1 | /* |
2 | * jddctmgr.c |
3 | * |
4 | * Copyright (C) 1994-1996, Thomas G. Lane. |
5 | * This file is part of the Independent JPEG Group's software. |
6 | * For conditions of distribution and use, see the accompanying README file. |
7 | * |
8 | * This file contains the inverse-DCT management logic. |
9 | * This code selects a particular IDCT implementation to be used, |
10 | * and it performs related housekeeping chores. No code in this file |
11 | * is executed per IDCT step, only during output pass setup. |
12 | * |
13 | * Note that the IDCT routines are responsible for performing coefficient |
14 | * dequantization as well as the IDCT proper. This module sets up the |
15 | * dequantization multiplier table needed by the IDCT routine. |
16 | */ |
17 | |
18 | #define JPEG_INTERNALS |
19 | #include "jinclude.h" |
20 | #include "jpeglib.h" |
21 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
22 | |
23 | |
24 | /* |
25 | * The decompressor input side (jdinput.c) saves away the appropriate |
26 | * quantization table for each component at the start of the first scan |
27 | * involving that component. (This is necessary in order to correctly |
28 | * decode files that reuse Q-table slots.) |
29 | * When we are ready to make an output pass, the saved Q-table is converted |
30 | * to a multiplier table that will actually be used by the IDCT routine. |
31 | * The multiplier table contents are IDCT-method-dependent. To support |
32 | * application changes in IDCT method between scans, we can remake the |
33 | * multiplier tables if necessary. |
34 | * In buffered-image mode, the first output pass may occur before any data |
35 | * has been seen for some components, and thus before their Q-tables have |
36 | * been saved away. To handle this case, multiplier tables are preset |
37 | * to zeroes; the result of the IDCT will be a neutral gray level. |
38 | */ |
39 | |
40 | |
41 | /* Private subobject for this module */ |
42 | |
43 | typedef struct { |
44 | struct jpeg_inverse_dct pub; /* public fields */ |
45 | |
46 | /* This array contains the IDCT method code that each multiplier table |
47 | * is currently set up for, or -1 if it's not yet set up. |
48 | * The actual multiplier tables are pointed to by dct_table in the |
49 | * per-component comp_info structures. |
50 | */ |
51 | int cur_method[MAX_COMPONENTS]; |
52 | } my_idct_controller; |
53 | |
54 | typedef my_idct_controller * my_idct_ptr; |
55 | |
56 | |
57 | /* Allocated multiplier tables: big enough for any supported variant */ |
58 | |
59 | typedef union { |
60 | ISLOW_MULT_TYPE islow_array[DCTSIZE2]; |
61 | #ifdef DCT_IFAST_SUPPORTED |
62 | IFAST_MULT_TYPE ifast_array[DCTSIZE2]; |
63 | #endif |
64 | #ifdef DCT_FLOAT_SUPPORTED |
65 | FLOAT_MULT_TYPE float_array[DCTSIZE2]; |
66 | #endif |
67 | } multiplier_table; |
68 | |
69 | |
70 | /* The current scaled-IDCT routines require ISLOW-style multiplier tables, |
71 | * so be sure to compile that code if either ISLOW or SCALING is requested. |
72 | */ |
73 | #ifdef DCT_ISLOW_SUPPORTED |
74 | #define PROVIDE_ISLOW_TABLES |
75 | #else |
76 | #ifdef IDCT_SCALING_SUPPORTED |
77 | #define PROVIDE_ISLOW_TABLES |
78 | #endif |
79 | #endif |
80 | |
81 | |
82 | /* |
83 | * Prepare for an output pass. |
84 | * Here we select the proper IDCT routine for each component and build |
85 | * a matching multiplier table. |
86 | */ |
87 | |
88 | METHODDEF(void) |
89 | start_pass (j_decompress_ptr cinfo) |
90 | { |
91 | my_idct_ptr idct = (my_idct_ptr) cinfo->idct; |
92 | int ci, i; |
93 | jpeg_component_info *compptr; |
94 | int method = 0; |
95 | inverse_DCT_method_ptr method_ptr = NULL; |
96 | JQUANT_TBL * qtbl; |
97 | |
98 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
99 | ci++, compptr++) { |
100 | /* Select the proper IDCT routine for this component's scaling */ |
101 | switch (compptr->DCT_scaled_size) { |
102 | #ifdef IDCT_SCALING_SUPPORTED |
103 | case 1: |
104 | method_ptr = jpeg_idct_1x1; |
105 | method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
106 | break; |
107 | case 2: |
108 | method_ptr = jpeg_idct_2x2; |
109 | method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
110 | break; |
111 | case 4: |
112 | method_ptr = jpeg_idct_4x4; |
113 | method = JDCT_ISLOW; /* jidctred uses islow-style table */ |
114 | break; |
115 | #endif |
116 | case DCTSIZE: |
117 | switch (cinfo->dct_method) { |
118 | #ifdef DCT_ISLOW_SUPPORTED |
119 | case JDCT_ISLOW: |
120 | method_ptr = jpeg_idct_islow; |
121 | method = JDCT_ISLOW; |
122 | break; |
123 | #endif |
124 | #ifdef DCT_IFAST_SUPPORTED |
125 | case JDCT_IFAST: |
126 | method_ptr = jpeg_idct_ifast; |
127 | method = JDCT_IFAST; |
128 | break; |
129 | #endif |
130 | #ifdef DCT_FLOAT_SUPPORTED |
131 | case JDCT_FLOAT: |
132 | method_ptr = jpeg_idct_float; |
