1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
3 | #pragma once |
4 | |
5 | #include <stack> |
6 | #include <assert.h> |
7 | |
8 | #include "Prerequisites/BsTypes.h" |
9 | #include "Prerequisites/BsStdHeaders.h" |
10 | |
11 | #include "Threading/BsThreading.h" |
12 | |
13 | namespace bs |
14 | { |
15 | /** @addtogroup Internal-Utility |
16 | * @{ |
17 | */ |
18 | |
19 | /** @addtogroup Memory-Internal |
20 | * @{ |
21 | */ |
22 | |
23 | /** |
24 | * Describes a memory stack of a certain block capacity. See MemStack for more information. |
25 | * |
26 | * @tparam BlockCapacity Minimum size of a block. Larger blocks mean less memory allocations, but also potentially |
27 | * more wasted memory. If an allocation requests more bytes than BlockCapacity, first largest |
28 | * multiple is used instead. |
29 | */ |
30 | template <int BlockCapacity = 1024 * 1024> |
31 | class MemStackInternal |
32 | { |
33 | private: |
34 | /** |
35 | * A single block of memory of BlockCapacity size. A pointer to the first free address is stored, and a remaining |
36 | * size. |
37 | */ |
38 | class MemBlock |
39 | { |
40 | public: |
41 | MemBlock(UINT32 size) :mSize(size) { } |
42 | |
43 | ~MemBlock() = default; |
44 | |
45 | /** |
46 | * Returns the first free address and increments the free pointer. Caller needs to ensure the remaining block |
47 | * size is adequate before calling. |
48 | */ |
49 | UINT8* alloc(UINT32 amount) |
50 | { |
51 | UINT8* freePtr = &mData[mFreePtr]; |
52 | mFreePtr += amount; |
53 | |
54 | return freePtr; |
55 | } |
56 | |
57 | /** |
58 | * Deallocates the provided pointer. Deallocation must happen in opposite order from allocation otherwise |
59 | * corruption will occur. |
60 | * |
61 | * @note Pointer to @p data isn't actually needed, but is provided for debug purposes in order to more |
62 | * easily track out-of-order deallocations. |
63 | */ |
64 | void dealloc(UINT8* data, UINT32 amount) |
65 | { |
66 | mFreePtr -= amount; |
67 | assert((&mData[mFreePtr]) == data && "Out of order stack deallocation detected. Deallocations need to happen in order opposite of allocations." ); |
68 | } |
69 | |
70 | UINT8* mData = nullptr; |
71 | UINT32 mFreePtr = 0; |
72 | UINT32 mSize = 0; |
73 | MemBlock* mNextBlock = nullptr; |
74 | MemBlock* mPrevBlock = nullptr; |
75 | }; |
76 | |
77 | public: |
78 | MemStackInternal() |
79 | { |
80 | mFreeBlock = allocBlock(BlockCapacity); |
81 | } |
82 | |
83 | ~MemStackInternal() |
84 | { |
85 | assert(mFreeBlock->mFreePtr == 0 && "Not all blocks were released before shutting down the stack allocator." ); |
86 | |
87 | MemBlock* curBlock = mFreeBlock; |
88 | while (curBlock != nullptr) |
89 | { |
90 | MemBlock* nextBlock = curBlock->mNextBlock; |
91 | deallocBlock(curBlock); |
92 | |
93 | curBlock = nextBlock; |
94 | } |
95 | } |
96 | |
97 | /** |
98 | * Allocates the given amount of memory on the stack. |
99 | * |
100 | * @param[in] amount The amount to allocate in bytes. |
101 | * |
102 | * @note |
103 | * Allocates the memory in the currently active block if it is large enough, otherwise a new block is allocated. |
104 | * If the allocation is larger than default block size a separate block will be allocated only for that allocation, |
105 | * making it essentially a slower heap allocator. |
106 | * @note |
107 | * Each allocation comes with a 4 byte overhead. |
108 | */ |
109 | UINT8* alloc(UINT32 amount) |
110 | { |
111 | amount += sizeof(UINT32); |
112 | |
113 | UINT32 freeMem = mFreeBlock->mSize - mFreeBlock->mFreePtr; |
114 | if(amount > freeMem) |
115 | allocBlock(amount); |
116 | |
117 | UINT8* data = mFreeBlock->alloc(amount); |
118 | |
119 | UINT32* storedSize = reinterpret_cast<UINT32*>(data); |
120 | *storedSize = amount; |
121 | |
122 | return data + sizeof(UINT32); |
123 | } |
124 | |
125 | /** Deallocates the given memory. Data must be deallocated in opposite order then when it was allocated. */ |
