| 413 | // up only if the lowest kept digit is odd. | 
|---|
| 414 | if (all_digits[max_digits] >= '5' && | 
|---|
| 415 | ((all_digits[max_digits-1] & 1) == 1 || | 
|---|
| 416 | strpbrk(all_digits + max_digits + 1, "123456789") != NULL)) { | 
|---|
| 417 | // This can increase the number of digits by 1, but in that case at | 
|---|
| 418 | // least one trailing zero will be stripped off below. | 
|---|
| 419 | IncrementDecimalDigits(digits); | 
|---|
| 420 | } | 
|---|
| 421 | // Adjust the base-10 exponent to reflect the digits we have removed. | 
|---|
| 422 | bn_exp10 += num_digits - max_digits; | 
|---|
| 423 | } | 
|---|
| 424 | OPENSSL_free(all_digits); | 
|---|
| 425 |  | 
|---|
| 426 | // Now strip any trailing zeros. | 
|---|
| 427 | DCHECK_NE((*digits)[0], '0'); | 
|---|
| 428 | string::iterator pos = digits->end(); | 
|---|
| 429 | while (pos[-1] == '0') --pos; | 
|---|
| 430 | if (pos < digits->end()) { | 
|---|
| 431 | bn_exp10 += digits->end() - pos; | 
|---|
| 432 | digits->erase(pos, digits->end()); | 
|---|
| 433 | } | 
|---|
| 434 | DCHECK_LE(digits->size(), max_digits); | 
|---|
| 435 |  | 
|---|
| 436 | // Finally, we adjust the base-10 exponent so that the mantissa is a | 
|---|
| 437 | // fraction in the range [0.1, 1) rather than an integer. | 
|---|
| 438 | return bn_exp10 + digits->size(); | 
|---|
| 439 | } | 
|---|
| 440 |  | 
|---|
| 441 | string ExactFloat::ToUniqueString() const { | 
|---|
| 442 | char prec_buf[20]; | 
|---|
| 443 | sprintf(prec_buf, "<%d>", prec()); | 
|---|
| 444 | return ToString() + prec_buf; | 
|---|
| 445 | } | 
|---|
| 446 |  | 
|---|
| 447 | ExactFloat& ExactFloat::operator=(const ExactFloat& b) { | 
|---|
| 448 | if (this != &b) { | 
|---|
| 449 | sign_ = b.sign_; | 
|---|
| 450 | bn_exp_ = b.bn_exp_; | 
|---|
| 451 | BN_copy(&bn_, &b.bn_); | 
|---|
| 452 | } | 
|---|
| 453 | return *this; | 
|---|
| 454 | } | 
|---|
| 455 |  | 
|---|
| 456 | ExactFloat ExactFloat::operator-() const { | 
|---|
| 457 | return CopyWithSign(-sign_); | 
|---|
| 458 | } | 
|---|
| 459 |  | 
|---|
| 460 | ExactFloat operator+(const ExactFloat& a, const ExactFloat& b) { | 
|---|
| 461 | return ExactFloat::SignedSum(a.sign_, &a, b.sign_, &b); | 
|---|
| 462 | } | 
|---|
| 463 |  | 
|---|
| 464 | ExactFloat operator-(const ExactFloat& a, const ExactFloat& b) { | 
|---|
| 465 | return ExactFloat::SignedSum(a.sign_, &a, -b.sign_, &b); | 
|---|
| 466 | } | 
|---|
| 467 |  | 
|---|
| 468 | ExactFloat ExactFloat::SignedSum(int a_sign, const ExactFloat* a, | 
|---|
| 469 | int b_sign, const ExactFloat* b) { | 
|---|
| 470 | if (!a->is_normal() || !b->is_normal()) { | 
|---|
| 471 | // Handle zero, infinity, and NaN according to IEEE 754-2008. | 
|---|
| 472 | if (a->is_nan()) return *a; | 
