| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
| 3 | #include "Math/BsMatrix3.h" |
| 4 | #include "Math/BsQuaternion.h" |
| 5 | #include "Math/BsMath.h" |
| 6 | |
| 7 | namespace bs |
| 8 | { |
| 9 | const Matrix3 Matrix3::ZERO{BS_ZERO()}; |
| 10 | const Matrix3 Matrix3::IDENTITY{BS_IDENTITY()}; |
| 11 | |
| 12 | Vector3 Matrix3::getColumn(UINT32 col) const |
| 13 | { |
| 14 | assert(col < 3); |
| 15 | |
| 16 | return Vector3(m[0][col],m[1][col], m[2][col]); |
| 17 | } |
| 18 | |
| 19 | void Matrix3::setColumn(UINT32 col, const Vector3& vec) |
| 20 | { |
| 21 | assert(col < 3); |
| 22 | |
| 23 | m[0][col] = vec.x; |
| 24 | m[1][col] = vec.y; |
| 25 | m[2][col] = vec.z; |
| 26 | } |
| 27 | |
| 28 | void Matrix3::fromAxes(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis) |
| 29 | { |
| 30 | setColumn(0, xAxis); |
| 31 | setColumn(1, yAxis); |
| 32 | setColumn(2, zAxis); |
| 33 | } |
| 34 | |
| 35 | bool Matrix3::operator== (const Matrix3& rhs) const |
| 36 | { |
| 37 | for (UINT32 row = 0; row < 3; row++) |
| 38 | { |
| 39 | for (UINT32 col = 0; col < 3; col++) |
| 40 | { |
| 41 | if (m[row][col] != rhs.m[row][col]) |
| 42 | return false; |
| 43 | } |
| 44 | } |
| 45 | |
| 46 | return true; |
| 47 | } |
| 48 | |
| 49 | bool Matrix3::operator!= (const Matrix3& rhs) const |
| 50 | { |
| 51 | return !operator==(rhs); |
| 52 | } |
| 53 | |
| 54 | Matrix3 Matrix3::operator+ (const Matrix3& rhs) const |
| 55 | { |
| 56 | Matrix3 sum; |
| 57 | for (UINT32 row = 0; row < 3; row++) |
| 58 | { |
| 59 | for (UINT32 col = 0; col < 3; col++) |
| 60 | { |
| 61 | sum.m[row][col] = m[row][col] + rhs.m[row][col]; |
| 62 | } |
| 63 | } |
| 64 | |
| 65 | return sum; |
| 66 | } |
| 67 | |
| 68 | Matrix3 Matrix3::operator- (const Matrix3& rhs) const |
| 69 | { |
| 70 | Matrix3 diff; |
| 71 | for (UINT32 row = 0; row < 3; row++) |
| 72 | { |
| 73 | for (UINT32 col = 0; col < 3; col++) |
| 74 | { |
| 75 | diff.m[row][col] = m[row][col] - |
| 76 | rhs.m[row][col]; |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | return diff; |
| 81 | } |
| 82 | |
| 83 | Matrix3 Matrix3::operator* (const Matrix3& rhs) const |
| 84 | { |
| 85 | Matrix3 prod; |
| 86 | for (UINT32 row = 0; row < 3; row++) |
| 87 | { |
| 88 | for (UINT32 col = 0; col < 3; col++) |
| 89 | { |
| 90 | prod.m[row][col] = m[row][0]*rhs.m[0][col] + |
| 91 | m[row][1]*rhs.m[1][col] + m[row][2]*rhs.m[2][col]; |
| 92 | } |
| 93 | } |
| 94 | |
| 95 | return prod; |
| 96 | } |
| 97 | |
| 98 | Matrix3 Matrix3::operator- () const |
| 99 | { |
| 100 | Matrix3 neg; |
| 101 | for (UINT32 row = 0; row < 3; row++) |
| 102 | { |
| 103 | for (UINT32 col = 0; col < 3; col++) |
| 104 | neg[row][col] = -m[row][col]; |
| 105 | } |
| 106 | |
| 107 | return neg; |
| 108 | } |
| 109 | |
| 110 | Matrix3 Matrix3::operator* (float rhs) const |
| 111 | { |
| 112 | Matrix3 prod; |
| 113 | for (UINT32 row = 0; row < 3; row++) |
| 114 | { |
| 115 | for (UINT32 col = 0; col < 3; col++) |
| 116 | prod[row][col] = rhs*m[row][col]; |
| 117 | } |
| 118 | |
| 119 | return prod; |
| 120 | } |
| 121 | |
| 122 | Matrix3 operator* (float lhs, const Matrix3& rhs) |
| 123 | { |
| 124 | Matrix3 prod; |
| 125 | for (UINT32 row = 0; row < 3; row++) |
| 126 | { |
| 127 | for (UINT32 col = 0; col < 3; col++) |
| 128 | prod[row][col] = lhs*rhs.m[row][col]; |
| 129 | } |
| 130 | |
| 131 | return prod; |
| 132 | } |
| 133 | |
| 134 | Vector3 Matrix3::multiply(const Vector3& vec) const |
| 135 | { |
| 136 | Vector3 prod; |
| 137 | for (UINT32 row = 0; row < 3; row++) |
| 138 | { |
| 139 | prod[row] = |
| 140 | m[row][0]*vec[0] + |
| 141 | m[row][1]*vec[1] + |
| 142 | m[row][2]*vec[2]; |
| 143 | } |
| 144 | |
| 145 | return prod; |
| 146 | } |
| 147 | |
| 148 | Matrix3 Matrix3::transpose() const |
| 149 | { |
| 150 | Matrix3 matTranspose; |
| 151 | for (UINT32 row = 0; row < 3; row++) |
| 152 | { |
| 153 | for (UINT32 col = 0; col < 3; col++) |
| 154 | matTranspose[row][col] = m[col][row]; |
