| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
| 3 | #pragma once |
| 4 | |
| 5 | #include "Prerequisites/BsPrerequisitesUtil.h" |
| 6 | #include "Math/BsMath.h" |
| 7 | #include "Math/BsVector3.h" |
| 8 | |
| 9 | namespace bs |
| 10 | { |
| 11 | /** @addtogroup Math |
| 12 | * @{ |
| 13 | */ |
| 14 | |
| 15 | /** Represents a quaternion used for 3D rotations. */ |
| 16 | class BS_UTILITY_EXPORT Quaternion |
| 17 | { |
| 18 | private: |
| 19 | struct EulerAngleOrderData |
| 20 | { |
| 21 | int a, b, c; |
| 22 | }; |
| 23 | |
| 24 | public: |
| 25 | Quaternion() = default; |
| 26 | constexpr Quaternion(const Quaternion&) = default; |
| 27 | constexpr Quaternion& operator=(const Quaternion&) = default; |
| 28 | |
| 29 | constexpr Quaternion(BS_ZERO zero) |
| 30 | : x(0.0f), y(0.0f), z(0.0f), w(0.0f) |
| 31 | { } |
| 32 | |
| 33 | constexpr Quaternion(BS_IDENTITY) |
| 34 | : x(0.0f), y(0.0f), z(0.0f), w(1.0f) |
| 35 | { } |
| 36 | |
| 37 | constexpr Quaternion(float w, float x, float y, float z) |
| 38 | :x(x), y(y), z(z), w(w) |
| 39 | { } |
| 40 | |
| 41 | /** Construct a quaternion from a rotation matrix. */ |
| 42 | explicit Quaternion(const Matrix3& rot) |
| 43 | { |
| 44 | fromRotationMatrix(rot); |
| 45 | } |
| 46 | |
| 47 | /** Construct a quaternion from an angle/axis. */ |
| 48 | explicit Quaternion(const Vector3& axis, const Radian& angle) |
| 49 | { |
| 50 | fromAxisAngle(axis, angle); |
| 51 | } |
| 52 | |
| 53 | /** Construct a quaternion from 3 orthonormal local axes. */ |
| 54 | explicit Quaternion(const Vector3& xaxis, const Vector3& yaxis, const Vector3& zaxis) |
| 55 | { |
| 56 | fromAxes(xaxis, yaxis, zaxis); |
| 57 | } |
| 58 | |
| 59 | /** |
| 60 | * Construct a quaternion from euler angles, YXZ ordering. |
| 61 | * |
| 62 | * @see Quaternion::fromEulerAngles |
| 63 | */ |
| 64 | explicit Quaternion(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle) |
| 65 | { |
| 66 | fromEulerAngles(xAngle, yAngle, zAngle); |
| 67 | } |
| 68 | |
| 69 | /** |
| 70 | * Construct a quaternion from euler angles, custom ordering. |
| 71 | * |
| 72 | * @see Quaternion::fromEulerAngles |
| 73 | */ |
| 74 | explicit Quaternion(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle, EulerAngleOrder order) |
| 75 | { |
| 76 | fromEulerAngles(xAngle, yAngle, zAngle, order); |
| 77 | } |
| 78 | |
| 79 | /** Exchange the contents of this quaternion with another. */ |
| 80 | void swap(Quaternion& other) |
| 81 | { |
| 82 | std::swap(w, other.w); |
| 83 | std::swap(x, other.x); |
| 84 | std::swap(y, other.y); |
| 85 | std::swap(z, other.z); |
| 86 | } |
| 87 | |
| 88 | float operator[] (const size_t i) const |
| 89 | { |
| 90 | assert(i < 4); |
| 91 | |
| 92 | return *(&x+i); |
| 93 | } |
| 94 | |
| 95 | float& operator[] (const size_t i) |
| 96 | { |
| 97 | assert(i < 4); |
| 98 | |
| 99 | return *(&x+i); |
| 100 | } |
| 101 | |
| 102 | /** |
| 103 | * Initializes the quaternion from a 3x3 rotation matrix. |
| 104 | * |
| 105 | * @note It's up to the caller to ensure the matrix is orthonormal. |
| 106 | */ |
| 107 | void fromRotationMatrix(const Matrix3& mat); |
| 108 | |
| 109 | /** |
| 110 | * Initializes the quaternion from an angle axis pair. Quaternion will represent a rotation of "angle" radians |
| 111 | * around "axis". |
| 112 | */ |
| 113 | void fromAxisAngle(const Vector3& axis, const Radian& angle); |
| 114 | |
| 115 | /** |
| 116 | * Initializes the quaternion from orthonormal set of axes. Quaternion will represent a rotation from base axes |
| 117 | * to the specified set of axes. |
| 118 | * |