|---|
| 473 | if (b->is_nan()) return *b; | 
|---|
| 474 | if (a->is_inf()) { | 
|---|
| 475 | // Adding two infinities with opposite sign yields NaN. | 
|---|
| 476 | if (b->is_inf() && a_sign != b_sign) return NaN(); | 
|---|
| 477 | return Infinity(a_sign); | 
|---|
| 478 | } | 
|---|
| 479 | if (b->is_inf()) return Infinity(b_sign); | 
|---|
| 480 | if (a->is_zero()) { | 
|---|
| 481 | if (!b->is_zero()) return b->CopyWithSign(b_sign); | 
|---|
| 482 | // Adding two zeros with the same sign preserves the sign. | 
|---|
| 483 | if (a_sign == b_sign) return SignedZero(a_sign); | 
|---|
| 484 | // Adding two zeros of opposite sign produces +0. | 
|---|
| 485 | return SignedZero(+1); | 
|---|
| 486 | } | 
|---|
| 487 | DCHECK(b->is_zero()); | 
|---|
| 488 | return a->CopyWithSign(a_sign); | 
|---|
| 489 | } | 
|---|
| 490 | // Swap the numbers if necessary so that "a" has the larger bn_exp_. | 
|---|
| 491 | if (a->bn_exp_ < b->bn_exp_) { | 
|---|
| 492 | swap(a_sign, b_sign); | 
|---|
| 493 | swap(a, b); | 
|---|
| 494 | } | 
|---|
| 495 | // Shift "a" if necessary so that both values have the same bn_exp_. | 
|---|
| 496 | ExactFloat r; | 
|---|
| 497 | if (a->bn_exp_ > b->bn_exp_) { | 
|---|
| 498 | CHECK(BN_lshift(&r.bn_, &a->bn_, a->bn_exp_ - b->bn_exp_)); | 
|---|
| 499 | a = &r;  // The only field of "a" used below is bn_. | 
|---|
| 500 | } | 
|---|
| 501 | r.bn_exp_ = b->bn_exp_; | 
|---|
| 502 | if (a_sign == b_sign) { | 
|---|
| 503 | CHECK(BN_add(&r.bn_, &a->bn_, &b->bn_)); | 
|---|
| 504 | r.sign_ = a_sign; | 
|---|
| 505 | } else { | 
|---|
| 506 | // Note that the BIGNUM documentation is out of date -- all methods now | 
|---|
| 507 | // allow the result to be the same as any input argument, so it is okay if | 
|---|
| 508 | // (a == &r) due to the shift above. | 
|---|
| 509 | CHECK(BN_sub(&r.bn_, &a->bn_, &b->bn_)); | 
|---|
| 510 | if (BN_is_zero(&r.bn_)) { | 
|---|
| 511 | r.sign_ = +1; | 
|---|
| 512 | } else if (BN_is_negative(&r.bn_)) { | 
|---|
| 513 | // The magnitude of "b" was larger. | 
|---|
| 514 | r.sign_ = b_sign; | 
|---|
| 515 | BN_set_negative(&r.bn_, false); | 
|---|
| 516 | } else { | 
|---|
| 517 | // They were equal, or the magnitude of "a" was larger. | 
|---|
| 518 | r.sign_ = a_sign; | 
|---|
| 519 | } | 
|---|
| 520 | } | 
|---|
| 521 | r.Canonicalize(); | 
|---|
| 522 | return r; | 
|---|
| 523 | } | 
|---|
| 524 |  | 
|---|
| 525 | void ExactFloat::Canonicalize() { | 
|---|
| 526 | if (!is_normal()) return; | 
|---|
| 527 |  | 
|---|
| 528 | // Underflow/overflow occurs if exp() is not in [kMinExp, kMaxExp]. | 
|---|
| 529 | // We also convert a zero mantissa to signed zero. | 
|---|
| 530 | int my_exp = exp(); | 
|---|