| 155 | } |
| 156 | |
| 157 | return matTranspose; |
| 158 | } |
| 159 | |
| 160 | bool Matrix3::inverse(Matrix3& matInv, float tolerance) const |
| 161 | { |
| 162 | matInv[0][0] = m[1][1]*m[2][2] - m[1][2]*m[2][1]; |
| 163 | matInv[0][1] = m[0][2]*m[2][1] - m[0][1]*m[2][2]; |
| 164 | matInv[0][2] = m[0][1]*m[1][2] - m[0][2]*m[1][1]; |
| 165 | matInv[1][0] = m[1][2]*m[2][0] - m[1][0]*m[2][2]; |
| 166 | matInv[1][1] = m[0][0]*m[2][2] - m[0][2]*m[2][0]; |
| 167 | matInv[1][2] = m[0][2]*m[1][0] - m[0][0]*m[1][2]; |
| 168 | matInv[2][0] = m[1][0]*m[2][1] - m[1][1]*m[2][0]; |
| 169 | matInv[2][1] = m[0][1]*m[2][0] - m[0][0]*m[2][1]; |
| 170 | matInv[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0]; |
| 171 | |
| 172 | float det = m[0][0]*matInv[0][0] + m[0][1]*matInv[1][0] + m[0][2]*matInv[2][0]; |
| 173 | |
| 174 | if (Math::abs(det) <= tolerance) |
| 175 | return false; |
| 176 | |
| 177 | float invDet = 1.0f/det; |
| 178 | for (UINT32 row = 0; row < 3; row++) |
| 179 | { |
| 180 | for (UINT32 col = 0; col < 3; col++) |
| 181 | matInv[row][col] *= invDet; |
| 182 | } |
| 183 | |
| 184 | return true; |
| 185 | } |
| 186 | |
| 187 | Matrix3 Matrix3::inverse(float tolerance) const |
| 188 | { |
| 189 | Matrix3 matInv = Matrix3::ZERO; |
| 190 | inverse(matInv, tolerance); |
| 191 | return matInv; |
| 192 | } |
| 193 | |
| 194 | float Matrix3::determinant() const |
| 195 | { |
| 196 | float cofactor00 = m[1][1]*m[2][2] - m[1][2]*m[2][1]; |
| 197 | float cofactor10 = m[1][2]*m[2][0] - m[1][0]*m[2][2]; |
| 198 | float cofactor20 = m[1][0]*m[2][1] - m[1][1]*m[2][0]; |
| 199 | |
| 200 | float det = m[0][0]*cofactor00 + m[0][1]*cofactor10 + m[0][2]*cofactor20; |
| 201 | |
| 202 | return det; |
| 203 | } |
| 204 | |
| 205 | void Matrix3::bidiagonalize (Matrix3& matA, Matrix3& matL, Matrix3& matR) |
| 206 | { |
| 207 | float v[3], w[3]; |
| 208 | float length, sign, t1, invT1, t2; |
| 209 | bool bIdentity; |
| 210 | |
| 211 | // Map first column to (*,0,0) |
| 212 | length = Math::sqrt(matA[0][0]*matA[0][0] + matA[1][0]*matA[1][0] + matA[2][0]*matA[2][0]); |
| 213 | if (length > 0.0f) |
| 214 | { |
| 215 | sign = (matA[0][0] > 0.0f ? 1.0f : -1.0f); |
| 216 | t1 = matA[0][0] + sign*length; |
| 217 | invT1 = 1.0f/t1; |
| 218 | v[1] = matA[1][0]*invT1; |
| 219 | v[2] = matA[2][0]*invT1; |
| 220 | |
| 221 | t2 = -2.0f/(1.0f+v[1]*v[1]+v[2]*v[2]); |
| 222 | w[0] = t2*(matA[0][0]+matA[1][0]*v[1]+matA[2][0]*v[2]); |
| 223 | w[1] = t2*(matA[0][1]+matA[1][1]*v[1]+matA[2][1]*v[2]); |
| 224 | w[2] = t2*(matA[0][2]+matA[1][2]*v[1]+matA[2][2]*v[2]); |
| 225 | matA[0][0] += w[0]; |
| 226 | matA[0][1] += w[1]; |
| 227 | matA[0][2] += w[2]; |
| 228 | matA[1][1] += v[1]*w[1]; |
| 229 | matA[1][2] += v[1]*w[2]; |
| 230 | matA[2][1] += v[2]*w[1]; |
| 231 | matA[2][2] += v[2]*w[2]; |
| 232 | |
| 233 | matL[0][0] = 1.0f+t2; |
| 234 | matL[0][1] = matL[1][0] = t2*v[1]; |
| 235 | matL[0][2] = matL[2][0] = t2*v[2]; |
| 236 | matL[1][1] = 1.0f+t2*v[1]*v[1]; |
| 237 | matL[1][2] = matL[2][1] = t2*v[1]*v[2]; |
| 238 | matL[2][2] = 1.0f+t2*v[2]*v[2]; |
| 239 | bIdentity = false; |
| 240 | } |
| 241 | else |
| 242 | { |
| 243 | matL = Matrix3::IDENTITY; |
| 244 | bIdentity = true; |
| 245 | } |
| 246 | |
| 247 | // Map first row to (*,*,0) |
| 248 | length = Math::sqrt(matA[0][1]*matA[0][1]+matA[0][2]*matA[0][2]); |
| 249 | if ( length > 0.0 ) |
| 250 | { |
| 251 | sign = (matA[0][1] > 0.0f ? 1.0f : -1.0f); |
| 252 | t1 = matA[0][1] + sign*length; |
| 253 | v[2] = matA[0][2]/t1; |
| 254 | |
| 255 | t2 = -2.0f/(1.0f+v[2]*v[2]); |
| 256 | w[0] = t2*(matA[0][1]+matA[0][2]*v[2]); |
| 257 | w[1] = t2*(matA[1][1]+matA[1][2]*v[2]); |
| 258 | w[2] = t2*(matA[2][1]+matA[2][2]*v[2]); |
| 259 | matA[0][1] += w[0]; |
| 260 | matA[1][1] += w[1]; |
| 261 | matA[1][2] += w[1]*v[2]; |
| 262 | matA[2][1] += w[2]; |
| 263 | matA[2][2] += w[2]*v[2]; |
| 264 | |
| 265 | matR[0][0] = 1.0; |
| 266 | matR[0][1] = matR[1][0] = 0.0; |
| 267 | matR[0][2] = matR[2][0] = 0.0; |