| 119 | * @note It's up to the caller to ensure the axes are orthonormal. |
| 120 | */ |
| 121 | void fromAxes(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis); |
| 122 | |
| 123 | /** |
| 124 | * Creates a quaternion from the provided Pitch/Yaw/Roll angles. |
| 125 | * |
| 126 | * @param[in] xAngle Rotation about x axis. (AKA Pitch) |
| 127 | * @param[in] yAngle Rotation about y axis. (AKA Yaw) |
| 128 | * @param[in] zAngle Rotation about z axis. (AKA Roll) |
| 129 | * |
| 130 | * @note |
| 131 | * Since different values will be produced depending in which order are the rotations applied, this method assumes |
| 132 | * they are applied in YXZ order. If you need a specific order, use the overloaded fromEulerAngles() method instead. |
| 133 | */ |
| 134 | void fromEulerAngles(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle); |
| 135 | |
| 136 | /** |
| 137 | * Creates a quaternion from the provided Pitch/Yaw/Roll angles. |
| 138 | * |
| 139 | * @param[in] xAngle Rotation about x axis. (AKA Pitch) |
| 140 | * @param[in] yAngle Rotation about y axis. (AKA Yaw) |
| 141 | * @param[in] zAngle Rotation about z axis. (AKA Roll) |
| 142 | * @param[in] order The order in which rotations will be extracted. Different values can be retrieved depending |
| 143 | * on the order. |
| 144 | */ |
| 145 | void fromEulerAngles(const Radian& xAngle, const Radian& yAngle, const Radian& zAngle, EulerAngleOrder order); |
| 146 | |
| 147 | /** |
| 148 | * Converts a quaternion to a rotation matrix. |
| 149 | */ |
| 150 | void toRotationMatrix(Matrix3& mat) const; |
| 151 | |
| 152 | /** |
| 153 | * Converts a quaternion to an angle axis pair. |
| 154 | * |
| 155 | * @param[out] axis The axis around the which rotation takes place. |
| 156 | * @param[out] angle The angle in radians determining amount of rotation around the axis. |
| 157 | */ |
| 158 | void toAxisAngle(Vector3& axis, Radian& angle) const; |
| 159 | |
| 160 | /** |
| 161 | * Converts a quaternion to an orthonormal set of axes. |
| 162 | * |
| 163 | * @param[out] xAxis The X axis. |
| 164 | * @param[out] yAxis The Y axis. |
| 165 | * @param[out] zAxis The Z axis. |
| 166 | */ |
| 167 | void toAxes(Vector3& xAxis, Vector3& yAxis, Vector3& zAxis) const; |
| 168 | |
| 169 | /** |
| 170 | * Extracts Pitch/Yaw/Roll rotations from this quaternion. |
| 171 | * |
| 172 | * @param[out] xAngle Rotation about x axis. (AKA Pitch) |
| 173 | * @param[out] yAngle Rotation about y axis. (AKA Yaw) |
| 174 | * @param[out] zAngle Rotation about z axis. (AKA Roll) |
| 175 | * |
| 176 | * @return True if unique solution was found, false otherwise. |
| 177 | */ |
| 178 | bool toEulerAngles(Radian& xAngle, Radian& yAngle, Radian& zAngle) const; |
| 179 | |
| 180 | /** Gets the positive x-axis of the coordinate system transformed by this quaternion. */ |
| 181 | Vector3 xAxis() const; |
| 182 | |
| 183 | /** Gets the positive y-axis of the coordinate system transformed by this quaternion. */ |
| 184 | Vector3 yAxis() const; |
| 185 | |
| 186 | /** Gets the positive z-axis of the coordinate system transformed by this quaternion. */ |
| 187 | Vector3 zAxis() const; |
| 188 | |
| 189 | |
| 190 | Quaternion operator+ (const Quaternion& rhs) const |
| 191 | { |
| 192 | return Quaternion(w + rhs.w, x + rhs.x, y + rhs.y, z + rhs.z); |
| 193 | } |
| 194 | |
| 195 | Quaternion operator- (const Quaternion& rhs) const |
| 196 | { |
| 197 | return Quaternion(w - rhs.w, x - rhs.x, y - rhs.y, z - rhs.z); |
| 198 | } |
| 199 | |
| 200 | Quaternion operator* (const Quaternion& rhs) const |
| 201 | { |
| 202 | return Quaternion |
