1 | // Copyright 2003 Google, Inc. |
2 | // All Rights Reserved. |
3 | // |
4 | // |
5 | // A simple class to handle vectors in 4D |
6 | // See the vector4-inl.h file for more details |
7 | |
8 | |
9 | #ifndef UTIL_MATH_VECTOR4_H__ |
10 | #define UTIL_MATH_VECTOR4_H__ |
11 | |
12 | #include <iostream> |
13 | using std::ostream; |
14 | using std::cout; |
15 | using std::endl; |
16 | // NOLINT(readability/streams) |
17 | #include "base/basictypes.h" |
18 | |
19 | template <typename VType> class Vector4; |
20 | // TODO(user): Look into creating conversion operators to remove the |
21 | // need to forward-declare Vector2 and Vector3. |
22 | template <typename VType> class Vector2; |
23 | template <typename VType> class Vector3; |
24 | |
25 | // Template class for 4D vectors |
26 | template <typename VType> |
27 | class Vector4 { |
28 | private: |
29 | VType c_[4]; |
30 | |
31 | // FloatType is the type returned by Norm(). This method is special because |
32 | // it returns floating-point values even when VType is an integer. |
33 | typedef typename base::if_<base::is_integral<VType>::value, |
34 | double, VType>::type FloatType; |
35 | |
36 | public: |
37 | typedef Vector4<VType> Self; |
38 | typedef VType BaseType; |
39 | // Create a new vector (0,0) |
40 | Vector4(); |
41 | // Create a new vector (x,y,z,w) |
42 | Vector4(const VType x, const VType y, const VType z, const VType w); |
43 | // Create a new copy of the vector vb |
44 | Vector4(const Self &vb); |
45 | // Create a new 4D vector from 2D vector and two scalars |
46 | // (vb.x,vb.y,z,w) |
47 | Vector4(const Vector2<VType> &vb, const VType z, const VType w); |
48 | // Create a 4D vector from two 2D vectors (vb1.x,vb1.y,vb2.x,vb2.y) |
49 | Vector4(const Vector2<VType> &vb1, const Vector2<VType> &vb2); |
50 | // Create a new 4D vector from 3D vector and scalar |
51 | // (vb.x,vb.y,vb.z,w) |
52 | Vector4(const Vector3<VType> &vb, const VType w); |
53 | // Convert from another vector type |
54 | template <typename VType2> |
55 | static Self Cast(const Vector4<VType2> &vb); |
56 | // Compare two vectors, return true if all their components are equal |
57 | bool operator==(const Self& vb) const; |
58 | bool operator!=(const Self& vb) const; |
59 | // Compare two vectors, return true if all their components are within |
60 | // a difference of margin. |
61 | bool aequal(const Self &vb, FloatType margin) const; |
62 | // Compare two vectors, these comparisons are mostly for interaction |
63 | // with STL. |
64 | bool operator<(const Self &vb) const; |
65 | bool operator>(const Self &vb) const; |
66 | bool operator<=(const Self &vb) const; |
67 | bool operator>=(const Self &vb) const; |
68 | |
69 | // Return the size of the vector |
70 | static int Size() { return 4; } |
71 | // Modify the coordinates of the current vector |
72 | void Set(const VType x, const VType y, const VType z, const VType w); |
73 | Self& operator=(const Self& vb); |
74 | // add two vectors, component by component |
75 | Self& operator+=(const Self& vb); |
76 | // subtract two vectors, component by component |
77 | Self& operator-=(const Self& vb); |
78 | // multiply a vector by a scalar |
79 | Self& operator*=(const VType k); |
80 | // divide a vector by a scalar : implemented that way for integer vectors |
81 | Self& operator/=(const VType k); |
82 | // multiply two vectors component by component |
83 | Self MulComponents(const Self &vb) const; |
84 | // divide two vectors component by component |
85 | Self DivComponents(const Self &vb) const; |
86 | // add two vectors, component by component |
87 | Self operator+(const Self &vb) const; |
88 | // subtract two vectors, component by component |
89 | Self operator-(const Self &vb) const; |
90 | // Dot product. Be aware that if VType is an integer type, the high bits of |
91 | // the result are silently discarded. |
92 | VType DotProd(const Self &vb) const; |
