1 | // Aseprite Render Library |
2 | // Copyright (c) 2019-2022 Igara Studio S.A. |
3 | // Copyright (c) 2017 David Capello |
4 | // |
5 | // This file is released under the terms of the MIT license. |
6 | // Read LICENSE.txt for more information. |
7 | |
8 | #ifdef HAVE_CONFIG_H |
9 | #include "config.h" |
10 | #endif |
11 | |
12 | #include "render/ordered_dither.h" |
13 | |
14 | #include "render/dithering.h" |
15 | #include "render/dithering_matrix.h" |
16 | |
17 | #include <algorithm> |
18 | #include <limits> |
19 | #include <vector> |
20 | |
21 | namespace render { |
22 | |
23 | // Base 2x2 dither matrix, called D(2): |
24 | int BayerMatrix::D2[4] = { 0, 2, |
25 | 3, 1 }; |
26 | |
27 | static int colorDistance(int r1, int g1, int b1, int a1, |
28 | int r2, int g2, int b2, int a2) |
29 | { |
30 | int result = 0; |
31 | |
32 | // The factor for RGB components came from doc::rba_luma() |
33 | if (a1 && a2) { |
34 | result += int(std::abs(r1-r2) * 2126 + |
35 | std::abs(g1-g2) * 7152 + |
36 | std::abs(b1-b2) * 722); |
37 | } |
38 | |
39 | result += (std::abs(a1-a2) * 20000); |
40 | return result; |
41 | } |
42 | |
43 | OrderedDither::OrderedDither(int transparentIndex) |
44 | : m_transparentIndex(transparentIndex) |
45 | { |
46 | } |
47 | |
48 | doc::color_t OrderedDither::ditherRgbPixelToIndex( |
49 | const DitheringMatrix& matrix, |
50 | const doc::color_t color, |
51 | const int x, |
52 | const int y, |
53 | const doc::RgbMap* rgbmap, |
54 | const doc::Palette* palette) |
55 | { |
56 | // Alpha=0, output transparent color |
57 | if (m_transparentIndex >= 0 && |
58 | doc::rgba_geta(color) == 0) |
59 | return m_transparentIndex; |
60 | |
61 | // Get the nearest color in the palette with the given RGB |
62 | // values. |
63 | int r = doc::rgba_getr(color); |
64 | int g = doc::rgba_getg(color); |
65 | int b = doc::rgba_getb(color); |
66 | int a = doc::rgba_geta(color); |
67 | doc::color_t nearest1idx = |
68 | (rgbmap ? rgbmap->mapColor(r, g, b, a): |
69 | palette->findBestfit(r, g, b, a, m_transparentIndex)); |
70 | |
71 | doc::color_t nearest1rgb = palette->getEntry(nearest1idx); |
72 | int r1 = doc::rgba_getr(nearest1rgb); |
73 | int g1 = doc::rgba_getg(nearest1rgb); |
74 | int b1 = doc::rgba_getb(nearest1rgb); |
75 | int a1 = doc::rgba_geta(nearest1rgb); |
76 | |
77 | // Between the original color ('color' parameter) and 'nearest' |
78 | // index, we have an error (r1-r, g1-g, b1-b). Here we try to |
79 | // find the other nearest color with the same error but with |
80 | // different sign. |
81 | int r2 = r - (r1-r); |
82 | int g2 = g - (g1-g); |
83 | int b2 = b - (b1-b); |
84 | int a2 = a - (a1-a); |
85 | r2 = std::clamp(r2, 0, 255); |
86 | g2 = std::clamp(g2, 0, 255); |
87 | b2 = std::clamp(b2, 0, 255); |
88 | a2 = std::clamp(a2, 0, 255); |
89 | doc::color_t nearest2idx = |
90 | (rgbmap ? rgbmap->mapColor(r2, g2, b2, a2): |
91 | palette->findBestfit(r2, g2, b2, a2, m_transparentIndex)); |
92 | |
93 | // If both possible RGB colors use the same index, we cannot |
94 | // make any dither with these two colors. |
95 | if (nearest1idx == nearest2idx) |
96 | return nearest1idx; |
97 | |
98 | doc::color_t nearest2rgb = palette->getEntry(nearest2idx); |
99 | r2 = doc::rgba_getr(nearest2rgb); |
100 | g2 = doc::rgba_getg(nearest2rgb); |
101 | b2 = doc::rgba_getb(nearest2rgb); |
102 | a2 = doc::rgba_geta(nearest2rgb); |
103 | |
104 | // Here we calculate the distance between the original 'color' |
105 | // and 'nearest1rgb'. The maximum possible distance is given by |
106 | // the distance between 'nearest1rgb' and 'nearest2rgb'. |