| 268 | matR[1][1] = 1.0f+t2; |
| 269 | matR[1][2] = matR[2][1] = t2*v[2]; |
| 270 | matR[2][2] = 1.0f+t2*v[2]*v[2]; |
| 271 | } |
| 272 | else |
| 273 | { |
| 274 | matR = Matrix3::IDENTITY; |
| 275 | } |
| 276 | |
| 277 | // Map second column to (*,*,0) |
| 278 | length = Math::sqrt(matA[1][1]*matA[1][1]+matA[2][1]*matA[2][1]); |
| 279 | if ( length > 0.0 ) |
| 280 | { |
| 281 | sign = (matA[1][1] > 0.0f ? 1.0f : -1.0f); |
| 282 | t1 = matA[1][1] + sign*length; |
| 283 | v[2] = matA[2][1]/t1; |
| 284 | |
| 285 | t2 = -2.0f/(1.0f+v[2]*v[2]); |
| 286 | w[1] = t2*(matA[1][1]+matA[2][1]*v[2]); |
| 287 | w[2] = t2*(matA[1][2]+matA[2][2]*v[2]); |
| 288 | matA[1][1] += w[1]; |
| 289 | matA[1][2] += w[2]; |
| 290 | matA[2][2] += v[2]*w[2]; |
| 291 | |
| 292 | float a = 1.0f+t2; |
| 293 | float b = t2*v[2]; |
| 294 | float c = 1.0f+b*v[2]; |
| 295 | |
| 296 | if (bIdentity) |
| 297 | { |
| 298 | matL[0][0] = 1.0; |
| 299 | matL[0][1] = matL[1][0] = 0.0; |
| 300 | matL[0][2] = matL[2][0] = 0.0; |
| 301 | matL[1][1] = a; |
| 302 | matL[1][2] = matL[2][1] = b; |
| 303 | matL[2][2] = c; |
| 304 | } |
| 305 | else |
| 306 | { |
| 307 | for (int row = 0; row < 3; row++) |
| 308 | { |
| 309 | float tmp0 = matL[row][1]; |
| 310 | float tmp1 = matL[row][2]; |
| 311 | matL[row][1] = a*tmp0+b*tmp1; |
| 312 | matL[row][2] = b*tmp0+c*tmp1; |
| 313 | } |
| 314 | } |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | void Matrix3::golubKahanStep (Matrix3& matA, Matrix3& matL, Matrix3& matR) |
| 319 | { |
| 320 | float f11 = matA[0][1]*matA[0][1]+matA[1][1]*matA[1][1]; |
| 321 | float t22 = matA[1][2]*matA[1][2]+matA[2][2]*matA[2][2]; |
| 322 | float t12 = matA[1][1]*matA[1][2]; |
| 323 | float trace = f11+t22; |
| 324 | float diff = f11-t22; |
| 325 | float discr = Math::sqrt(diff*diff+4.0f*t12*t12); |
| 326 | float root1 = 0.5f*(trace+discr); |
| 327 | float root2 = 0.5f*(trace-discr); |
| 328 | |
| 329 | // Adjust right |
| 330 | float y = matA[0][0] - (Math::abs(root1-t22) <= Math::abs(root2-t22) ? root1 : root2); |
| 331 | float z = matA[0][1]; |
| 332 | float invLength = Math::invSqrt(y*y+z*z); |
| 333 | float sin = z*invLength; |
| 334 | float cos = -y*invLength; |
| 335 | |
| 336 | float tmp0 = matA[0][0]; |
| 337 | float tmp1 = matA[0][1]; |
| 338 | matA[0][0] = cos*tmp0-sin*tmp1; |
| 339 | matA[0][1] = sin*tmp0+cos*tmp1; |
| 340 | matA[1][0] = -sin*matA[1][1]; |
| 341 | matA[1][1] *= cos; |
| 342 | |
| 343 | UINT32 row; |
| 344 | for (row = 0; row < 3; row++) |
| 345 | { |
| 346 | tmp0 = matR[0][row]; |
| 347 | tmp1 = matR[1][row]; |
| 348 | matR[0][row] = cos*tmp0-sin*tmp1; |
| 349 | matR[1][row] = sin*tmp0+cos*tmp1; |
| 350 | } |
| 351 | |
| 352 | // Adjust left |
| 353 | y = matA[0][0]; |
| 354 | z = matA[1][0]; |
| 355 | invLength = Math::invSqrt(y*y+z*z); |
| 356 | sin = z*invLength; |
| 357 | cos = -y*invLength; |
| 358 | |
| 359 | matA[0][0] = cos*matA[0][0]-sin*matA[1][0]; |
| 360 | tmp0 = matA[0][1]; |
| 361 | tmp1 = matA[1][1]; |
| 362 | matA[0][1] = cos*tmp0-sin*tmp1; |
| 363 | matA[1][1] = sin*tmp0+cos*tmp1; |
| 364 | matA[0][2] = -sin*matA[1][2]; |
| 365 | matA[1][2] *= cos; |
| 366 | |
| 367 | UINT32 col; |
| 368 | for (col = 0; col < 3; col++) |
| 369 | { |
| 370 | tmp0 = matL[col][0]; |
| 371 | tmp1 = matL[col][1]; |
| 372 | matL[col][0] = cos*tmp0-sin*tmp1; |
| 373 | matL[col][1] = sin*tmp0+cos*tmp1; |
| 374 | } |
| 375 | |
| 376 | // Adjust right |
| 377 | y = matA[0][1]; |
| 378 | z = matA[0][2]; |
| 379 | invLength = Math::invSqrt(y*y+z*z); |
| 380 | sin = z*invLength; |
| 381 | cos = -y*invLength; |
| 382 | |
| 383 | matA[0][1] = cos*matA[0][1]-sin*matA[0][2]; |
| 384 | tmp0 = matA[1][1]; |
| 385 | tmp1 = matA[1][2]; |
| 386 | matA[1][1] = cos*tmp0-sin*tmp1; |
| 387 | matA[1][2] = sin*tmp0+cos*tmp1; |
| 388 | matA[2][1] = -sin*matA[2][2]; |
| 389 | matA[2][2] *= cos; |
| 390 | |
| 391 | for (row = 0; row < 3; row++) |
| 392 | { |
| 393 | tmp0 = matR[1][row]; |
| 394 | tmp1 = matR[2][row]; |