126 | void dealloc(UINT8* data) |
127 | { |
128 | data -= sizeof(UINT32); |
129 | |
130 | UINT32* storedSize = reinterpret_cast<UINT32*>(data); |
131 | mFreeBlock->dealloc(data, *storedSize); |
132 | |
133 | if (mFreeBlock->mFreePtr == 0) |
134 | { |
135 | MemBlock* emptyBlock = mFreeBlock; |
136 | |
137 | if (emptyBlock->mPrevBlock != nullptr) |
138 | mFreeBlock = emptyBlock->mPrevBlock; |
139 | |
140 | // Merge with next block |
141 | if (emptyBlock->mNextBlock != nullptr) |
142 | { |
143 | UINT32 totalSize = emptyBlock->mSize + emptyBlock->mNextBlock->mSize; |
144 | |
145 | if (emptyBlock->mPrevBlock != nullptr) |
146 | emptyBlock->mPrevBlock->mNextBlock = nullptr; |
147 | else |
148 | mFreeBlock = nullptr; |
149 | |
150 | deallocBlock(emptyBlock->mNextBlock); |
151 | deallocBlock(emptyBlock); |
152 | |
153 | allocBlock(totalSize); |
154 | } |
155 | } |
156 | } |
157 | |
158 | private: |
159 | MemBlock* mFreeBlock = nullptr; |
160 | |
161 | /** |
162 | * Allocates a new block of memory using a heap allocator. Block will never be smaller than BlockCapacity no matter |
163 | * the @p wantedSize. |
164 | */ |
165 | MemBlock* allocBlock(UINT32 wantedSize) |
166 | { |
167 | UINT32 blockSize = BlockCapacity; |
168 | if(wantedSize > blockSize) |
169 | blockSize = wantedSize; |
170 | |
171 | MemBlock* newBlock = nullptr; |
172 | MemBlock* curBlock = mFreeBlock; |
173 | |
174 | while (curBlock != nullptr) |
175 | { |
176 | MemBlock* nextBlock = curBlock->mNextBlock; |
177 | if (nextBlock != nullptr && nextBlock->mSize >= blockSize) |
178 | { |
179 | newBlock = nextBlock; |
180 | break; |
181 | } |
182 | |
183 | curBlock = nextBlock; |
184 | } |
185 | |
186 | if (newBlock == nullptr) |
187 | { |
188 | UINT8* data = (UINT8*)reinterpret_cast<UINT8*>(bs_alloc(blockSize + sizeof(MemBlock))); |
189 | newBlock = new (data)MemBlock(blockSize); |
190 | data += sizeof(MemBlock); |
191 | |
192 | newBlock->mData = data; |
193 | newBlock->mPrevBlock = mFreeBlock; |
194 | |
195 | if (mFreeBlock != nullptr) |
196 | { |
197 | if(mFreeBlock->mNextBlock != nullptr) |
198 | mFreeBlock->mNextBlock->mPrevBlock = newBlock; |
199 | |
200 | newBlock->mNextBlock = mFreeBlock->mNextBlock; |
201 | mFreeBlock->mNextBlock = newBlock; |
202 | } |
203 | } |
204 | |
205 | mFreeBlock = newBlock; |
206 | return newBlock; |
207 | } |
208 | |
209 | /** Deallocates a block of memory. */ |
210 | void deallocBlock(MemBlock* block) |
211 | { |
212 | block->~MemBlock(); |
213 | bs_free(block); |
214 | } |
215 | }; |
216 | |
217 | /** |
218 | * One of the fastest, but also very limiting type of allocator. All deallocations must happen in opposite order from |
219 | * allocations. |
220 | * |
221 | * @note |
222 | * It's mostly useful when you need to allocate something temporarily on the heap, usually something that gets |
223 | * allocated and freed within the same method. |
224 | * @note |
225 | * Each allocation comes with a pretty hefty 4 byte memory overhead, so don't use it for small allocations. |
226 | * @note |
227 | * Thread safe. But you cannot allocate on one thread and deallocate on another. Threads will keep |
228 | * separate stacks internally. Make sure to call beginThread()/endThread() for any thread this stack is used on. |
229 | */ |
230 | class MemStack |
231 | { |
232 | public: |
233 | /** |
234 | * Sets up the stack with the currently active thread. You need to call this on any thread before doing any |
235 | * allocations or deallocations. |
236 | */ |
237 | static BS_UTILITY_EXPORT void beginThread(); |
238 | |
239 | /** |
240 | * Cleans up the stack for the current thread. You may not perform any allocations or deallocations after this is |
241 | * called, unless you call beginThread again. |
242 | */ |
243 | static BS_UTILITY_EXPORT void endThread(); |
244 | |
245 | /** @copydoc MemStackInternal::alloc() */ |
246 | static BS_UTILITY_EXPORT UINT8* alloc(UINT32 amount); |
247 | |
