1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
3 | #pragma once |
4 | |
5 | #include "Prerequisites/BsPrerequisitesUtil.h" |
6 | #include "Math/BsMath.h" |
7 | #include "Math/BsVector3.h" |
8 | |
9 | namespace bs |
10 | { |
11 | /** @addtogroup Math |
12 | * @{ |
13 | */ |
14 | |
15 | /** Represents a quaternion used for 3D rotations. */ |
16 | class BS_UTILITY_EXPORT Quaternion |
17 | { |
18 | private: |
19 | struct EulerAngleOrderData |
20 | { |
21 | int a, b, c; |
22 | }; |
23 | |
24 | public: |
25 | Quaternion() = default; |
26 | constexpr Quaternion(const Quaternion&) = default; |
27 | constexpr Quaternion& operator=(const Quaternion&) = default; |
28 | |
29 | constexpr Quaternion(BS_ZERO zero) |
30 | : x(0.0f), y(0.0f), z(0.0f), w(0.0f) |
31 | { } |
32 | |
33 | constexpr Quaternion(BS_IDENTITY) |
34 | : x(0.0f), y(0.0f), z(0.0f), w(1.0f) |
35 | { } |
36 | |
37 | constexpr Quaternion(float w, float x, float y, float z) |
38 | :x(x), y(y), z(z), w(w) |
39 | { } |
40 | |
41 | /** Construct a quaternion from a rotation matrix. */ |
42 | explicit Quaternion(const Matrix3& rot) |
43 | { |
44 | fromRotationMatrix(rot); |
45 | } |
46 | |
47 | /** Construct a quaternion from an angle/axis. */ |
48 | explicit Quaternion(const Vector3& axis, const Radian& angle) |
49 | { |
50 | fromAxisAngle(axis, angle); |
51 | } |
52 | |
53 | /** Construct a quaternion from 3 orthonormal local axes. */ |
54 | explicit Quaternion(const Vector3& xaxis, const Vector3& yaxis, const Vector3& zaxis) |
55 | { |
56 | fromAxes(xaxis, yaxis, zaxis); |
57 | } |
58 | |
59 | /** |
60 | * Construct a quaternion from euler angles, YXZ ordering. |
61 | * |
62 | * @see Quaternion::fromEulerAngles |
63 | */ |
64 | explicit Quaternion(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle) |
65 | { |
66 | fromEulerAngles(xAngle, yAngle, zAngle); |
67 | } |
68 | |
69 | /** |
70 | * Construct a quaternion from euler angles, custom ordering. |
71 | * |
72 | * @see Quaternion::fromEulerAngles |
73 | */ |
74 | explicit Quaternion(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle, EulerAngleOrder order) |
75 | { |
76 | fromEulerAngles(xAngle, yAngle, zAngle, order); |
77 | } |
78 | |
79 | /** Exchange the contents of this quaternion with another. */ |
80 | void swap(Quaternion& other) |
81 | { |
82 | std::swap(w, other.w); |
83 | std::swap(x, other.x); |
84 | std::swap(y, other.y); |
85 | std::swap(z, other.z); |
86 | } |
87 | |
88 | float operator[] (const size_t i) const |
89 | { |
90 | assert(i < 4); |
91 | |
92 | return *(&x+i); |
93 | } |
94 | |
95 | float& operator[] (const size_t i) |
96 | { |
97 | assert(i < 4); |
98 | |
99 | return *(&x+i); |
100 | } |
101 | |
102 | /** |
103 | * Initializes the quaternion from a 3x3 rotation matrix. |
104 | * |
105 | * @note It's up to the caller to ensure the matrix is orthonormal. |
106 | */ |
107 | void fromRotationMatrix(const Matrix3& mat); |
108 | |
109 | /** |
110 | * Initializes the quaternion from an angle axis pair. Quaternion will represent a rotation of "angle" radians |
111 | * around "axis". |
112 | */ |
113 | void fromAxisAngle(const Vector3& axis, const Radian& angle); |
114 | |
115 | /** |
116 | * Initializes the quaternion from orthonormal set of axes. Quaternion will represent a rotation from base axes |
117 | * to the specified set of axes. |
118 | * |
119 | * @note It's up to the caller to ensure the axes are orthonormal. |