| 395 | matR[1][row] = cos*tmp0-sin*tmp1; |
| 396 | matR[2][row] = sin*tmp0+cos*tmp1; |
| 397 | } |
| 398 | |
| 399 | // Adjust left |
| 400 | y = matA[1][1]; |
| 401 | z = matA[2][1]; |
| 402 | invLength = Math::invSqrt(y*y+z*z); |
| 403 | sin = z*invLength; |
| 404 | cos = -y*invLength; |
| 405 | |
| 406 | matA[1][1] = cos*matA[1][1]-sin*matA[2][1]; |
| 407 | tmp0 = matA[1][2]; |
| 408 | tmp1 = matA[2][2]; |
| 409 | matA[1][2] = cos*tmp0-sin*tmp1; |
| 410 | matA[2][2] = sin*tmp0+cos*tmp1; |
| 411 | |
| 412 | for (col = 0; col < 3; col++) |
| 413 | { |
| 414 | tmp0 = matL[col][1]; |
| 415 | tmp1 = matL[col][2]; |
| 416 | matL[col][1] = cos*tmp0-sin*tmp1; |
| 417 | matL[col][2] = sin*tmp0+cos*tmp1; |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | void Matrix3::singularValueDecomposition(Matrix3& matL, Vector3& matS, Matrix3& matR) const |
| 422 | { |
| 423 | UINT32 row, col; |
| 424 | |
| 425 | Matrix3 mat = *this; |
| 426 | bidiagonalize(mat, matL, matR); |
| 427 | |
| 428 | for (unsigned int i = 0; i < SVD_MAX_ITERS; i++) |
| 429 | { |
| 430 | float tmp, tmp0, tmp1; |
| 431 | float sin0, cos0, tan0; |
| 432 | float sin1, cos1, tan1; |
| 433 | |
| 434 | bool test1 = (Math::abs(mat[0][1]) <= SVD_EPSILON*(Math::abs(mat[0][0])+Math::abs(mat[1][1]))); |
| 435 | bool test2 = (Math::abs(mat[1][2]) <= SVD_EPSILON*(Math::abs(mat[1][1])+Math::abs(mat[2][2]))); |
| 436 | |
| 437 | if (test1) |
| 438 | { |
| 439 | if (test2) |
| 440 | { |
| 441 | matS[0] = mat[0][0]; |
| 442 | matS[1] = mat[1][1]; |
| 443 | matS[2] = mat[2][2]; |
| 444 | break; |
| 445 | } |
| 446 | else |
| 447 | { |
| 448 | // 2x2 closed form factorization |
| 449 | tmp = (mat[1][1]*mat[1][1] - mat[2][2]*mat[2][2] + mat[1][2]*mat[1][2])/(mat[1][2]*mat[2][2]); |
| 450 | tan0 = 0.5f*(tmp+Math::sqrt(tmp*tmp + 4.0f)); |
| 451 | cos0 = Math::invSqrt(1.0f+tan0*tan0); |
| 452 | sin0 = tan0*cos0; |
| 453 | |
| 454 | for (col = 0; col < 3; col++) |
| 455 | { |
| 456 | tmp0 = matL[col][1]; |
| 457 | tmp1 = matL[col][2]; |
| 458 | matL[col][1] = cos0*tmp0-sin0*tmp1; |
| 459 | matL[col][2] = sin0*tmp0+cos0*tmp1; |
| 460 | } |
| 461 | |
| 462 | tan1 = (mat[1][2]-mat[2][2]*tan0)/mat[1][1]; |
| 463 | cos1 = Math::invSqrt(1.0f+tan1*tan1); |
| 464 | sin1 = -tan1*cos1; |
| 465 | |
| 466 | for (row = 0; row < 3; row++) |
| 467 | { |
| 468 | tmp0 = matR[1][row]; |
| 469 | tmp1 = matR[2][row]; |
| 470 | matR[1][row] = cos1*tmp0-sin1*tmp1; |
| 471 | matR[2][row] = sin1*tmp0+cos1*tmp1; |
| 472 | } |
| 473 | |
| 474 | matS[0] = mat[0][0]; |
| 475 | matS[1] = cos0*cos1*mat[1][1] - sin1*(cos0*mat[1][2]-sin0*mat[2][2]); |
| 476 | matS[2] = sin0*sin1*mat[1][1] + cos1*(sin0*mat[1][2]+cos0*mat[2][2]); |
| 477 | break; |
| 478 | } |
| 479 | } |
| 480 | else |
| 481 | { |
| 482 | if (test2) |
| 483 | { |
| 484 | // 2x2 closed form factorization |
| 485 | tmp = (mat[0][0]*mat[0][0] + mat[1][1]*mat[1][1] - mat[0][1]*mat[0][1])/(mat[0][1]*mat[1][1]); |
| 486 | tan0 = 0.5f*(-tmp+Math::sqrt(tmp*tmp + 4.0f)); |
| 487 | cos0 = Math::invSqrt(1.0f+tan0*tan0); |
| 488 | sin0 = tan0*cos0; |
| 489 | |
| 490 | for (col = 0; col < 3; col++) |
| 491 | { |
| 492 | tmp0 = matL[col][0]; |
| 493 | tmp1 = matL[col][1]; |
| 494 | matL[col][0] = cos0*tmp0-sin0*tmp1; |
| 495 | matL[col][1] = sin0*tmp0+cos0*tmp1; |
| 496 | } |
| 497 | |
| 498 | tan1 = (mat[0][1]-mat[1][1]*tan0)/mat[0][0]; |
| 499 | cos1 = Math::invSqrt(1.0f+tan1*tan1); |
| 500 | sin1 = -tan1*cos1; |
| 501 | |
| 502 | for (row = 0; row < 3; row++) |
| 503 | { |
| 504 | tmp0 = matR[0][row]; |
| 505 | tmp1 = matR[1][row]; |
| 506 | matR[0][row] = cos1*tmp0-sin1*tmp1; |
| 507 | matR[1][row] = sin1*tmp0+cos1*tmp1; |
| 508 | } |
| 509 | |
| 510 | matS[0] = cos0*cos1*mat[0][0] - sin1*(cos0*mat[0][1]-sin0*mat[1][1]); |
| 511 | matS[1] = sin0*sin1*mat[0][0] + cos1*(sin0*mat[0][1]+cos0*mat[1][1]); |
| 512 | matS[2] = mat[2][2]; |
| 513 | break; |
| 514 | } |
| 515 | else |
| 516 | { |
| 517 | golubKahanStep(mat, matL, matR); |