133 | method = JDCT_FLOAT; |
134 | break; |
135 | #endif |
136 | default: |
137 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
138 | break; |
139 | } |
140 | break; |
141 | default: |
142 | ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size); |
143 | break; |
144 | } |
145 | idct->pub.inverse_DCT[ci] = method_ptr; |
146 | /* Create multiplier table from quant table. |
147 | * However, we can skip this if the component is uninteresting |
148 | * or if we already built the table. Also, if no quant table |
149 | * has yet been saved for the component, we leave the |
150 | * multiplier table all-zero; we'll be reading zeroes from the |
151 | * coefficient controller's buffer anyway. |
152 | */ |
153 | if (! compptr->component_needed || idct->cur_method[ci] == method) |
154 | continue; |
155 | qtbl = compptr->quant_table; |
156 | if (qtbl == NULL) /* happens if no data yet for component */ |
157 | continue; |
158 | idct->cur_method[ci] = method; |
159 | switch (method) { |
160 | #ifdef PROVIDE_ISLOW_TABLES |
161 | case JDCT_ISLOW: |
162 | { |
163 | /* For LL&M IDCT method, multipliers are equal to raw quantization |
164 | * coefficients, but are stored as ints to ensure access efficiency. |
165 | */ |
166 | ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table; |
167 | for (i = 0; i < DCTSIZE2; i++) { |
168 | ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i]; |
169 | } |
170 | } |
171 | break; |
172 | #endif |
173 | #ifdef DCT_IFAST_SUPPORTED |
174 | case JDCT_IFAST: |
175 | { |
176 | /* For AA&N IDCT method, multipliers are equal to quantization |
177 | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
178 | * scalefactor[0] = 1 |
179 | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
180 | * For integer operation, the multiplier table is to be scaled by |
181 | * IFAST_SCALE_BITS. |
182 | */ |
183 | IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table; |
184 | #define CONST_BITS 14 |
185 | static const INT16 aanscales[DCTSIZE2] = { |
186 | /* precomputed values scaled up by 14 bits */ |
187 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
188 | 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
189 | 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
190 | 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
191 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
192 | 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
193 | 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
194 | 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
195 | }; |
196 | SHIFT_TEMPS |
197 | |
198 | for (i = 0; i < DCTSIZE2; i++) { |
199 | ifmtbl[i] = (IFAST_MULT_TYPE) |
200 | DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], |
201 | (INT32) aanscales[i]), |
202 | CONST_BITS-IFAST_SCALE_BITS); |
203 | } |
204 | } |
205 | break; |
206 | #endif |
207 | #ifdef DCT_FLOAT_SUPPORTED |
208 | case JDCT_FLOAT: |
209 | { |
210 | /* For float AA&N IDCT method, multipliers are equal to quantization |
211 | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
212 | * scalefactor[0] = 1 |
213 | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
214 | */ |
215 | FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table; |
216 | int row, col; |
217 | static const double aanscalefactor[DCTSIZE] = { |
218 | 1.0, 1.387039845, 1.306562965, 1.175875602, |
219 | 1.0, 0.785694958, 0.541196100, 0.275899379 |
220 | }; |
221 | |
222 | i = 0; |
223 | for (row = 0; row < DCTSIZE; row++) { |
224 | for (col = 0; col < DCTSIZE; col++) { |
225 | fmtbl[i] = (FLOAT_MULT_TYPE) |
226 | ((double) qtbl->quantval[i] * |
227 | aanscalefactor[row] * aanscalefactor[col]); |
228 | i++; |
229 | } |
230 | } |
231 | } |
232 | break; |
233 | #endif |
234 | default: |
235 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
236 | break; |
237 | } |
238 | } |
239 | } |
240 | |
241 | |
242 | /* |
243 | * Initialize IDCT manager. |
244 | */ |
245 | |
246 | GLOBAL(void) |
247 | jinit_inverse_dct (j_decompress_ptr cinfo) |
248 | { |
249 | my_idct_ptr idct; |
250 | int ci; |
251 | jpeg_component_info *compptr; |
252 | |
253 | idct = (my_idct_ptr) |
254 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
255 | SIZEOF(my_idct_controller)); |
256 | cinfo->idct = (struct jpeg_inverse_dct *) idct; |
257 | idct->pub.start_pass = start_pass; |
258 | |
259 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
260 | ci++, compptr++) { |
261 | /* Allocate and pre-zero a multiplier table for each component */ |
262 | compptr->dct_table = |
263 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
264 | SIZEOF(multiplier_table)); |
265 | MEMZERO(compptr->dct_table, SIZEOF(multiplier_table)); |
266 | /* Mark multiplier table not yet set up for any method */ |
267 | idct->cur_method[ci] = -1; |
268 | } |
269 | } |
270 | |