1 | /* |
2 | * jidctred.c |
3 | * |
4 | * Copyright (C) 1994-1998, Thomas G. Lane. |
5 | * This file is part of the Independent JPEG Group's software. |
6 | * For conditions of distribution and use, see the accompanying README file. |
7 | * |
8 | * This file contains inverse-DCT routines that produce reduced-size output: |
9 | * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block. |
10 | * |
11 | * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M) |
12 | * algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step |
13 | * with an 8-to-4 step that produces the four averages of two adjacent outputs |
14 | * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output). |
15 | * These steps were derived by computing the corresponding values at the end |
16 | * of the normal LL&M code, then simplifying as much as possible. |
17 | * |
18 | * 1x1 is trivial: just take the DC coefficient divided by 8. |
19 | * |
20 | * See jidctint.c for additional comments. |
21 | */ |
22 | |
23 | #define JPEG_INTERNALS |
24 | #include "jinclude.h" |
25 | #include "jpeglib.h" |
26 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
27 | |
28 | #ifdef IDCT_SCALING_SUPPORTED |
29 | |
30 | |
31 | /* |
32 | * This module is specialized to the case DCTSIZE = 8. |
33 | */ |
34 | |
35 | #if DCTSIZE != 8 |
36 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
37 | #endif |
38 | |
39 | |
40 | /* Scaling is the same as in jidctint.c. */ |
41 | |
42 | #if BITS_IN_JSAMPLE == 8 |
43 | #define CONST_BITS 13 |
44 | #define PASS1_BITS 2 |
45 | #else |
46 | #define CONST_BITS 13 |
47 | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
48 | #endif |
49 | |
50 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
51 | * causing a lot of useless floating-point operations at run time. |
52 | * To get around this we use the following pre-calculated constants. |
53 | * If you change CONST_BITS you may want to add appropriate values. |
54 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
55 | */ |
56 | |
57 | #if CONST_BITS == 13 |
58 | #define FIX_0_211164243 ((INT32) 1730) /* FIX(0.211164243) */ |
59 | #define FIX_0_509795579 ((INT32) 4176) /* FIX(0.509795579) */ |
60 | #define FIX_0_601344887 ((INT32) 4926) /* FIX(0.601344887) */ |
61 | #define FIX_0_720959822 ((INT32) 5906) /* FIX(0.720959822) */ |
62 | #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ |
63 | #define FIX_0_850430095 ((INT32) 6967) /* FIX(0.850430095) */ |
64 | #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ |
65 | #define FIX_1_061594337 ((INT32) 8697) /* FIX(1.061594337) */ |
66 | #define FIX_1_272758580 ((INT32) 10426) /* FIX(1.272758580) */ |
67 | #define FIX_1_451774981 ((INT32) 11893) /* FIX(1.451774981) */ |
68 | #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ |
69 | #define FIX_2_172734803 ((INT32) 17799) /* FIX(2.172734803) */ |
70 | #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ |
71 | #define FIX_3_624509785 ((INT32) 29692) /* FIX(3.624509785) */ |
72 | #else |
73 | #define FIX_0_211164243 FIX(0.211164243) |
74 | #define FIX_0_509795579 FIX(0.509795579) |
75 | #define FIX_0_601344887 FIX(0.601344887) |
76 | #define FIX_0_720959822 FIX(0.720959822) |
77 | #define FIX_0_765366865 FIX(0.765366865) |
78 | #define FIX_0_850430095 FIX(0.850430095) |
79 | #define FIX_0_899976223 FIX(0.899976223) |
80 | #define FIX_1_061594337 FIX(1.061594337) |
81 | #define FIX_1_272758580 FIX(1.272758580) |
82 | #define FIX_1_451774981 FIX(1.451774981) |
83 | #define FIX_1_847759065 FIX(1.847759065) |
84 | #define FIX_2_172734803 FIX(2.172734803) |
85 | #define FIX_2_562915447 FIX(2.562915447) |
86 | #define FIX_3_624509785 FIX(3.624509785) |
87 | #endif |
88 | |
89 | |
90 | /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. |
91 | * For 8-bit samples with the recommended scaling, all the variable |
92 | * and constant values involved are no more than 16 bits wide, so a |
93 | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. |
94 | * For 12-bit samples, a full 32-bit multiplication will be needed. |
95 | */ |
96 | |
97 | #if BITS_IN_JSAMPLE == 8 |
98 | #define MULTIPLY(var,const) MULTIPLY16C16(var,const) |
99 | #else |
100 | #define MULTIPLY(var,const) ((var) * (const)) |
101 | #endif |
102 | |
103 | |
104 | /* Dequantize a coefficient by multiplying it by the multiplier-table |
105 | * entry; produce an int result. In this module, both inputs and result |
106 | * are 16 bits or less, so either int or short multiply will work. |
107 | */ |
108 | |
109 | #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval)) |
110 | |
111 | |
112 | /* |
113 | * Perform dequantization and inverse DCT on one block of coefficients, |
114 | * producing a reduced-size 4x4 output block. |
115 | */ |
116 | |
117 | GLOBAL(void) |
118 | jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
119 | JCOEFPTR coef_block, |
120 | JSAMPARRAY output_buf, JDIMENSION output_col) |
121 | { |
122 | INT32 tmp0, tmp2, tmp10, tmp12; |
