1 | /* |
2 | * jidctflt.c |
3 | * |
4 | * Copyright (C) 1994-1998, Thomas G. Lane. |
5 | * This file is part of the Independent JPEG Group's software. |
6 | * For conditions of distribution and use, see the accompanying README file. |
7 | * |
8 | * This file contains a floating-point implementation of the |
9 | * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
10 | * must also perform dequantization of the input coefficients. |
11 | * |
12 | * This implementation should be more accurate than either of the integer |
13 | * IDCT implementations. However, it may not give the same results on all |
14 | * machines because of differences in roundoff behavior. Speed will depend |
15 | * on the hardware's floating point capacity. |
16 | * |
17 | * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
18 | * on each row (or vice versa, but it's more convenient to emit a row at |
19 | * a time). Direct algorithms are also available, but they are much more |
20 | * complex and seem not to be any faster when reduced to code. |
21 | * |
22 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for |
23 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
24 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell |
25 | * JPEG textbook (see REFERENCES section in file README). The following code |
26 | * is based directly on figure 4-8 in P&M. |
27 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is |
28 | * possible to arrange the computation so that many of the multiplies are |
29 | * simple scalings of the final outputs. These multiplies can then be |
30 | * folded into the multiplications or divisions by the JPEG quantization |
31 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds |
32 | * to be done in the DCT itself. |
33 | * The primary disadvantage of this method is that with a fixed-point |
34 | * implementation, accuracy is lost due to imprecise representation of the |
35 | * scaled quantization values. However, that problem does not arise if |
36 | * we use floating point arithmetic. |
37 | */ |
38 | |
39 | #define JPEG_INTERNALS |
40 | #include "jinclude.h" |
41 | #include "jpeglib.h" |
42 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
43 | |
44 | #ifdef DCT_FLOAT_SUPPORTED |
45 | |
46 | |
47 | /* |
48 | * This module is specialized to the case DCTSIZE = 8. |
49 | */ |
50 | |
51 | #if DCTSIZE != 8 |
52 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
53 | #endif |
54 | |
55 | |
56 | /* Dequantize a coefficient by multiplying it by the multiplier-table |
57 | * entry; produce a float result. |
58 | */ |
59 | |
60 | #define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval)) |
61 | |
62 | |
63 | /* |
64 | * Perform dequantization and inverse DCT on one block of coefficients. |
65 | */ |
66 | |
67 | GLOBAL(void) |
68 | jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
69 | JCOEFPTR coef_block, |
70 | JSAMPARRAY output_buf, JDIMENSION output_col) |
71 | { |
72 | FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
73 | FAST_FLOAT tmp10, tmp11, tmp12, tmp13; |
74 | FAST_FLOAT z5, z10, z11, z12, z13; |
75 | JCOEFPTR inptr; |
76 | FLOAT_MULT_TYPE * quantptr; |
77 | FAST_FLOAT * wsptr; |
78 | JSAMPROW outptr; |
79 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
80 | int ctr; |
81 | FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ |
82 | SHIFT_TEMPS |
83 | |
84 | /* Pass 1: process columns from input, store into work array. */ |
85 | |
86 | inptr = coef_block; |
87 | quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table; |
88 | wsptr = workspace; |
89 | for (ctr = DCTSIZE; ctr > 0; ctr--) { |
90 | /* Due to quantization, we will usually find that many of the input |
91 | * coefficients are zero, especially the AC terms. We can exploit this |
92 | * by short-circuiting the IDCT calculation for any column in which all |
93 | * the AC terms are zero. In that case each output is equal to the |
94 | * DC coefficient (with scale factor as needed). |
95 | * With typical images and quantization tables, half or more of the |
96 | * column DCT calculations can be simplified this way. |
97 | */ |
98 | |
99 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
100 | inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
101 | inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
102 | inptr[DCTSIZE*7] == 0) { |
103 | /* AC terms all zero */ |
104 | FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
105 | |
106 | wsptr[DCTSIZE*0] = dcval; |
107 | wsptr[DCTSIZE*1] = dcval; |
108 | wsptr[DCTSIZE*2] = dcval; |
109 | wsptr[DCTSIZE*3] = dcval; |
110 | wsptr[DCTSIZE*4] = dcval; |
111 | wsptr[DCTSIZE*5] = dcval; |