| 531 | if (my_exp < kMinExp || BN_is_zero(&bn_)) { | 
|---|
| 532 | set_zero(sign_); | 
|---|
| 533 | } else if (my_exp > kMaxExp) { | 
|---|
| 534 | set_inf(sign_); | 
|---|
| 535 | } else if (!BN_is_odd(&bn_)) { | 
|---|
| 536 | // Remove any low-order zero bits from the mantissa. | 
|---|
| 537 | DCHECK(!BN_is_zero(&bn_)); | 
|---|
| 538 | int shift = BN_ext_count_low_zero_bits(&bn_); | 
|---|
| 539 | if (shift > 0) { | 
|---|
| 540 | CHECK(BN_rshift(&bn_, &bn_, shift)); | 
|---|
| 541 | bn_exp_ += shift; | 
|---|
| 542 | } | 
|---|
| 543 | } | 
|---|
| 544 | // If the mantissa has too many bits, we replace it by NaN to indicate | 
|---|
| 545 | // that an inexact calculation has occurred. | 
|---|
| 546 | if (prec() > kMaxPrec) { | 
|---|
| 547 | set_nan(); | 
|---|
| 548 | } | 
|---|
| 549 | } | 
|---|
| 550 |  | 
|---|
| 551 | ExactFloat operator*(const ExactFloat& a, const ExactFloat& b) { | 
|---|
| 552 | int result_sign = a.sign_ * b.sign_; | 
|---|
| 553 | if (!a.is_normal() || !b.is_normal()) { | 
|---|
| 554 | // Handle zero, infinity, and NaN according to IEEE 754-2008. | 
|---|
| 555 | if (a.is_nan()) return a; | 
|---|
| 556 | if (b.is_nan()) return b; | 
|---|
| 557 | if (a.is_inf()) { | 
|---|
| 558 | // Infinity times zero yields NaN. | 
|---|
| 559 | if (b.is_zero()) return ExactFloat::NaN(); | 
|---|
| 560 | return ExactFloat::Infinity(result_sign); | 
|---|
| 561 | } | 
|---|
| 562 | if (b.is_inf()) { | 
|---|
| 563 | if (a.is_zero()) return ExactFloat::NaN(); | 
|---|
| 564 | return ExactFloat::Infinity(result_sign); | 
|---|
| 565 | } | 
|---|
| 566 | DCHECK(a.is_zero() || b.is_zero()); | 
|---|
| 567 | return ExactFloat::SignedZero(result_sign); | 
|---|
| 568 | } | 
|---|
| 569 | ExactFloat r; | 
|---|
| 570 | r.sign_ = result_sign; | 
|---|
| 571 | r.bn_exp_ = a.bn_exp_ + b.bn_exp_; | 
|---|
| 572 | BN_CTX* ctx = BN_CTX_new(); | 
|---|
| 573 | CHECK(BN_mul(&r.bn_, &a.bn_, &b.bn_, ctx)); | 
|---|
| 574 | BN_CTX_free(ctx); | 
|---|
| 575 | r.Canonicalize(); | 
|---|
| 576 | return r; | 
|---|
| 577 | } | 
|---|
| 578 |  | 
|---|
| 579 | bool operator==(const ExactFloat& a, const ExactFloat& b) { | 
|---|
| 580 | // NaN is not equal to anything, not even itself. | 
|---|
| 581 | if (a.is_nan() || b.is_nan()) return false; | 
|---|
| 582 |  | 
|---|
| 583 | // Since Canonicalize() strips low-order zero bits, all other cases | 
|---|
| 584 | // (including non-normal values) require bn_exp_ to be equal. | 
|---|
| 585 | if (a.bn_exp_ != b.bn_exp_) return false; | 
|---|
| 586 |  | 
|---|
| 587 | // Positive and negative zero are equal. | 
|---|
| 588 | if (a.is_zero() && b.is_zero()) return true; | 
|---|
| 589 |  | 
|---|
| 590 | // Otherwise, the signs and mantissas must match.  Note that non-normal | 