| 518 | } |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | // Positize diagonal |
| 523 | for (row = 0; row < 3; row++) |
| 524 | { |
| 525 | if ( matS[row] < 0.0 ) |
| 526 | { |
| 527 | matS[row] = -matS[row]; |
| 528 | for (col = 0; col < 3; col++) |
| 529 | matR[row][col] = -matR[row][col]; |
| 530 | } |
| 531 | } |
| 532 | } |
| 533 | |
| 534 | void Matrix3::orthonormalize() |
| 535 | { |
| 536 | // Compute q0 |
| 537 | float invLength = Math::invSqrt(m[0][0]*m[0][0]+ m[1][0]*m[1][0] + m[2][0]*m[2][0]); |
| 538 | |
| 539 | m[0][0] *= invLength; |
| 540 | m[1][0] *= invLength; |
| 541 | m[2][0] *= invLength; |
| 542 | |
| 543 | // Compute q1 |
| 544 | float dot0 = m[0][0]*m[0][1] + m[1][0]*m[1][1] + m[2][0]*m[2][1]; |
| 545 | |
| 546 | m[0][1] -= dot0*m[0][0]; |
| 547 | m[1][1] -= dot0*m[1][0]; |
| 548 | m[2][1] -= dot0*m[2][0]; |
| 549 | |
| 550 | invLength = Math::invSqrt(m[0][1]*m[0][1] + m[1][1]*m[1][1] + m[2][1]*m[2][1]); |
| 551 | |
| 552 | m[0][1] *= invLength; |
| 553 | m[1][1] *= invLength; |
| 554 | m[2][1] *= invLength; |
| 555 | |
| 556 | // Compute q2 |
| 557 | float dot1 = m[0][1]*m[0][2] + m[1][1]*m[1][2] + m[2][1]*m[2][2]; |
| 558 | dot0 = m[0][0]*m[0][2] + m[1][0]*m[1][2] + m[2][0]*m[2][2]; |
| 559 | |
| 560 | m[0][2] -= dot0*m[0][0] + dot1*m[0][1]; |
| 561 | m[1][2] -= dot0*m[1][0] + dot1*m[1][1]; |
| 562 | m[2][2] -= dot0*m[2][0] + dot1*m[2][1]; |
| 563 | |
| 564 | invLength = Math::invSqrt(m[0][2]*m[0][2] + m[1][2]*m[1][2] + m[2][2]*m[2][2]); |
| 565 | |
| 566 | m[0][2] *= invLength; |
| 567 | m[1][2] *= invLength; |
| 568 | m[2][2] *= invLength; |
| 569 | } |
| 570 | |
| 571 | void Matrix3::decomposition(Quaternion& rotation, Vector3& scale) const |
| 572 | { |
| 573 | Matrix3 matQ; |
| 574 | Vector3 vecU; |
| 575 | QDUDecomposition(matQ, scale, vecU); |
| 576 | |
| 577 | rotation = Quaternion(matQ); |
| 578 | } |
| 579 | |
| 580 | void Matrix3::QDUDecomposition(Matrix3& matQ, Vector3& vecD, Vector3& vecU) const |
| 581 | { |
| 582 | // Build orthogonal matrix Q |
| 583 | float invLength = Math::invSqrt(m[0][0]*m[0][0] + m[1][0]*m[1][0] + m[2][0]*m[2][0]); |
| 584 | matQ[0][0] = m[0][0]*invLength; |
| 585 | matQ[1][0] = m[1][0]*invLength; |
| 586 | matQ[2][0] = m[2][0]*invLength; |
| 587 | |
| 588 | float dot = matQ[0][0]*m[0][1] + matQ[1][0]*m[1][1] + matQ[2][0]*m[2][1]; |
| 589 | matQ[0][1] = m[0][1]-dot*matQ[0][0]; |
| 590 | matQ[1][1] = m[1][1]-dot*matQ[1][0]; |
| 591 | matQ[2][1] = m[2][1]-dot*matQ[2][0]; |
| 592 | |
| 593 | invLength = Math::invSqrt(matQ[0][1]*matQ[0][1] + matQ[1][1]*matQ[1][1] + matQ[2][1]*matQ[2][1]); |
| 594 | matQ[0][1] *= invLength; |
| 595 | matQ[1][1] *= invLength; |
| 596 | matQ[2][1] *= invLength; |
| 597 | |
| 598 | dot = matQ[0][0]*m[0][2] + matQ[1][0]*m[1][2] + matQ[2][0]*m[2][2]; |
| 599 | matQ[0][2] = m[0][2]-dot*matQ[0][0]; |
| 600 | matQ[1][2] = m[1][2]-dot*matQ[1][0]; |
| 601 | matQ[2][2] = m[2][2]-dot*matQ[2][0]; |
| 602 | |
| 603 | dot = matQ[0][1]*m[0][2] + matQ[1][1]*m[1][2] + matQ[2][1]*m[2][2]; |
| 604 | matQ[0][2] -= dot*matQ[0][1]; |
| 605 | matQ[1][2] -= dot*matQ[1][1]; |
| 606 | matQ[2][2] -= dot*matQ[2][1]; |
| 607 | |
| 608 | invLength = Math::invSqrt(matQ[0][2]*matQ[0][2] + matQ[1][2]*matQ[1][2] + matQ[2][2]*matQ[2][2]); |
| 609 | matQ[0][2] *= invLength; |
| 610 | matQ[1][2] *= invLength; |
| 611 | matQ[2][2] *= invLength; |
| 612 | |
| 613 | // Guarantee that orthogonal matrix has determinant 1 (no reflections) |
| 614 | float fDet = matQ[0][0]*matQ[1][1]*matQ[2][2] + matQ[0][1]*matQ[1][2]*matQ[2][0] + |
| 615 | matQ[0][2]*matQ[1][0]*matQ[2][1] - matQ[0][2]*matQ[1][1]*matQ[2][0] - |
| 616 | matQ[0][1]*matQ[1][0]*matQ[2][2] - matQ[0][0]*matQ[1][2]*matQ[2][1]; |
| 617 | |
| 618 | if (fDet < 0.0f) |
| 619 | { |
| 620 | for (UINT32 row = 0; row < 3; row++) |
| 621 | for (UINT32 col = 0; col < 3; col++) |
| 622 | matQ[row][col] = -matQ[row][col]; |
| 623 | } |
| 624 | |
| 625 | // Build "right" matrix R |