107 | int d = colorDistance(r1, g1, b1, a1, r, g, b, a); |
108 | int D = colorDistance(r1, g1, b1, a1, r2, g2, b2, a2); |
109 | if (D == 0) |
110 | return nearest1idx; |
111 | |
112 | // We convert the d/D factor to the matrix range to compare it |
113 | // with the threshold. If d > threshold, it means that we're |
114 | // closer to 'nearest2rgb' than to 'nearest1rgb'. |
115 | d = matrix.maxValue() * d / D; |
116 | int threshold = matrix(y, x); |
117 | |
118 | return (d > threshold ? nearest2idx: |
119 | nearest1idx); |
120 | } |
121 | |
122 | OrderedDither2::OrderedDither2(int transparentIndex) |
123 | : m_transparentIndex(transparentIndex) |
124 | { |
125 | } |
126 | |
127 | // New ordered dithering algorithm using the best match between two |
128 | // indexes to create a mix that can reproduce the original RGB |
129 | // color. |
130 | // |
131 | // TODO it's too slow for big color palettes: |
132 | // O(W*H*P) where P is the number of palette entries |
133 | // |
134 | // Some ideas from: |
135 | // http://bisqwit.iki.fi/story/howto/dither/jy/ |
136 | // |
137 | doc::color_t OrderedDither2::ditherRgbPixelToIndex( |
138 | const DitheringMatrix& matrix, |
139 | const doc::color_t color, |
140 | const int x, |
141 | const int y, |
142 | const doc::RgbMap* rgbmap, |
143 | const doc::Palette* palette) |
144 | { |
145 | // Alpha=0, output transparent color |
146 | if (m_transparentIndex >= 0 && |
147 | doc::rgba_geta(color) == 0) { |
148 | return m_transparentIndex; |
149 | } |
150 | |
151 | // Get RGBA values |
152 | const int r = doc::rgba_getr(color); |
153 | const int g = doc::rgba_getg(color); |
154 | const int b = doc::rgba_getb(color); |
155 | const int a = doc::rgba_geta(color); |
156 | |
157 | // Find the best palette entry for the given color. |
158 | const int index = |
159 | (rgbmap ? rgbmap->mapColor(r, g, b, a): |
160 | palette->findBestfit(r, g, b, a, m_transparentIndex)); |
161 | |
162 | const doc::color_t color0 = palette->getEntry(index); |
163 | const int r0 = doc::rgba_getr(color0); |
164 | const int g0 = doc::rgba_getg(color0); |
165 | const int b0 = doc::rgba_getb(color0); |
166 | const int a0 = doc::rgba_geta(color0); |
167 | |
168 | // Find the best combination between the found nearest index and |
169 | // an alternative palette color to create the original RGB color. |
170 | int bestMix = 0; |
171 | int altIndex = -1; |
172 | int closestDistance = std::numeric_limits<int>::max(); |
173 | for (int i=0; i<palette->size(); ++i) { |
174 | if (i == m_transparentIndex) |
175 | continue; |
176 | |
177 | const doc::color_t color1 = palette->getEntry(i); |
178 | const int r1 = doc::rgba_getr(color1); |
179 | const int g1 = doc::rgba_getg(color1); |
180 | const int b1 = doc::rgba_getb(color1); |
181 | const int a1 = doc::rgba_geta(color1); |
182 | |
183 | // Find the best "mix factor" between both palette indexes to |
184 | // reproduce the original RGB color. A possible algorithm |
185 | // would be to iterate all possible mix factors from 0 to |
186 | // maxMixValue, but this is too slow, so we try to figure out |
187 | // a good mix factor using the RGB values of color0 and |
188 | // color1. |
189 | int maxMixValue = matrix.maxValue(); |
190 | |
191 | int mix = 0; |
192 | int div = 0; |
193 | // If Alpha=0, RGB values are not representative for this entry. |
194 | if (a && a0 && a1) { |
195 | if (r1-r0) mix += 2126 * maxMixValue * (r-r0) / (r1-r0), div += 2126; |
196 | if (g1-g0) mix += 7152 * maxMixValue * (g-g0) / (g1-g0), div += 7152; |