|---|
| 591 | // values such as infinity have a mantissa of zero. | 
|---|
| 592 | return a.sign_ == b.sign_ && BN_ucmp(&a.bn_, &b.bn_) == 0; | 
|---|
| 593 | } | 
|---|
| 594 |  | 
|---|
| 595 | int ExactFloat::ScaleAndCompare(const ExactFloat& b) const { | 
|---|
| 596 | DCHECK(is_normal() && b.is_normal() && bn_exp_ >= b.bn_exp_); | 
|---|
| 597 | ExactFloat tmp = *this; | 
|---|
| 598 | CHECK(BN_lshift(&tmp.bn_, &tmp.bn_, bn_exp_ - b.bn_exp_)); | 
|---|
| 599 | return BN_ucmp(&tmp.bn_, &b.bn_); | 
|---|
| 600 | } | 
|---|
| 601 |  | 
|---|
| 602 | bool ExactFloat::UnsignedLess(const ExactFloat& b) const { | 
|---|
| 603 | // Handle the zero/infinity cases (NaN has already been done). | 
|---|
| 604 | if (is_inf() || b.is_zero()) return false; | 
|---|
| 605 | if (is_zero() || b.is_inf()) return true; | 
|---|
| 606 | // If the high-order bit positions differ, we are done. | 
|---|
| 607 | int cmp = exp() - b.exp(); | 
|---|
| 608 | if (cmp != 0) return cmp < 0; | 
|---|
| 609 | // Otherwise shift one of the two values so that they both have the same | 
|---|
| 610 | // bn_exp_ and then compare the mantissas. | 
|---|
| 611 | return (bn_exp_ >= b.bn_exp_ ? | 
|---|
| 612 | ScaleAndCompare(b) < 0 : b.ScaleAndCompare(*this) > 0); | 
|---|
| 613 | } | 
|---|
| 614 |  | 
|---|
| 615 | bool operator<(const ExactFloat& a, const ExactFloat& b) { | 
|---|
| 616 | // NaN is unordered compared to everything, including itself. | 
|---|
| 617 | if (a.is_nan() || b.is_nan()) return false; | 
|---|
| 618 | // Positive and negative zero are equal. | 
|---|
| 619 | if (a.is_zero() && b.is_zero()) return false; | 
|---|
| 620 | // Otherwise, anything negative is less than anything positive. | 
|---|
| 621 | if (a.sign_ != b.sign_) return a.sign_ < b.sign_; | 
|---|
| 622 | // Now we just compare absolute values. | 
|---|
| 623 | return (a.sign_ > 0) ? a.UnsignedLess(b) : b.UnsignedLess(a); | 
|---|
| 624 | } | 
|---|
| 625 |  | 
|---|
| 626 | ExactFloat fabs(const ExactFloat& a) { | 
|---|
| 627 | return a.CopyWithSign(+1); | 
|---|
| 628 | } | 
|---|
| 629 |  | 
|---|
| 630 | ExactFloat fmax(const ExactFloat& a, const ExactFloat& b) { | 
|---|
| 631 | // If one argument is NaN, return the other argument. | 
|---|
| 632 | if (a.is_nan()) return b; | 
|---|
| 633 | if (b.is_nan()) return a; | 
|---|
| 634 | // Not required by IEEE 754, but we prefer +0 over -0. | 
|---|
| 635 | if (a.sign_ != b.sign_) { | 
|---|
| 636 | return (a.sign_ < b.sign_) ? b : a; | 
|---|
| 637 | } | 
|---|
| 638 | return (a < b) ? b : a; | 
|---|
| 639 | } | 
|---|
| 640 |  | 
|---|
| 641 | ExactFloat fmin(const ExactFloat& a, const ExactFloat& b) { | 
|---|
| 642 | // If one argument is NaN, return the other argument. | 