| 626 | Matrix3 matRight; |
| 627 | matRight[0][0] = matQ[0][0]*m[0][0] + matQ[1][0]*m[1][0] + |
| 628 | matQ[2][0]*m[2][0]; |
| 629 | matRight[0][1] = matQ[0][0]*m[0][1] + matQ[1][0]*m[1][1] + |
| 630 | matQ[2][0]*m[2][1]; |
| 631 | matRight[1][1] = matQ[0][1]*m[0][1] + matQ[1][1]*m[1][1] + |
| 632 | matQ[2][1]*m[2][1]; |
| 633 | matRight[0][2] = matQ[0][0]*m[0][2] + matQ[1][0]*m[1][2] + |
| 634 | matQ[2][0]*m[2][2]; |
| 635 | matRight[1][2] = matQ[0][1]*m[0][2] + matQ[1][1]*m[1][2] + |
| 636 | matQ[2][1]*m[2][2]; |
| 637 | matRight[2][2] = matQ[0][2]*m[0][2] + matQ[1][2]*m[1][2] + |
| 638 | matQ[2][2]*m[2][2]; |
| 639 | |
| 640 | // The scaling component |
| 641 | vecD[0] = matRight[0][0]; |
| 642 | vecD[1] = matRight[1][1]; |
| 643 | vecD[2] = matRight[2][2]; |
| 644 | |
| 645 | // The shear component |
| 646 | float invD0 = 1.0f/vecD[0]; |
| 647 | vecU[0] = matRight[0][1]*invD0; |
| 648 | vecU[1] = matRight[0][2]*invD0; |
| 649 | vecU[2] = matRight[1][2]/vecD[1]; |
| 650 | } |
| 651 | |
| 652 | void Matrix3::toAxisAngle(Vector3& axis, Radian& radians) const |
| 653 | { |
| 654 | float trace = m[0][0] + m[1][1] + m[2][2]; |
| 655 | float cos = 0.5f*(trace-1.0f); |
| 656 | radians = Math::acos(cos); // In [0, PI] |
| 657 | |
| 658 | if (radians > Radian(0.0f)) |
| 659 | { |
| 660 | if (radians < Radian(Math::PI)) |
| 661 | { |
| 662 | axis.x = m[2][1]-m[1][2]; |
| 663 | axis.y = m[0][2]-m[2][0]; |
| 664 | axis.z = m[1][0]-m[0][1]; |
| 665 | axis.normalize(); |
| 666 | } |
| 667 | else |
| 668 | { |
| 669 | // Angle is PI |
| 670 | float fHalfInverse; |
| 671 | if (m[0][0] >= m[1][1]) |
| 672 | { |
| 673 | // r00 >= r11 |
| 674 | if (m[0][0] >= m[2][2]) |
| 675 | { |
| 676 | // r00 is maximum diagonal term |
| 677 | axis.x = 0.5f*Math::sqrt(m[0][0] - m[1][1] - m[2][2] + 1.0f); |
| 678 | fHalfInverse = 0.5f/axis.x; |
| 679 | axis.y = fHalfInverse*m[0][1]; |
| 680 | axis.z = fHalfInverse*m[0][2]; |
| 681 | } |
| 682 | else |
| 683 | { |
| 684 | // r22 is maximum diagonal term |
| 685 | axis.z = 0.5f*Math::sqrt(m[2][2] - m[0][0] - m[1][1] + 1.0f); |
| 686 | fHalfInverse = 0.5f/axis.z; |
| 687 | axis.x = fHalfInverse*m[0][2]; |
| 688 | axis.y = fHalfInverse*m[1][2]; |
| 689 | } |
| 690 | } |
| 691 | else |
| 692 | { |
| 693 | // r11 > r00 |
| 694 | if ( m[1][1] >= m[2][2] ) |
| 695 | { |
| 696 | // r11 is maximum diagonal term |
| 697 | axis.y = 0.5f*Math::sqrt(m[1][1] - m[0][0] - m[2][2] + 1.0f); |
| 698 | fHalfInverse = 0.5f/axis.y; |
| 699 | axis.x = fHalfInverse*m[0][1]; |
| 700 | axis.z = fHalfInverse*m[1][2]; |
| 701 | } |
| 702 | else |
| 703 | { |
| 704 | // r22 is maximum diagonal term |
| 705 | axis.z = 0.5f*Math::sqrt(m[2][2] - m[0][0] - m[1][1] + 1.0f); |
| 706 | fHalfInverse = 0.5f/axis.z; |
| 707 | axis.x = fHalfInverse*m[0][2]; |
| 708 | axis.y = fHalfInverse*m[1][2]; |
| 709 | } |
| 710 | } |
| 711 | } |
| 712 | } |
| 713 | else |
| 714 | { |
| 715 | // The angle is 0 and the matrix is the identity. Any axis will |
| 716 | // work, so just use the x-axis. |
| 717 | axis.x = 1.0f; |
| 718 | axis.y = 0.0f; |
| 719 | axis.z = 0.0f; |
| 720 | } |
| 721 | } |
| 722 | |
| 723 | void Matrix3::fromAxisAngle(const Vector3& axis, const Radian& angle) |
| 724 | { |
| 725 | float cos = Math::cos(angle); |
| 726 | float sin = Math::sin(angle); |
| 727 | float oneMinusCos = 1.0f-cos; |
| 728 | float x2 = axis.x*axis.x; |
| 729 | float y2 = axis.y*axis.y; |
| 730 | float z2 = axis.z*axis.z; |
| 731 | float xym = axis.x*axis.y*oneMinusCos; |
| 732 | float xzm = axis.x*axis.z*oneMinusCos; |
| 733 | float yzm = axis.y*axis.z*oneMinusCos; |
| 734 | float xSin = axis.x*sin; |
| 735 | float ySin = axis.y*sin; |
| 736 | float zSin = axis.z*sin; |
| 737 | |
| 738 | m[0][0] = x2*oneMinusCos+cos; |
| 739 | m[0][1] = xym-zSin; |
| 740 | m[0][2] = xzm+ySin; |
| 741 | m[1][0] = xym+zSin; |
| 742 | m[1][1] = y2*oneMinusCos+cos; |
| 743 | m[1][2] = yzm-xSin; |
| 744 | m[2][0] = xzm-ySin; |
| 745 | m[2][1] = yzm+xSin; |