123 | INT32 z1, z2, z3, z4; |
124 | JCOEFPTR inptr; |
125 | ISLOW_MULT_TYPE * quantptr; |
126 | int * wsptr; |
127 | JSAMPROW outptr; |
128 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
129 | int ctr; |
130 | int workspace[DCTSIZE*4]; /* buffers data between passes */ |
131 | SHIFT_TEMPS |
132 | |
133 | /* Pass 1: process columns from input, store into work array. */ |
134 | |
135 | inptr = coef_block; |
136 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
137 | wsptr = workspace; |
138 | for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { |
139 | /* Don't bother to process column 4, because second pass won't use it */ |
140 | if (ctr == DCTSIZE-4) |
141 | continue; |
142 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
143 | inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 && |
144 | inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) { |
145 | /* AC terms all zero; we need not examine term 4 for 4x4 output */ |
146 | int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; |
147 | |
148 | wsptr[DCTSIZE*0] = dcval; |
149 | wsptr[DCTSIZE*1] = dcval; |
150 | wsptr[DCTSIZE*2] = dcval; |
151 | wsptr[DCTSIZE*3] = dcval; |
152 | |
153 | continue; |
154 | } |
155 | |
156 | /* Even part */ |
157 | |
158 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
159 | tmp0 <<= (CONST_BITS+1); |
160 | |
161 | z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
162 | z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
163 | |
164 | tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865); |
165 | |
166 | tmp10 = tmp0 + tmp2; |
167 | tmp12 = tmp0 - tmp2; |
168 | |
169 | /* Odd part */ |
170 | |
171 | z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
172 | z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
173 | z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
174 | z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
175 | |
176 | tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ |
177 | + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ |
178 | + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ |
179 | + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ |
180 | |
181 | tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ |
182 | + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ |
183 | + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ |
184 | + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ |
185 | |
186 | /* Final output stage */ |
187 | |
188 | wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1); |
189 | wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1); |
190 | wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1); |
191 | wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1); |
192 | } |
193 | |
194 | /* Pass 2: process 4 rows from work array, store into output array. */ |
195 | |
196 | wsptr = workspace; |
197 | for (ctr = 0; ctr < 4; ctr++) { |
198 | outptr = output_buf[ctr] + output_col; |
199 | /* It's not clear whether a zero row test is worthwhile here ... */ |
200 | |
201 | #ifndef NO_ZERO_ROW_TEST |
202 | if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && |
203 | wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { |
204 | /* AC terms all zero */ |
205 | JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) |
206 | & RANGE_MASK]; |
207 | |
208 | outptr[0] = dcval; |
209 | outptr[1] = dcval; |
210 | outptr[2] = dcval; |
211 | outptr[3] = dcval; |
212 | |
213 | wsptr += DCTSIZE; /* advance pointer to next row */ |
214 | continue; |
215 | } |
216 | #endif |
217 | |
218 | /* Even part */ |
219 | |
220 | tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1); |
221 | |
222 | tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065) |
223 | + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865); |
224 | |
225 | tmp10 = tmp0 + tmp2; |
226 | tmp12 = tmp0 - tmp2; |
227 | |
228 | /* Odd part */ |
229 | |
230 | z1 = (INT32) wsptr[7]; |
231 | z2 = (INT32) wsptr[5]; |
232 | z3 = (INT32) wsptr[3]; |
233 | z4 = (INT32) wsptr[1]; |
234 | |
235 | tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ |
236 | + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ |
237 | + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ |
238 | + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ |
239 | |
240 | tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ |
241 | + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ |
242 | + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ |
243 | + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ |
244 | |
245 | /* Final output stage */ |
246 | |
247 | outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2, |
248 | CONST_BITS+PASS1_BITS+3+1) |
249 | & RANGE_MASK]; |
250 | outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2, |
251 | CONST_BITS+PASS1_BITS+3+1) |
252 | & RANGE_MASK]; |
253 | outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0, |
254 | CONST_BITS+PASS1_BITS+3+1) |
255 | & RANGE_MASK]; |