|---|
| 643 | if (a.is_nan()) return b; | 
|---|
| 644 | if (b.is_nan()) return a; | 
|---|
| 645 | // Not required by IEEE 754, but we prefer -0 over +0. | 
|---|
| 646 | if (a.sign_ != b.sign_) { | 
|---|
| 647 | return (a.sign_ < b.sign_) ? a : b; | 
|---|
| 648 | } | 
|---|
| 649 | return (a < b) ? a : b; | 
|---|
| 650 | } | 
|---|
| 651 |  | 
|---|
| 652 | ExactFloat fdim(const ExactFloat& a, const ExactFloat& b) { | 
|---|
| 653 | // This formulation has the correct behavior for NaNs. | 
|---|
| 654 | return (a <= b) ? 0 : (a - b); | 
|---|
| 655 | } | 
|---|
| 656 |  | 
|---|
| 657 | ExactFloat ceil(const ExactFloat& a) { | 
|---|
| 658 | return a.RoundToPowerOf2(0, ExactFloat::kRoundTowardPositive); | 
|---|
| 659 | } | 
|---|
| 660 |  | 
|---|
| 661 | ExactFloat floor(const ExactFloat& a) { | 
|---|
| 662 | return a.RoundToPowerOf2(0, ExactFloat::kRoundTowardNegative); | 
|---|
| 663 | } | 
|---|
| 664 |  | 
|---|
| 665 | ExactFloat trunc(const ExactFloat& a) { | 
|---|
| 666 | return a.RoundToPowerOf2(0, ExactFloat::kRoundTowardZero); | 
|---|
| 667 | } | 
|---|
| 668 |  | 
|---|
| 669 | ExactFloat round(const ExactFloat& a) { | 
|---|
| 670 | return a.RoundToPowerOf2(0, ExactFloat::kRoundTiesAwayFromZero); | 
|---|
| 671 | } | 
|---|
| 672 |  | 
|---|
| 673 | ExactFloat rint(const ExactFloat& a) { | 
|---|
| 674 | return a.RoundToPowerOf2(0, ExactFloat::kRoundTiesToEven); | 
|---|
| 675 | } | 
|---|
| 676 |  | 
|---|
| 677 | template <class T> | 
|---|
| 678 | T ExactFloat::ToInteger(RoundingMode mode) const { | 
|---|
| 679 | COMPILE_ASSERT(sizeof(T) <= sizeof(uint64), max_64_bits_supported); | 
|---|
| 680 | COMPILE_ASSERT(numeric_limits<T>::is_signed, only_signed_types_supported); | 
|---|
| 681 | const int64 kMinValue = numeric_limits<T>::min(); | 
|---|
| 682 | const int64 kMaxValue = numeric_limits<T>::max(); | 
|---|
| 683 |  | 
|---|
| 684 | ExactFloat r = RoundToPowerOf2(0, mode); | 
|---|
| 685 | if (r.is_nan()) return kMaxValue; | 
|---|
| 686 | if (r.is_zero()) return 0; | 
|---|
| 687 | if (!r.is_inf()) { | 
|---|
| 688 | // If the unsigned value has more than 63 bits it is always clamped. | 
|---|
| 689 | if (r.exp() < 64) { | 
|---|
| 690 | int64 value = BN_ext_get_uint64(&r.bn_) << r.bn_exp_; | 
|---|
| 691 | if (r.sign_ < 0) value = -value; | 
|---|
| 692 | return max(kMinValue, min(kMaxValue, value)); | 
|---|
| 693 | } | 
|---|
| 694 | } | 
|---|
| 695 | return (r.sign_ < 0) ? kMinValue : kMaxValue; | 
|---|
| 696 | } | 
|---|
| 697 |  | 
|---|
| 698 | long lrint(const ExactFloat& a) { | 
|---|
| 699 | return a.ToInteger<long>(ExactFloat::kRoundTiesToEven); | 
|---|
| 700 | } | 
|---|
| 701 |  | 
|---|
| 702 | long long llrint(const ExactFloat& a) { | 
|---|