| 746 | m[2][2] = z2*oneMinusCos+cos; |
| 747 | } |
| 748 | |
| 749 | void Matrix3::toQuaternion(Quaternion& quat) const |
| 750 | { |
| 751 | quat.fromRotationMatrix(*this); |
| 752 | } |
| 753 | |
| 754 | void Matrix3::fromQuaternion(const Quaternion& quat) |
| 755 | { |
| 756 | quat.toRotationMatrix(*this); |
| 757 | } |
| 758 | |
| 759 | bool Matrix3::toEulerAngles(Radian& xAngle, Radian& yAngle, Radian& zAngle) const |
| 760 | { |
| 761 | float m21 = m[2][1]; |
| 762 | if (m21 < 1) |
| 763 | { |
| 764 | if (m21 > -1) |
| 765 | { |
| 766 | xAngle = Radian(Math::asin(m21)); |
| 767 | yAngle = Math::atan2(-m[2][0], m[2][2]); |
| 768 | zAngle = Math::atan2(-m[0][1], m[1][1]); |
| 769 | |
| 770 | return true; |
| 771 | } |
| 772 | else |
| 773 | { |
| 774 | // Note: Not an unique solution. |
| 775 | xAngle = Radian(-Math::HALF_PI); |
| 776 | yAngle = Radian(0.0f); |
| 777 | zAngle = -Math::atan2(m[0][2], m[0][0]); |
| 778 | |
| 779 | return false; |
| 780 | } |
| 781 | } |
| 782 | else |
| 783 | { |
| 784 | // Note: Not an unique solution. |
| 785 | xAngle = Radian(Math::HALF_PI); |
| 786 | yAngle = Radian(0.0f); |
| 787 | zAngle = Math::atan2(m[0][2], m[0][0]); |
| 788 | |
| 789 | return false; |
| 790 | } |
| 791 | } |
| 792 | |
| 793 | void Matrix3::fromEulerAngles(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle) |
| 794 | { |
| 795 | float cx = Math::cos(xAngle); |
| 796 | float sx = Math::sin(xAngle); |
| 797 | |
| 798 | float cy = Math::cos(yAngle); |
| 799 | float sy = Math::sin(yAngle); |
| 800 | |
| 801 | float cz = Math::cos(zAngle); |
| 802 | float sz = Math::sin(zAngle); |
| 803 | |
| 804 | m[0][0] = cy * cz - sx * sy * sz; |
| 805 | m[0][1] = -cx * sz; |
| 806 | m[0][2] = cz * sy + cy * sx * sz; |
| 807 | |
| 808 | m[1][0] = cz * sx * sy + cy * sz; |
| 809 | m[1][1] = cx * cz; |
| 810 | m[1][2] = -cy * cz * sx + sy * sz; |
| 811 | |
| 812 | m[2][0] = -cx * sy; |
| 813 | m[2][1] = sx; |
| 814 | m[2][2] = cx * cy; |
| 815 | } |
| 816 | |
| 817 | void Matrix3::fromEulerAngles(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle, EulerAngleOrder order) |
| 818 | { |
| 819 | // Euler angle conversions |
| 820 | static constexpr const EulerAngleOrderData EA_LOOKUP[6] = |
| 821 | { { 0, 1, 2, 1.0f}, { 0, 2, 1, -1.0f}, { 1, 0, 2, -1.0f}, |
| 822 | { 1, 2, 0, 1.0f}, { 2, 0, 1, 1.0f}, { 2, 1, 0, -1.0f} }; |
| 823 | |
| 824 | const EulerAngleOrderData& l = EA_LOOKUP[(int)order]; |
| 825 | |
| 826 | Matrix3 mats[3]; |
| 827 | float cx = Math::cos(xAngle); |
| 828 | float sx = Math::sin(xAngle); |
| 829 | mats[0] = Matrix3( |
| 830 | 1.0f, 0.0f, 0.0f, |
| 831 | 0.0f, cx, -sx, |
| 832 | 0.0f, sx, cx); |
| 833 | |
| 834 | float cy = Math::cos(yAngle); |
| 835 | float sy = Math::sin(yAngle); |
| 836 | mats[1] = Matrix3( |
| 837 | cy, 0.0f, sy, |
| 838 | 0.0f, 1.0f, 0.0f, |
| 839 | -sy, 0.0f, cy); |
| 840 | |
| 841 | float cz = Math::cos(zAngle); |
| 842 | float sz = Math::sin(zAngle); |
| 843 | mats[2] = Matrix3( |
| 844 | cz, -sz, 0.0f, |
| 845 | sz, cz, 0.0f, |
| 846 | 0.0f, 0.0f, 1.0f); |
| 847 | |
| 848 | *this = mats[l.c]*(mats[l.b]*mats[l.a]); |
| 849 | } |
| 850 | |
| 851 | void Matrix3::tridiagonal(float diag[3], float subDiag[3]) |
| 852 | { |
| 853 | // Householder reduction T = Q^t M Q |
| 854 | // Input: |
| 855 | // mat, symmetric 3x3 matrix M |
| 856 | // Output: |
| 857 | // mat, orthogonal matrix Q |
| 858 | // diag, diagonal entries of T |
| 859 | // subd, subdiagonal entries of T (T is symmetric) |
| 860 | |
| 861 | float fA = m[0][0]; |
| 862 | float fB = m[0][1]; |
| 863 | float fC = m[0][2]; |
| 864 | float fD = m[1][1]; |
| 865 | float fE = m[1][2]; |
| 866 | float fF = m[2][2]; |
| 867 | |
| 868 | diag[0] = fA; |
| 869 | subDiag[2] = 0.0; |
| 870 | if (Math::abs(fC) >= EPSILON) |
| 871 | { |
| 872 | float length = Math::sqrt(fB*fB+fC*fC); |
| 873 | float invLength = 1.0f/length; |
| 874 | fB *= invLength; |
| 875 | fC *= invLength; |
| 876 | float fQ = 2.0f*fB*fE+fC*(fF-fD); |