93 | // Multiplication by a scalar |
94 | Self operator*(const VType k) const; |
95 | // Division by a scalar |
96 | Self operator/(const VType k) const; |
97 | // Access component #b for read/write operations |
98 | VType& operator[](const int b); |
99 | // Access component #b for read only operations |
100 | VType operator[](const int b) const; |
101 | // Labeled Accessor methods. |
102 | void x(const VType &v); |
103 | VType x() const; |
104 | void y(const VType &v); |
105 | VType y() const; |
106 | void z(const VType &v); |
107 | VType z() const; |
108 | void w(const VType &v); |
109 | VType w() const; |
110 | // return a pointer to the data array for interface with other libraries |
111 | // like opencv |
112 | VType* Data(); |
113 | const VType* Data() const; |
114 | // Return the squared Euclidean norm of the vector. Be aware that if VType |
115 | // is an integer type, the high bits of the result are silently discarded. |
116 | VType Norm2(void) const; |
117 | // Return the Euclidean norm of the vector. Note that if VType is an |
118 | // integer type, the return value is correct only if the *squared* norm does |
119 | // not overflow VType. |
120 | FloatType Norm(void) const; |
121 | // Return a normalized version of the vector if the norm of the |
122 | // vector is not 0. Not to be used with integer types. |
123 | Self Normalize() const; |
124 | // take the sqrt of each component and return a vector containing those values |
125 | Self Sqrt() const; |
126 | // take the fabs of each component and return a vector containing those values |
127 | Self Fabs() const; |
128 | // Take the absolute value of each component and return a vector containing |
129 | // those values. This method should only be used when VType is a signed |
130 | // integer type that is not wider than "int". |
131 | Self Abs() const; |
132 | // take the floor of each component and return a vector containing |
133 | // those values |
134 | Self Floor() const; |
135 | // take the ceil of each component and return a vector containing those values |
136 | Self Ceil() const; |
137 | // take the round of each component and return a vector containing those |
138 | // values |
139 | Self FRound() const; |
140 | // take the round of each component and return an integer vector containing |
141 | // those values |
142 | Vector4<int> IRound() const; |
143 | // Reset all the coordinates of the vector to 0 |
144 | void Clear(); |
145 | |
146 | // return true if one of the components is not a number |
147 | bool IsNaN() const; |
148 | |
149 | // return an invalid floating point vector |
150 | static Self NaN(); |
151 | }; |
152 | |
153 | // change the sign of the components of a vector |
154 | template <typename VType> |
155 | Vector4<VType> operator-(const Vector4<VType> &vb); |
156 | // multiply by a scalar |
157 | template <typename ScalarType, typename VType> |
158 | Vector4<VType> operator*(const ScalarType k, const Vector4<VType> &v); |
159 | // perform k / |
160 | template <typename ScalarType, typename VType> |
161 | Vector4<VType> operator/(const ScalarType k, const Vector4<VType> &v); |
162 | // return a vector containing the max of v1 and v2 component by component |
163 | template <typename VType> |
164 | Vector4<VType> Max(const Vector4<VType> &v1, const Vector4<VType> &v2); |
165 | // return a vector containing the min of v1 and v2 component by component |
166 | template <typename VType> |
167 | Vector4<VType> Min(const Vector4<VType> &v1, const Vector4<VType> &v2); |
168 | // debug printing |
169 | template <typename VType> |
170 | std::ostream &operator <<(std::ostream &out, // NOLINT |
171 | const Vector4<VType> &va); |
172 | |
173 | typedef Vector4<uint8> Vector4_b; |
174 | typedef Vector4<int> Vector4_i; |
175 | typedef Vector4<float> Vector4_f; |
176 | typedef Vector4<double> Vector4_d; |
177 | |
178 | #endif // UTIL_MATH_VECTOR4_H__ |
179 | |