120 | */ |
121 | void fromAxes(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis); |
122 | |
123 | /** |
124 | * Creates a quaternion from the provided Pitch/Yaw/Roll angles. |
125 | * |
126 | * @param[in] xAngle Rotation about x axis. (AKA Pitch) |
127 | * @param[in] yAngle Rotation about y axis. (AKA Yaw) |
128 | * @param[in] zAngle Rotation about z axis. (AKA Roll) |
129 | * |
130 | * @note |
131 | * Since different values will be produced depending in which order are the rotations applied, this method assumes |
132 | * they are applied in YXZ order. If you need a specific order, use the overloaded fromEulerAngles() method instead. |
133 | */ |
134 | void fromEulerAngles(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle); |
135 | |
136 | /** |
137 | * Creates a quaternion from the provided Pitch/Yaw/Roll angles. |
138 | * |
139 | * @param[in] xAngle Rotation about x axis. (AKA Pitch) |
140 | * @param[in] yAngle Rotation about y axis. (AKA Yaw) |
141 | * @param[in] zAngle Rotation about z axis. (AKA Roll) |
142 | * @param[in] order The order in which rotations will be extracted. Different values can be retrieved depending |
143 | * on the order. |
144 | */ |
145 | void fromEulerAngles(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle, EulerAngleOrder order); |
146 | |
147 | /** |
148 | * Converts a quaternion to a rotation matrix. |
149 | */ |
150 | void toRotationMatrix(Matrix3& mat) const; |
151 | |
152 | /** |
153 | * Converts a quaternion to an angle axis pair. |
154 | * |
155 | * @param[out] axis The axis around the which rotation takes place. |
156 | * @param[out] angle The angle in radians determining amount of rotation around the axis. |
157 | */ |
158 | void toAxisAngle(Vector3& axis, Radian& angle) const; |
159 | |
160 | /** |
161 | * Converts a quaternion to an orthonormal set of axes. |
162 | * |
163 | * @param[out] xAxis The X axis. |
164 | * @param[out] yAxis The Y axis. |
165 | * @param[out] zAxis The Z axis. |
166 | */ |
167 | void toAxes(Vector3& xAxis, Vector3& yAxis, Vector3& zAxis) const; |
168 | |
169 | /** |
170 | * Extracts Pitch/Yaw/Roll rotations from this quaternion. |
171 | * |
172 | * @param[out] xAngle Rotation about x axis. (AKA Pitch) |
173 | * @param[out] yAngle Rotation about y axis. (AKA Yaw) |
174 | * @param[out] zAngle Rotation about z axis. (AKA Roll) |
175 | * |
176 | * @return True if unique solution was found, false otherwise. |
177 | */ |
178 | bool toEulerAngles(Radian& xAngle, Radian& yAngle, Radian& zAngle) const; |
179 | |
180 | /** Gets the positive x-axis of the coordinate system transformed by this quaternion. */ |
181 | Vector3 xAxis() const; |
182 | |
183 | /** Gets the positive y-axis of the coordinate system transformed by this quaternion. */ |
184 | Vector3 yAxis() const; |
185 | |
186 | /** Gets the positive z-axis of the coordinate system transformed by this quaternion. */ |
187 | Vector3 zAxis() const; |
188 | |
189 | |
190 | Quaternion operator+ (const Quaternion& rhs) const |
191 | { |
192 | return Quaternion(w + rhs.w, x + rhs.x, y + rhs.y, z + rhs.z); |
193 | } |
194 | |
195 | Quaternion operator- (const Quaternion& rhs) const |
196 | { |
197 | return Quaternion(w - rhs.w, x - rhs.x, y - rhs.y, z - rhs.z); |
198 | } |
199 | |
200 | Quaternion operator* (const Quaternion& rhs) const |
201 | { |
202 | return Quaternion |