| 703 | return a.ToInteger<long long>(ExactFloat::kRoundTiesToEven); | 
|---|
| 704 | } | 
|---|
| 705 |  | 
|---|
| 706 | long lround(const ExactFloat& a) { | 
|---|
| 707 | return a.ToInteger<long>(ExactFloat::kRoundTiesAwayFromZero); | 
|---|
| 708 | } | 
|---|
| 709 |  | 
|---|
| 710 | long long llround(const ExactFloat& a) { | 
|---|
| 711 | return a.ToInteger<long long>(ExactFloat::kRoundTiesAwayFromZero); | 
|---|
| 712 | } | 
|---|
| 713 |  | 
|---|
| 714 | ExactFloat copysign(const ExactFloat& a, const ExactFloat& b) { | 
|---|
| 715 | return a.CopyWithSign(b.sign_); | 
|---|
| 716 | } | 
|---|
| 717 |  | 
|---|
| 718 | ExactFloat frexp(const ExactFloat& a, int* exp) { | 
|---|
| 719 | if (!a.is_normal()) { | 
|---|
| 720 | // If a == 0, exp should be zero.  If a.is_inf() or a.is_nan(), exp is not | 
|---|
| 721 | // defined but the glibc implementation returns zero. | 
|---|
| 722 | *exp = 0; | 
|---|
| 723 | return a; | 
|---|
| 724 | } | 
|---|
| 725 | *exp = a.exp(); | 
|---|
| 726 | return ldexp(a, -a.exp()); | 
|---|
| 727 | } | 
|---|
| 728 |  | 
|---|
| 729 | ExactFloat ldexp(const ExactFloat& a, int exp) { | 
|---|
| 730 | if (!a.is_normal()) return a; | 
|---|
| 731 |  | 
|---|
| 732 | // To prevent integer overflow, we first clamp "exp" so that | 
|---|
| 733 | // (kMinExp - 1) <= (a_exp + exp) <= (kMaxExp + 1). | 
|---|
| 734 | int a_exp = a.exp(); | 
|---|
| 735 | exp = min(ExactFloat::kMaxExp + 1 - a_exp, | 
|---|
| 736 | max(ExactFloat::kMinExp - 1 + a_exp, exp)); | 
|---|
| 737 |  | 
|---|
| 738 | // Now modify the exponent and check for overflow/underflow. | 
|---|
| 739 | ExactFloat r = a; | 
|---|
| 740 | r.bn_exp_ += exp; | 
|---|
| 741 | r.Canonicalize(); | 
|---|
| 742 | return r; | 
|---|
| 743 | } | 
|---|
| 744 |  | 
|---|
| 745 | int ilogb(const ExactFloat& a) { | 
|---|
| 746 | if (a.is_zero()) return FP_ILOGB0; | 
|---|
| 747 | if (a.is_inf()) return INT_MAX; | 
|---|
| 748 | if (a.is_nan()) return FP_ILOGBNAN; | 
|---|
| 749 | // a.exp() assumes the significand is in the range [0.5, 1). | 
|---|
| 750 | return a.exp() - 1; | 
|---|
| 751 | } | 
|---|
| 752 |  | 
|---|
| 753 | ExactFloat logb(const ExactFloat& a) { | 
|---|
| 754 | if (a.is_zero()) return ExactFloat::Infinity(-1); | 
|---|
| 755 | if (a.is_inf()) return ExactFloat::Infinity(+1);  // Even if a < 0. | 
|---|
| 756 | if (a.is_nan()) return a; | 
|---|
| 757 | // exp() assumes the significand is in the range [0.5,1). | 
|---|
| 758 | return ExactFloat(a.exp() - 1); | 
|---|
| 759 | } | 
|---|
| 760 |  | 
|---|
| 761 | ExactFloat ExactFloat::Unimplemented() { | 
|---|
| 762 | LOG(FATAL) << "Unimplemented ExactFloat method called"; | 
|---|
| 763 | return NaN(); | 
|---|
| 764 | } | 
|---|
| 765 |  | 
|---|