| 203 | ( |
| 204 | w * rhs.w - x * rhs.x - y * rhs.y - z * rhs.z, |
| 205 | w * rhs.x + x * rhs.w + y * rhs.z - z * rhs.y, |
| 206 | w * rhs.y + y * rhs.w + z * rhs.x - x * rhs.z, |
| 207 | w * rhs.z + z * rhs.w + x * rhs.y - y * rhs.x |
| 208 | ); |
| 209 | } |
| 210 | |
| 211 | Quaternion operator* (float rhs) const |
| 212 | { |
| 213 | return Quaternion(rhs * w, rhs * x, rhs * y, rhs * z); |
| 214 | } |
| 215 | |
| 216 | Quaternion operator/ (float rhs) const |
| 217 | { |
| 218 | assert(rhs != 0.0); |
| 219 | |
| 220 | const float inv = 1.0f / rhs; |
| 221 | return Quaternion(w * inv, x * inv, y * inv, z * inv); |
| 222 | } |
| 223 | |
| 224 | Quaternion operator- () const |
| 225 | { |
| 226 | return Quaternion(-w, -x, -y, -z); |
| 227 | } |
| 228 | |
| 229 | bool operator== (const Quaternion& rhs) const |
| 230 | { |
| 231 | return (rhs.x == x) && (rhs.y == y) && (rhs.z == z) && (rhs.w == w); |
| 232 | } |
| 233 | |
| 234 | bool operator!= (const Quaternion& rhs) const |
| 235 | { |
| 236 | return !operator==(rhs); |
| 237 | } |
| 238 | |
| 239 | Quaternion& operator+= (const Quaternion& rhs) |
| 240 | { |
| 241 | w += rhs.w; |
| 242 | x += rhs.x; |
| 243 | y += rhs.y; |
| 244 | z += rhs.z; |
| 245 | |
| 246 | return *this; |
| 247 | } |
| 248 | |
| 249 | Quaternion& operator-= (const Quaternion& rhs) |
| 250 | { |
| 251 | w -= rhs.w; |
| 252 | x -= rhs.x; |
| 253 | y -= rhs.y; |
| 254 | z -= rhs.z; |
| 255 | |
| 256 | return *this; |
| 257 | } |
| 258 | |
| 259 | Quaternion& operator*= (const Quaternion& rhs) |
| 260 | { |
| 261 | float newW = w * rhs.w - x * rhs.x - y * rhs.y - z * rhs.z; |
| 262 | float newX = w * rhs.x + x * rhs.w + y * rhs.z - z * rhs.y; |
| 263 | float newY = w * rhs.y + y * rhs.w + z * rhs.x - x * rhs.z; |
| 264 | float newZ = w * rhs.z + z * rhs.w + x * rhs.y - y * rhs.x; |
| 265 | |
| 266 | w = newW; |
| 267 | x = newX; |
| 268 | y = newY; |
| 269 | z = newZ; |
| 270 | |
| 271 | return *this; |
| 272 | } |
| 273 | |
| 274 | friend Quaternion operator* (float lhs, const Quaternion& rhs) |
| 275 | { |
| 276 | return Quaternion(lhs * rhs.w, lhs * rhs.x, lhs * rhs.y, lhs * rhs.z); |
| 277 | } |
| 278 | |
| 279 | /** Calculates the dot product of this quaternion and another. */ |
| 280 | float dot(const Quaternion& other) const |
| 281 | { |
| 282 | return w * other.w + x * other.x + y * other.y + z * other.z; |
| 283 | } |
| 284 | |
| 285 | /** Normalizes this quaternion, and returns the previous length. */ |
| 286 | float normalize() |
| 287 | { |
| 288 | float len = w*w + x*x + y*y + z*z; |
| 289 | float factor = 1.0f / Math::sqrt(len); |
| 290 | *this = *this * factor; |
| 291 | return len; |
| 292 | } |
| 293 | |
| 294 | /** |
| 295 | * Gets the inverse. |
| 296 | * |
| 297 | * @note Quaternion must be non-zero. |
| 298 | */ |
| 299 | Quaternion inverse() const; |
| 300 | |
| 301 | /** Rotates the provided vector. */ |
| 302 | Vector3 rotate(const Vector3& vec) const; |
| 303 | |
| 304 | /** |
| 305 | * Orients the quaternion so its negative z axis points to the provided direction. |
| 306 | * |
| 307 | * @param[in] forwardDir Direction to orient towards. |
| 308 | */ |
| 309 | void lookRotation(const Vector3& forwardDir); |
| 310 | |
| 311 | /** |
| 312 | * Orients the quaternion so its negative z axis points to the provided direction. |
| 313 | * |
| 314 | * @param[in] forwardDir Direction to orient towards. |
| 315 | * @param[in] upDir Constrains y axis orientation to a plane this vector lies on. This rule might be broken |
| 316 | * if forward and up direction are nearly parallel. |