203 | ( |
204 | w * rhs.w - x * rhs.x - y * rhs.y - z * rhs.z, |
205 | w * rhs.x + x * rhs.w + y * rhs.z - z * rhs.y, |
206 | w * rhs.y + y * rhs.w + z * rhs.x - x * rhs.z, |
207 | w * rhs.z + z * rhs.w + x * rhs.y - y * rhs.x |
208 | ); |
209 | } |
210 | |
211 | Quaternion operator* (float rhs) const |
212 | { |
213 | return Quaternion(rhs * w, rhs * x, rhs * y, rhs * z); |
214 | } |
215 | |
216 | Quaternion operator/ (float rhs) const |
217 | { |
218 | assert(rhs != 0.0); |
219 | |
220 | const float inv = 1.0f / rhs; |
221 | return Quaternion(w * inv, x * inv, y * inv, z * inv); |
222 | } |
223 | |
224 | Quaternion operator- () const |
225 | { |
226 | return Quaternion(-w, -x, -y, -z); |
227 | } |
228 | |
229 | bool operator== (const Quaternion& rhs) const |
230 | { |
231 | return (rhs.x == x) && (rhs.y == y) && (rhs.z == z) && (rhs.w == w); |
232 | } |
233 | |
234 | bool operator!= (const Quaternion& rhs) const |
235 | { |
236 | return !operator==(rhs); |
237 | } |
238 | |
239 | Quaternion& operator+= (const Quaternion& rhs) |
240 | { |
241 | w += rhs.w; |
242 | x += rhs.x; |
243 | y += rhs.y; |
244 | z += rhs.z; |
245 | |
246 | return *this; |
247 | } |
248 | |
249 | Quaternion& operator-= (const Quaternion& rhs) |
250 | { |
251 | w -= rhs.w; |
252 | x -= rhs.x; |
253 | y -= rhs.y; |
254 | z -= rhs.z; |
255 | |
256 | return *this; |
257 | } |
258 | |
259 | Quaternion& operator*= (const Quaternion& rhs) |
260 | { |
261 | float newW = w * rhs.w - x * rhs.x - y * rhs.y - z * rhs.z; |
262 | float newX = w * rhs.x + x * rhs.w + y * rhs.z - z * rhs.y; |
263 | float newY = w * rhs.y + y * rhs.w + z * rhs.x - x * rhs.z; |
264 | float newZ = w * rhs.z + z * rhs.w + x * rhs.y - y * rhs.x; |
265 | |
266 | w = newW; |
267 | x = newX; |
268 | y = newY; |
269 | z = newZ; |
270 | |
271 | return *this; |
272 | } |
273 | |
274 | friend Quaternion operator* (float lhs, const Quaternion& rhs) |
275 | { |
276 | return Quaternion(lhs * rhs.w, lhs * rhs.x, lhs * rhs.y, lhs * rhs.z); |
277 | } |
278 | |
279 | /** Calculates the dot product of this quaternion and another. */ |
280 | float dot(const Quaternion& other) const |
281 | { |
282 | return w * other.w + x * other.x + y * other.y + z * other.z; |
283 | } |
284 | |
285 | /** Normalizes this quaternion, and returns the previous length. */ |
286 | float normalize() |
287 | { |
288 | float len = w*w + x*x + y*y + z*z; |
289 | float factor = 1.0f / Math::sqrt(len); |
290 | *this = *this * factor; |
291 | return len; |
292 | } |
293 | |
294 | /** |
295 | * Gets the inverse. |
296 | * |
297 | * @note Quaternion must be non-zero. |
298 | */ |
299 | Quaternion inverse() const; |
300 | |
301 | /** Rotates the provided vector. */ |
302 | Vector3 rotate(const Vector3& vec) const; |
303 | |
304 | /** |
305 | * Orients the quaternion so its negative z axis points to the provided direction. |
306 | * |
307 | * @param[in] forwardDir Direction to orient towards. |
308 | */ |
309 | void lookRotation(const Vector3& forwardDir); |
310 | |
311 | /** |
312 | * Orients the quaternion so its negative z axis points to the provided direction. |
313 | * |
314 | * @param[in] forwardDir Direction to orient towards. |
315 | * @param[in] upDir Constrains y axis orientation to a plane this vector lies on. This rule might be broken |
316 | * if forward and up direction are nearly parallel. |
317 | */ |