112 | wsptr[DCTSIZE*6] = dcval; |
113 | wsptr[DCTSIZE*7] = dcval; |
114 | |
115 | inptr++; /* advance pointers to next column */ |
116 | quantptr++; |
117 | wsptr++; |
118 | continue; |
119 | } |
120 | |
121 | /* Even part */ |
122 | |
123 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
124 | tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
125 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
126 | tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
127 | |
128 | tmp10 = tmp0 + tmp2; /* phase 3 */ |
129 | tmp11 = tmp0 - tmp2; |
130 | |
131 | tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
132 | tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ |
133 | |
134 | tmp0 = tmp10 + tmp13; /* phase 2 */ |
135 | tmp3 = tmp10 - tmp13; |
136 | tmp1 = tmp11 + tmp12; |
137 | tmp2 = tmp11 - tmp12; |
138 | |
139 | /* Odd part */ |
140 | |
141 | tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
142 | tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
143 | tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
144 | tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
145 | |
146 | z13 = tmp6 + tmp5; /* phase 6 */ |
147 | z10 = tmp6 - tmp5; |
148 | z11 = tmp4 + tmp7; |
149 | z12 = tmp4 - tmp7; |
150 | |
151 | tmp7 = z11 + z13; /* phase 5 */ |
152 | tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ |
153 | |
154 | z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ |
155 | tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ |
156 | tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ |
157 | |
158 | tmp6 = tmp12 - tmp7; /* phase 2 */ |
159 | tmp5 = tmp11 - tmp6; |
160 | tmp4 = tmp10 + tmp5; |
161 | |
162 | wsptr[DCTSIZE*0] = tmp0 + tmp7; |
163 | wsptr[DCTSIZE*7] = tmp0 - tmp7; |
164 | wsptr[DCTSIZE*1] = tmp1 + tmp6; |
165 | wsptr[DCTSIZE*6] = tmp1 - tmp6; |
166 | wsptr[DCTSIZE*2] = tmp2 + tmp5; |
167 | wsptr[DCTSIZE*5] = tmp2 - tmp5; |
168 | wsptr[DCTSIZE*4] = tmp3 + tmp4; |
169 | wsptr[DCTSIZE*3] = tmp3 - tmp4; |
170 | |
171 | inptr++; /* advance pointers to next column */ |
172 | quantptr++; |
173 | wsptr++; |
174 | } |
175 | |
176 | /* Pass 2: process rows from work array, store into output array. */ |
177 | /* Note that we must descale the results by a factor of 8 == 2**3. */ |
178 | |
179 | wsptr = workspace; |
180 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
181 | outptr = output_buf[ctr] + output_col; |
182 | /* Rows of zeroes can be exploited in the same way as we did with columns. |
183 | * However, the column calculation has created many nonzero AC terms, so |
184 | * the simplification applies less often (typically 5% to 10% of the time). |
185 | * And testing floats for zero is relatively expensive, so we don't bother. |
186 | */ |
187 | |
188 | /* Even part */ |
189 | |
190 | tmp10 = wsptr[0] + wsptr[4]; |
191 | tmp11 = wsptr[0] - wsptr[4]; |
192 | |
193 | tmp13 = wsptr[2] + wsptr[6]; |
194 | tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13; |
195 | |
196 | tmp0 = tmp10 + tmp13; |
197 | tmp3 = tmp10 - tmp13; |
198 | tmp1 = tmp11 + tmp12; |
199 | tmp2 = tmp11 - tmp12; |
200 | |
201 | /* Odd part */ |
202 | |
203 | z13 = wsptr[5] + wsptr[3]; |
204 | z10 = wsptr[5] - wsptr[3]; |
205 | z11 = wsptr[1] + wsptr[7]; |
206 | z12 = wsptr[1] - wsptr[7]; |
207 | |
208 | tmp7 = z11 + z13; |
209 | tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); |
210 | |
211 | z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ |
212 | tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ |
213 | tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ |
214 | |
215 | tmp6 = tmp12 - tmp7; |
216 | tmp5 = tmp11 - tmp6; |
217 | tmp4 = tmp10 + tmp5; |
218 | |
219 | /* Final output stage: scale down by a factor of 8 and range-limit */ |
220 | |
221 | outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3) |
222 | & RANGE_MASK]; |
223 | outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3) |
224 | & RANGE_MASK]; |
225 | outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3) |
226 | & RANGE_MASK]; |
227 | outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3) |
228 | & RANGE_MASK]; |
229 | outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3) |
230 | & RANGE_MASK]; |
231 | outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3) |
232 | & RANGE_MASK]; |
233 | outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3) |
234 | & RANGE_MASK]; |
235 | outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3) |
236 | & RANGE_MASK]; |
237 | |
238 | wsptr += DCTSIZE; /* advance pointer to next row */ |
239 | } |
240 | } |
241 | |
242 | #endif /* DCT_FLOAT_SUPPORTED */ |
243 | |