| 877 | diag[1] = fD+fC*fQ; |
| 878 | diag[2] = fF-fC*fQ; |
| 879 | subDiag[0] = length; |
| 880 | subDiag[1] = fE-fB*fQ; |
| 881 | m[0][0] = 1.0; |
| 882 | m[0][1] = 0.0; |
| 883 | m[0][2] = 0.0; |
| 884 | m[1][0] = 0.0; |
| 885 | m[1][1] = fB; |
| 886 | m[1][2] = fC; |
| 887 | m[2][0] = 0.0; |
| 888 | m[2][1] = fC; |
| 889 | m[2][2] = -fB; |
| 890 | } |
| 891 | else |
| 892 | { |
| 893 | diag[1] = fD; |
| 894 | diag[2] = fF; |
| 895 | subDiag[0] = fB; |
| 896 | subDiag[1] = fE; |
| 897 | m[0][0] = 1.0; |
| 898 | m[0][1] = 0.0; |
| 899 | m[0][2] = 0.0; |
| 900 | m[1][0] = 0.0; |
| 901 | m[1][1] = 1.0; |
| 902 | m[1][2] = 0.0; |
| 903 | m[2][0] = 0.0; |
| 904 | m[2][1] = 0.0; |
| 905 | m[2][2] = 1.0; |
| 906 | } |
| 907 | } |
| 908 | |
| 909 | bool Matrix3::QLAlgorithm(float diag[3], float subDiag[3]) |
| 910 | { |
| 911 | // QL iteration with implicit shifting to reduce matrix from tridiagonal to diagonal |
| 912 | |
| 913 | for (int i = 0; i < 3; i++) |
| 914 | { |
| 915 | const unsigned int maxIter = 32; |
| 916 | unsigned int iter; |
| 917 | for (iter = 0; iter < maxIter; iter++) |
| 918 | { |
| 919 | int j; |
| 920 | for (j = i; j <= 1; j++) |
| 921 | { |
| 922 | float sum = Math::abs(diag[j]) + Math::abs(diag[j+1]); |
| 923 | |
| 924 | if (Math::abs(subDiag[j]) + sum == sum) |
| 925 | break; |
| 926 | } |
| 927 | |
| 928 | if (j == i) |
| 929 | break; |
| 930 | |
| 931 | float tmp0 = (diag[i+1]-diag[i])/(2.0f*subDiag[i]); |
| 932 | float tmp1 = Math::sqrt(tmp0*tmp0+1.0f); |
| 933 | |
| 934 | if (tmp0 < 0.0f) |
| 935 | tmp0 = diag[j]-diag[i]+subDiag[i]/(tmp0-tmp1); |
| 936 | else |
| 937 | tmp0 = diag[j]-diag[i]+subDiag[i]/(tmp0+tmp1); |
| 938 | |
| 939 | float sin = 1.0f; |
| 940 | float cos = 1.0f; |
| 941 | float tmp2 = 0.0f; |
| 942 | for (int k = j-1; k >= i; k--) |
| 943 | { |
| 944 | float tmp3 = sin*subDiag[k]; |
| 945 | float tmp4 = cos*subDiag[k]; |
| 946 | |
| 947 | if (Math::abs(tmp3) >= Math::abs(tmp0)) |
| 948 | { |
| 949 | cos = tmp0/tmp3; |
| 950 | tmp1 = Math::sqrt(cos*cos+1.0f); |
| 951 | subDiag[k+1] = tmp3*tmp1; |
| 952 | sin = 1.0f/tmp1; |
| 953 | cos *= sin; |
| 954 | } |
| 955 | else |
| 956 | { |
| 957 | sin = tmp3/tmp0; |
| 958 | tmp1 = Math::sqrt(sin*sin+1.0f); |
| 959 | subDiag[k+1] = tmp0*tmp1; |
| 960 | cos = 1.0f/tmp1; |
| 961 | sin *= cos; |
| 962 | } |
| 963 | |
| 964 | tmp0 = diag[k+1]-tmp2; |
| 965 | tmp1 = (diag[k]-tmp0)*sin+2.0f*tmp4*cos; |
| 966 | tmp2 = sin*tmp1; |
| 967 | diag[k+1] = tmp0+tmp2; |
| 968 | tmp0 = cos*tmp1-tmp4; |
| 969 | |
| 970 | for (int row = 0; row < 3; row++) |
| 971 | { |
| 972 | tmp3 = m[row][k+1]; |
| 973 | m[row][k+1] = sin*m[row][k] + cos*tmp3; |
| 974 | m[row][k] = cos*m[row][k] - sin*tmp3; |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | diag[i] -= tmp2; |
| 979 | subDiag[i] = tmp0; |
| 980 | subDiag[j] = 0.0; |
| 981 | } |
| 982 | |
| 983 | if (iter == maxIter) |
| 984 | { |
| 985 | // Should not get here under normal circumstances |
| 986 | return false; |
| 987 | } |
| 988 | } |
| 989 | |
| 990 | return true; |
| 991 | } |
| 992 | |
| 993 | void Matrix3::eigenSolveSymmetric(float eigenValues[3], Vector3 eigenVectors[3]) const |
| 994 | { |
| 995 | Matrix3 mat = *this; |
| 996 | float subDiag[3]; |
| 997 | mat.tridiagonal(eigenValues, subDiag); |
| 998 | mat.QLAlgorithm(eigenValues, subDiag); |
| 999 | |
| 1000 | for (UINT32 i = 0; i < 3; i++) |
| 1001 | { |
| 1002 | eigenVectors[i][0] = mat[0][i]; |
| 1003 | eigenVectors[i][1] = mat[1][i]; |
| 1004 | eigenVectors[i][2] = mat[2][i]; |
| 1005 | } |
| 1006 | |
| 1007 | // Make eigenvectors form a right--handed system |
| 1008 | Vector3 cross = eigenVectors[1].cross(eigenVectors[2]); |
| 1009 | float det = eigenVectors[0].dot(cross); |
| 1010 | if (det < 0.0f) |
| 1011 | { |
| 1012 | eigenVectors[2][0] = -eigenVectors[2][0]; |
| 1013 | eigenVectors[2][1] = -eigenVectors[2][1]; |
| 1014 | eigenVectors[2][2] = -eigenVectors[2][2]; |
| 1015 | } |
| 1016 | } |
| 1017 | } |
| 1018 | |