318 | void lookRotation(const Vector3& forwardDir, const Vector3& upDir); |
319 | |
320 | /** Query if any of the components of the quaternion are not a number. */ |
321 | bool isNaN() const |
322 | { |
323 | return Math::isNaN(x) || Math::isNaN(y) || Math::isNaN(z) || Math::isNaN(w); |
324 | } |
325 | |
326 | /** Calculates the dot product between two quaternions. */ |
327 | static float dot(const Quaternion& lhs, const Quaternion& rhs) |
328 | { |
329 | return lhs.w * rhs.w + lhs.x * rhs.x + lhs.y * rhs.y + lhs.z * rhs.z; |
330 | } |
331 | |
332 | /** Normalizes the provided quaternion. */ |
333 | static Quaternion normalize(const Quaternion& q) |
334 | { |
335 | float len = dot(q, q); |
336 | float factor = 1.0f / Math::sqrt(len); |
337 | |
338 | return q * factor; |
339 | } |
340 | |
341 | /** |
342 | * Performs spherical interpolation between two quaternions. Spherical interpolation neatly interpolates between |
343 | * two rotations without modifying the size of the vector it is applied to (unlike linear interpolation). |
344 | */ |
345 | static Quaternion slerp(float t, const Quaternion& p, const Quaternion& q, bool shortestPath = true); |
346 | |
347 | /** |
348 | * Linearly interpolates between the two quaternions using @p t. t should be in [0, 1] range, where t = 0 |
349 | * corresponds to the left vector, while t = 1 corresponds to the right vector. |
350 | */ |
351 | static Quaternion lerp(float t, const Quaternion& a, const Quaternion& b) |
352 | { |
353 | float d = dot(a, b); |
354 | float flip = d >= 0.0f ? 1.0f : -1.0f; |
355 | |
356 | Quaternion output = flip * (1.0f - t) * a + t * b; |
357 | return normalize(output); |
358 | } |
359 | |
360 | /** Gets the shortest arc quaternion to rotate this vector to the destination vector. */ |
361 | static Quaternion getRotationFromTo(const Vector3& from, const Vector3& dest, const Vector3& fallbackAxis = Vector3::ZERO); |
362 | |
363 | /** Returns the minimum of all the quaternion components as a new quaternion. */ |
364 | static Quaternion min(const Quaternion& a, const Quaternion& b) |
365 | { |
366 | return Quaternion(std::min(a.x, b.x), std::min(a.y, b.y), std::min(a.z, b.z), std::min(a.w, b.w)); |
367 | } |
368 | |
369 | /** Returns the maximum of all the quaternion components as a new quaternion. */ |
370 | static Quaternion max(const Quaternion& a, const Quaternion& b) |
371 | { |
372 | return Quaternion(std::max(a.x, b.x), std::max(a.y, b.y), std::max(a.z, b.z), std::max(a.w, b.w)); |
373 | } |
374 | |
375 | static constexpr const float EPSILON = 1e-03f; |
376 | |
377 | static const Quaternion ZERO; |
378 | static const Quaternion IDENTITY; |
379 | |
380 | float x, y, z, w; // Note: Order is relevant, don't break it |
381 | }; |
382 | |
383 | /** @} */ |
384 | |
385 | /** @cond SPECIALIZATIONS */ |
386 | BS_ALLOW_MEMCPY_SERIALIZATION(Quaternion); |
387 | /** @endcond */ |
388 | } |
389 | |
390 | /** @cond SPECIALIZATIONS */ |
391 | namespace std |
392 | { |
393 | template<> class numeric_limits<bs::Quaternion> |
394 | { |
395 | public: |
396 | constexpr static bs::Quaternion infinity() |
397 | { |
398 | return bs::Quaternion( |
399 | std::numeric_limits<float>::infinity(), |
400 | std::numeric_limits<float>::infinity(), |
401 | std::numeric_limits<float>::infinity(), |
402 | std::numeric_limits<float>::infinity()); |
403 | } |
404 | }; |
405 | } |
406 | /** @endcond */ |
407 | |