248 | /** @copydoc MemStackInternal::dealloc() */ |
249 | static BS_UTILITY_EXPORT void deallocLast(UINT8* data); |
250 | |
251 | private: |
252 | static BS_THREADLOCAL MemStackInternal<1024 * 1024>* ThreadMemStack; |
253 | }; |
254 | |
255 | /** @} */ |
256 | /** @} */ |
257 | |
258 | /** @addtogroup Memory |
259 | * @{ |
260 | */ |
261 | |
262 | /** @copydoc MemStackInternal::alloc() */ |
263 | inline void* bs_stack_alloc(UINT32 amount) |
264 | { |
265 | return (void*)MemStack::alloc(amount); |
266 | } |
267 | |
268 | /** |
269 | * Allocates enough memory to hold the specified type, on the stack, but does not initialize the object. |
270 | * |
271 | * @see MemStackInternal::alloc() |
272 | */ |
273 | template<class T> |
274 | T* bs_stack_alloc() |
275 | { |
276 | return (T*)MemStack::alloc(sizeof(T)); |
277 | } |
278 | |
279 | /** |
280 | * Allocates enough memory to hold N objects of the specified type, on the stack, but does not initialize the objects. |
281 | * |
282 | * @param[in] amount Number of entries of the requested type to allocate. |
283 | * |
284 | * @see MemStackInternal::alloc() |
285 | */ |
286 | template<class T> |
287 | T* bs_stack_alloc(UINT32 amount) |
288 | { |
289 | return (T*)MemStack::alloc(sizeof(T) * amount); |
290 | } |
291 | |
292 | /** |
293 | * Allocates enough memory to hold the specified type, on the stack, and constructs the object. |
294 | * |
295 | * @see MemStackInternal::alloc() |
296 | */ |
297 | template<class T> |
298 | T* bs_stack_new(UINT32 count = 0) |
299 | { |
300 | T* data = bs_stack_alloc<T>(count); |
301 | |
302 | for(unsigned int i = 0; i < count; i++) |
303 | new ((void*)&data[i]) T; |
304 | |
305 | return data; |
306 | } |
307 | |
308 | /** |
309 | * Allocates enough memory to hold the specified type, on the stack, and constructs the object. |
310 | * |
311 | * @see MemStackInternal::alloc() |
312 | */ |
313 | template<class T, class... Args> |
314 | T* bs_stack_new(Args &&...args, UINT32 count = 0) |
315 | { |
316 | T* data = bs_stack_alloc<T>(count); |
317 | |
318 | for(unsigned int i = 0; i < count; i++) |
319 | new ((void*)&data[i]) T(std::forward<Args>(args)...); |
320 | |
321 | return data; |
322 | } |
323 | |
324 | /** |
325 | * Destructs and deallocates last allocated entry currently located on stack. |
326 | * |
327 | * @see MemStackInternal::dealloc() |
328 | */ |
329 | template<class T> |
330 | void bs_stack_delete(T* data) |
331 | { |
332 | data->~T(); |
333 | |
334 | MemStack::deallocLast((UINT8*)data); |
335 | } |
336 | |
337 | /** |
338 | * Destructs an array of objects and deallocates last allocated entry currently located on stack. |
339 | * |
340 | * @see MemStackInternal::dealloc() |
341 | */ |
342 | template<class T> |
343 | void bs_stack_delete(T* data, UINT32 count) |
344 | { |
345 | for(unsigned int i = 0; i < count; i++) |
346 | data[i].~T(); |
347 | |
348 | MemStack::deallocLast((UINT8*)data); |
349 | } |
350 | |
351 | inline void bs_stack_delete(void* data, UINT32 count) |
352 | { |
353 | MemStack::deallocLast((UINT8*)data); |
354 | } |
355 | |
356 | /** @copydoc MemStackInternal::dealloc() */ |
357 | inline void bs_stack_free(void* data) |
358 | { |
359 | return MemStack::deallocLast((UINT8*)data); |
360 | } |
361 | |
362 | /** |
363 | * An object used to transparently clean up a stack allocation when it's no longer in scope. Make sure to take great |
364 | * care not to free non-managed stack allocations out of order or to free the stack allocation managed by this object! |
365 | */ |
366 | template<typename T> |
367 | struct StackMemory |
368 | { |
369 | /* |
370 | * Provide implicit conversion to the allocated buffer so that users of this code can "pretend" this object is a |
371 | * pointer to the stack buffer that they wanted. |
372 | */ |
373 | constexpr operator T*() const & noexcept |
374 | { |
375 | return mPtr; |
376 | } |
377 | |
378 | /* |