| 317 | */ |
| 318 | void lookRotation(const Vector3& forwardDir, const Vector3& upDir); |
| 319 | |
| 320 | /** Query if any of the components of the quaternion are not a number. */ |
| 321 | bool isNaN() const |
| 322 | { |
| 323 | return Math::isNaN(x) || Math::isNaN(y) || Math::isNaN(z) || Math::isNaN(w); |
| 324 | } |
| 325 | |
| 326 | /** Calculates the dot product between two quaternions. */ |
| 327 | static float dot(const Quaternion& lhs, const Quaternion& rhs) |
| 328 | { |
| 329 | return lhs.w * rhs.w + lhs.x * rhs.x + lhs.y * rhs.y + lhs.z * rhs.z; |
| 330 | } |
| 331 | |
| 332 | /** Normalizes the provided quaternion. */ |
| 333 | static Quaternion normalize(const Quaternion& q) |
| 334 | { |
| 335 | float len = dot(q, q); |
| 336 | float factor = 1.0f / Math::sqrt(len); |
| 337 | |
| 338 | return q * factor; |
| 339 | } |
| 340 | |
| 341 | /** |
| 342 | * Performs spherical interpolation between two quaternions. Spherical interpolation neatly interpolates between |
| 343 | * two rotations without modifying the size of the vector it is applied to (unlike linear interpolation). |
| 344 | */ |
| 345 | static Quaternion slerp(float t, const Quaternion& p, const Quaternion& q, bool shortestPath = true); |
| 346 | |
| 347 | /** |
| 348 | * Linearly interpolates between the two quaternions using @p t. t should be in [0, 1] range, where t = 0 |
| 349 | * corresponds to the left vector, while t = 1 corresponds to the right vector. |
| 350 | */ |
| 351 | static Quaternion lerp(float t, const Quaternion& a, const Quaternion& b) |
| 352 | { |
| 353 | float d = dot(a, b); |
| 354 | float flip = d >= 0.0f ? 1.0f : -1.0f; |
| 355 | |
| 356 | Quaternion output = flip * (1.0f - t) * a + t * b; |
| 357 | return normalize(output); |
| 358 | } |
| 359 | |
| 360 | /** Gets the shortest arc quaternion to rotate this vector to the destination vector. */ |
| 361 | static Quaternion getRotationFromTo(const Vector3& from, const Vector3& dest, const Vector3& fallbackAxis = Vector3::ZERO); |
| 362 | |
| 363 | /** Returns the minimum of all the quaternion components as a new quaternion. */ |
| 364 | static Quaternion min(const Quaternion& a, const Quaternion& b) |
| 365 | { |
| 366 | return Quaternion(std::min(a.x, b.x), std::min(a.y, b.y), std::min(a.z, b.z), std::min(a.w, b.w)); |
| 367 | } |
| 368 | |
| 369 | /** Returns the maximum of all the quaternion components as a new quaternion. */ |
| 370 | static Quaternion max(const Quaternion& a, const Quaternion& b) |
| 371 | { |
| 372 | return Quaternion(std::max(a.x, b.x), std::max(a.y, b.y), std::max(a.z, b.z), std::max(a.w, b.w)); |
| 373 | } |
| 374 | |
| 375 | static constexpr const float EPSILON = 1e-03f; |
| 376 | |
| 377 | static const Quaternion ZERO; |
| 378 | static const Quaternion IDENTITY; |
| 379 | |
| 380 | float x, y, z, w; // Note: Order is relevant, don't break it |
| 381 | }; |
| 382 | |
| 383 | /** @} */ |
| 384 | |
| 385 | /** @cond SPECIALIZATIONS */ |
| 386 | BS_ALLOW_MEMCPY_SERIALIZATION(Quaternion); |
| 387 | /** @endcond */ |
| 388 | } |
| 389 | |
| 390 | /** @cond SPECIALIZATIONS */ |
| 391 | namespace std |
| 392 | { |
| 393 | template<> class numeric_limits<bs::Quaternion> |
| 394 | { |
| 395 | public: |
| 396 | constexpr static bs::Quaternion infinity() |
| 397 | { |
| 398 | return bs::Quaternion( |
| 399 | std::numeric_limits<float>::infinity(), |
| 400 | std::numeric_limits<float>::infinity(), |
| 401 | std::numeric_limits<float>::infinity(), |
| 402 | std::numeric_limits<float>::infinity()); |
| 403 | } |
| 404 | }; |
| 405 | } |
| 406 | /** @endcond */ |
| 407 | |