197 | if (b1-b0) mix += 722 * maxMixValue * (b-b0) / (b1-b0), div += 722; |
198 | } |
199 | if (a1-a0) mix += 20000 * maxMixValue * (a-a0) / (a1-a0), div += 20000; |
200 | if (mix) { |
201 | if (div) |
202 | mix /= div; |
203 | mix = std::clamp(mix, 0, maxMixValue); |
204 | } |
205 | |
206 | const int rM = r0 + (r1-r0) * mix / maxMixValue; |
207 | const int gM = g0 + (g1-g0) * mix / maxMixValue; |
208 | const int bM = b0 + (b1-b0) * mix / maxMixValue; |
209 | const int aM = a0 + (a1-a0) * mix / maxMixValue; |
210 | const int d = |
211 | colorDistance(r, g, b, a, rM, gM, bM, aM) |
212 | // Don't use an alternative index if it's too far away from the first index |
213 | + colorDistance(r0, g0, b0, a0, r1, g1, b1, a1) / 10; |
214 | |
215 | if (closestDistance > d) { |
216 | closestDistance = d; |
217 | bestMix = mix; |
218 | altIndex = i; |
219 | } |
220 | } |
221 | |
222 | // Using the bestMix factor the dithering matrix tells us if we |
223 | // should paint with altIndex or index in this x,y position. |
224 | if (altIndex >= 0 && matrix(y, x) < bestMix) |
225 | return altIndex; |
226 | else |
227 | return index; |
228 | } |
229 | |
230 | void dither_rgb_image_to_indexed( |
231 | DitheringAlgorithmBase& algorithm, |
232 | const Dithering& dithering, |
233 | const doc::Image* srcImage, |
234 | doc::Image* dstImage, |
235 | const doc::RgbMap* rgbmap, |
236 | const doc::Palette* palette, |
237 | TaskDelegate* delegate) |
238 | { |
239 | const int w = srcImage->width(); |
240 | const int h = srcImage->height(); |
241 | |
242 | algorithm.start(srcImage, dstImage, dithering.factor()); |
243 | |
244 | if (algorithm.dimensions() == 1) { |
245 | const doc::LockImageBits<doc::RgbTraits> srcBits(srcImage); |
246 | doc::LockImageBits<doc::IndexedTraits> dstBits(dstImage); |
247 | auto srcIt = srcBits.begin(); |
248 | auto dstIt = dstBits.begin(); |
249 | |
250 | for (int y=0; y<h; ++y) { |
251 | for (int x=0; x<w; ++x, ++srcIt, ++dstIt) { |
252 | ASSERT(srcIt != srcBits.end()); |
253 | ASSERT(dstIt != dstBits.end()); |
254 | *dstIt = algorithm.ditherRgbPixelToIndex( |
255 | dithering.matrix(), *srcIt, x, y, rgbmap, palette); |
256 | |
257 | if (delegate) { |
258 | if (!delegate->continueTask()) |
259 | return; |
260 | } |
261 | } |
262 | |
263 | if (delegate) { |
264 | delegate->notifyTaskProgress( |
265 | double(y+1) / double(h)); |
266 | } |
267 | } |
268 | } |
269 | else { |
270 | auto dstIt = doc::get_pixel_address_fast<doc::IndexedTraits>(dstImage, 0, 0); |
271 | const bool zigZag = algorithm.zigZag(); |
272 | |
273 | for (int y=0; y<h; ++y) { |
274 | if (zigZag && (y & 1)) { // Odd row: go from right-to-left |
275 | dstIt += w-1; |
276 | for (int x=w-1; x>=0; --x, --dstIt) { |
277 | ASSERT(dstIt == doc::get_pixel_address_fast<doc::IndexedTraits>(dstImage, x, y)); |
278 | *dstIt = algorithm.ditherRgbToIndex2D(x, y, rgbmap, palette); |
279 | if (delegate) { |
280 | if (!delegate->continueTask()) |
281 | return; |
282 | } |
283 | } |
284 | dstIt += w+1; |
285 | } |
286 | else { // Even row: go fromo left-to-right |
287 | for (int x=0; x<w; ++x, ++dstIt) { |
288 | ASSERT(dstIt == doc::get_pixel_address_fast<doc::IndexedTraits>(dstImage, x, y)); |
289 | *dstIt = algorithm.ditherRgbToIndex2D(x, y, rgbmap, palette); |
290 | |
291 | if (delegate) { |
292 | if (!delegate->continueTask()) |
293 | return; |
294 | } |
295 | } |
296 | } |
297 | if (delegate) { |
298 | delegate->notifyTaskProgress( |
299 | double(y+1) / double(h)); |
300 | } |
301 | } |
302 | } |
303 | |
304 | algorithm.finish(); |
305 | } |
306 | |
307 | } // namespace render |
308 | |