379 | * This ensures that the result of bs_managed_stack_alloc() doesn't get passed to a function call as a temporary, |
380 | * or immediately assigned as a T*. Instead, the user of this class is forced to deal with this class as itself, |
381 | * when handling the return value of bs_managed_stack_alloc() preventing an immediate (and erroneous) call to |
382 | * bs_stack_free(). |
383 | */ |
384 | constexpr operator T*() const && noexcept = delete; |
385 | |
386 | explicit constexpr StackMemory(T* p, size_t count = 1) |
387 | : mPtr(p), mCount(count) |
388 | { } |
389 | |
390 | /** Needed until c++17 */ |
391 | StackMemory(StackMemory && other) |
392 | : mPtr(std::exchange(other.mPtr, nullptr)) |
393 | , mCount(std::exchange(other.mCount, 0)) |
394 | { } |
395 | |
396 | StackMemory(StackMemory const&) = delete; |
397 | StackMemory& operator=(StackMemory &&) = delete; |
398 | StackMemory& operator=(StackMemory const&) = delete; |
399 | |
400 | /** Frees the stack allocation. */ |
401 | ~StackMemory() |
402 | { |
403 | if(mPtr != nullptr) |
404 | { |
405 | if(mCount >= 1) |
406 | bs_stack_delete(mPtr, (UINT32)mCount); |
407 | else |
408 | bs_stack_free(mPtr); |
409 | } |
410 | } |
411 | |
412 | private: |
413 | T* mPtr = nullptr; |
414 | size_t mCount = 0; |
415 | }; |
416 | |
417 | /** |
418 | * Same as bs_stack_alloc() except the returned object takes care of automatically cleaning up when it goes out of |
419 | * scope. |
420 | */ |
421 | inline StackMemory<void> bs_managed_stack_alloc(UINT32 amount) |
422 | { |
423 | return StackMemory<void>(bs_stack_alloc(amount)); |
424 | } |
425 | |
426 | /** |
427 | * Same as bs_stack_alloc() except the returned object takes care of automatically cleaning up when it goes out of |
428 | * scope. |
429 | */ |
430 | template<class T> |
431 | StackMemory<T> bs_managed_stack_alloc() |
432 | { |
433 | return StackMemory<T>(bs_stack_alloc<T>()); |
434 | } |
435 | |
436 | /** |
437 | * Same as bs_stack_alloc() except the returned object takes care of automatically cleaning up when it goes out of |
438 | * scope. |
439 | */ |
440 | template<class T> |
441 | StackMemory<T> bs_managed_stack_alloc(UINT32 amount) |
442 | { |
443 | return StackMemory<T>(bs_stack_alloc<T>(amount)); |
444 | } |
445 | |
446 | /** |
447 | * Same as bs_stack_new() except the returned object takes care of automatically cleaning up when it goes out of |
448 | * scope. |
449 | */ |
450 | template<class T> |
451 | StackMemory<T> bs_managed_stack_new(size_t count = 1) |
452 | { |
453 | return StackMemory<T>(bs_stack_new<T>(count), count); |
454 | } |
455 | |
456 | /** |
457 | * Same as bs_stack_new() except the returned object takes care of automatically cleaning up when it goes out of |
458 | * scope. |
459 | */ |
460 | template<class T, class... Args> |
461 | StackMemory<T> bs_managed_stack_new(Args && ... args, size_t count = 1) |
462 | { |
463 | return StackMemory<T>(bs_stack_new<T>(std::forward<Args>(args)..., count), count); |
464 | } |
465 | |
466 | /** @} */ |
467 | /** @addtogroup Internal-Utility |
468 | * @{ |
469 | */ |
470 | |
471 | /** @addtogroup Memory-Internal |
472 | * @{ |
473 | */ |
474 | |
475 | /** |
476 | * Allows use of a stack allocator by using normal new/delete/free/dealloc operators. |
477 | * |
478 | * @see MemStack |
479 | */ |
480 | class StackAlloc |
481 | { }; |
482 | |
483 | /** |
484 | * Specialized memory allocator implementations that allows use of a stack allocator in normal new/delete/free/dealloc |
485 | * operators. |
486 | * |
487 | * @see MemStack |
488 | */ |
489 | template<> |
490 | class MemoryAllocator<StackAlloc> : public MemoryAllocatorBase |
491 | { |
492 | public: |
493 | static void* allocate(size_t bytes) |
494 | { |
495 | return bs_stack_alloc((UINT32)bytes); |
496 | } |
497 | |
498 | static void free(void* ptr) |
499 | { |
500 | bs_stack_free(ptr); |
501 | } |
502 | }; |
503 | |
504 | /** @} */ |
505 | /** @} */ |
506 | } |
507 | |