256 | outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0, |
257 | CONST_BITS+PASS1_BITS+3+1) |
258 | & RANGE_MASK]; |
259 | |
260 | wsptr += DCTSIZE; /* advance pointer to next row */ |
261 | } |
262 | } |
263 | |
264 | |
265 | /* |
266 | * Perform dequantization and inverse DCT on one block of coefficients, |
267 | * producing a reduced-size 2x2 output block. |
268 | */ |
269 | |
270 | GLOBAL(void) |
271 | jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
272 | JCOEFPTR coef_block, |
273 | JSAMPARRAY output_buf, JDIMENSION output_col) |
274 | { |
275 | INT32 tmp0, tmp10, z1; |
276 | JCOEFPTR inptr; |
277 | ISLOW_MULT_TYPE * quantptr; |
278 | int * wsptr; |
279 | JSAMPROW outptr; |
280 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
281 | int ctr; |
282 | int workspace[DCTSIZE*2]; /* buffers data between passes */ |
283 | SHIFT_TEMPS |
284 | |
285 | /* Pass 1: process columns from input, store into work array. */ |
286 | |
287 | inptr = coef_block; |
288 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
289 | wsptr = workspace; |
290 | for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { |
291 | /* Don't bother to process columns 2,4,6 */ |
292 | if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6) |
293 | continue; |
294 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 && |
295 | inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) { |
296 | /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */ |
297 | int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; |
298 | |
299 | wsptr[DCTSIZE*0] = dcval; |
300 | wsptr[DCTSIZE*1] = dcval; |
301 | |
302 | continue; |
303 | } |
304 | |
305 | /* Even part */ |
306 | |
307 | z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
308 | tmp10 = z1 << (CONST_BITS+2); |
309 | |
310 | /* Odd part */ |
311 | |
312 | z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
313 | tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */ |
314 | z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
315 | tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */ |
316 | z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
317 | tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */ |
318 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
319 | tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ |
320 | |
321 | /* Final output stage */ |
322 | |
323 | wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2); |
324 | wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2); |
325 | } |
326 | |
327 | /* Pass 2: process 2 rows from work array, store into output array. */ |
328 | |
329 | wsptr = workspace; |
330 | for (ctr = 0; ctr < 2; ctr++) { |
331 | outptr = output_buf[ctr] + output_col; |
332 | /* It's not clear whether a zero row test is worthwhile here ... */ |
333 | |
334 | #ifndef NO_ZERO_ROW_TEST |
335 | if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) { |
336 | /* AC terms all zero */ |
337 | JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) |
338 | & RANGE_MASK]; |
339 | |
340 | outptr[0] = dcval; |
341 | outptr[1] = dcval; |
342 | |
343 | wsptr += DCTSIZE; /* advance pointer to next row */ |
344 | continue; |
345 | } |
346 | #endif |
347 | |
348 | /* Even part */ |
349 | |
350 | tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2); |
351 | |
352 | /* Odd part */ |
353 | |
354 | tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */ |
355 | + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */ |
356 | + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */ |
357 | + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ |
358 | |
359 | /* Final output stage */ |
360 | |
361 | outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0, |
362 | CONST_BITS+PASS1_BITS+3+2) |
363 | & RANGE_MASK]; |
364 | outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0, |
365 | CONST_BITS+PASS1_BITS+3+2) |
366 | & RANGE_MASK]; |
367 | |
368 | wsptr += DCTSIZE; /* advance pointer to next row */ |
369 | } |
370 | } |
371 | |
372 | |
373 | /* |
374 | * Perform dequantization and inverse DCT on one block of coefficients, |
375 | * producing a reduced-size 1x1 output block. |
376 | */ |
377 | |
378 | GLOBAL(void) |
379 | jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
380 | JCOEFPTR coef_block, |
381 | JSAMPARRAY output_buf, JDIMENSION output_col) |
382 | { |
383 | int dcval; |
384 | ISLOW_MULT_TYPE * quantptr; |
385 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
386 | SHIFT_TEMPS |
387 | |
388 | /* We hardly need an inverse DCT routine for this: just take the |
389 | * average pixel value, which is one-eighth of the DC coefficient. |
390 | */ |
391 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
392 | dcval = DEQUANTIZE(coef_block[0], quantptr[0]); |
393 | dcval = (int) DESCALE((INT32) dcval, 3); |
394 | |
395 | output_buf[0][output_col] = range_limit[dcval & RANGE_MASK]; |
396 | } |
397 | |
398 | #endif /* IDCT_SCALING_SUPPORTED */ |
399 | |