1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
3 | #pragma once |
4 | |
5 | #include "Prerequisites/BsPrerequisitesUtil.h" |
6 | #include "BsVector3.h" |
7 | #include "BsVector2.h" |
8 | |
9 | namespace bs |
10 | { |
11 | /** @addtogroup Math |
12 | * @{ |
13 | */ |
14 | |
15 | /** Generates pseudo random numbers using the Xorshift128 algorithm. Suitable for high performance requirements. */ |
16 | class BS_SCRIPT_EXPORT(m:Math) Random |
17 | { |
18 | public: |
19 | /** Initializes a new generator using the specified seed. */ |
20 | BS_SCRIPT_EXPORT() |
21 | Random(uint32_t seed = 0) |
22 | { |
23 | setSeed(seed); |
24 | } |
25 | |
26 | /** Changes the seed of the generator to the specified value. */ |
27 | BS_SCRIPT_EXPORT() |
28 | void setSeed(uint32_t seed) |
29 | { |
30 | mSeed[0] = seed; |
31 | mSeed[1] = seed * 0x72e0447c + 1; // Arbitrary random numbers |
32 | mSeed[2] = seed * 0x352ad225 + 1; |
33 | mSeed[3] = seed * 0x03c3629f + 1; |
34 | } |
35 | |
36 | /** Returns a random value in range [0, std::numeric_limits<uint32_t>::max()]. */ |
37 | BS_SCRIPT_EXPORT() |
38 | uint32_t get() const |
39 | { |
40 | // Using xorshift128 algorithm |
41 | uint32_t t = mSeed[3]; |
42 | t ^= t << 11; |
43 | t ^= t >> 8; |
44 | |
45 | mSeed[3] = mSeed[2]; |
46 | mSeed[2] = mSeed[1]; |
47 | mSeed[1] = mSeed[0]; |
48 | |
49 | const uint32_t s = mSeed[0]; |
50 | t ^= s; |
51 | t ^= s >> 19; |
52 | |
53 | mSeed[0] = t; |
54 | return t; |
55 | } |
56 | |
57 | /** Returns a random value in range [min, max]. */ |
58 | BS_SCRIPT_EXPORT() |
59 | int32_t getRange(int32_t min, int32_t max) const |
60 | { |
61 | assert(max > min); |
62 | |
63 | // Note: Not using modulo for performance |
64 | const int32_t range = max - min + 1; |
65 | |
66 | constexpr static float DELTA = 0e-5f; |
67 | return min + (int32_t)(getUNorm() * ((float)range - DELTA)); |
68 | } |
69 | |
70 | /** Returns a random value in range [0, 1]. */ |
71 | BS_SCRIPT_EXPORT() |
72 | float getUNorm() const |
73 | { |
74 | // Mask first 23 bits and divide by 2^23-1 |
75 | return float(get() & 0x007FFFFF) / 8388607.0f; |
76 | } |
77 | |
78 | /** Returns a random value in range [-1, 1]. */ |
79 | BS_SCRIPT_EXPORT() |
80 | float getSNorm() const |
81 | { |
82 | return getUNorm() * 2.0f - 1.0f; |
83 | } |
84 | |
85 | /** Returns a random unit vector in three dimensions. */ |
86 | BS_SCRIPT_EXPORT() |
87 | Vector3 getUnitVector() const |
88 | { |
89 | // Pick a random number on a unit cube and use the result only if squared size less than 1. This is faster |
90 | // than most other methods, and generally not many iterations are required to get the required vector. |
91 | |
92 | Vector3 output; |
93 | float sqrdSize; |
94 | |
95 | do |
96 | { |
97 | output.x = getSNorm(); |
98 | output.y = getSNorm(); |
99 | output.z = getSNorm(); |
100 | sqrdSize = output.squaredLength(); |
101 | |
102 | } while (sqrdSize > 1.0f || sqrdSize < 0.001f); |
103 | |
104 | return Vector3::normalize(output); |
105 | } |
106 | |
107 | /** Returns a random unit vector in two dimensions. */ |
108 | BS_SCRIPT_EXPORT() |
109 | Vector2 getUnitVector2D() const |
110 | { |
111 | // Pick a random number on a unit square and use the result only if squared size less than 1. This is faster |
112 | // than most other methods, and generally not many iterations are required to get the required vector. |
113 | |
114 | Vector2 output; |
115 | float sqrdSize; |
116 | |
117 | do |
118 | { |
119 | output.x = getSNorm(); |
120 | output.y = getSNorm(); |
121 | sqrdSize = output.squaredLength(); |
122 | |
123 | } while (sqrdSize > 1.0f || sqrdSize < 0.001f); |
124 | |
125 | return Vector2::normalize(output); |
126 | } |
127 | |
128 | /** Returns a random point inside a unit sphere. */ |
129 | BS_SCRIPT_EXPORT() |
130 | Vector3 getPointInSphere() const |
131 | { |
132 | const Vector3 dir = getUnitVector(); |
133 | return dir * std::pow(getUNorm(), 1.0f / 3.0f); |
134 | } |
135 | |
136 | /** |
137 | * Returns a random point inside the specified range in a sphere shell of unit radius, with the specified |
138 | * thickness, in range [0, 1]. Thickness of 0 will generate points on the sphere surface, while thickness of 1 |
139 | * will generate points within the entire sphere volume. Intermediate values represent the shell, which is a volume |
140 | * between two concentric spheres. |
141 | */ |
142 | BS_SCRIPT_EXPORT() |
143 | Vector3 getPointInSphereShell(float thickness) const |
144 | { |
145 | const float minRadius = 1.0f - thickness; |
146 | |
147 | const Vector3 dir = getUnitVector(); |
148 | return dir * (minRadius + thickness * std::pow(getUNorm(), 1.0f / 3.0f)); |
149 | } |
150 | |
151 | /** Returns a random point inside a unit circle. */ |
152 | BS_SCRIPT_EXPORT() |
153 | Vector2 getPointInCircle() const |
154 | { |
155 | const Vector2 dir = getUnitVector2D(); |
156 | return dir * std::pow(getUNorm(), 1.0f / 2.0f); |
157 | } |
158 | |
159 | /** |
160 | * Returns a random point inside the specified range in a circle shell of unit radius, with the specified |
161 | * thickness, in range [0, 1]. Thickness of 0 will generate points on the circle edge, while thickness of 1 will |
162 | * generate points within the entire circle surface. Intermediate values represent the shell, which is the surface |
163 | * between two concentric circles. |
164 | */ |
165 | BS_SCRIPT_EXPORT() |
166 | Vector2 getPointInCircleShell(float thickness) const |
167 | { |
168 | const float minRadius = 1.0f - thickness; |
169 | |
170 | const Vector2 dir = getUnitVector2D(); |
171 | return dir * (minRadius + thickness * std::pow(getUNorm(), 1.0f / 2.0f)); |
172 | } |
173 | |
174 | /** Returns a random point on a unit arc with the specified length (angle). Angle of 360 represents a circle. */ |
175 | BS_SCRIPT_EXPORT() |
176 | Vector2 getPointInArc(Degree angle) const |
177 | { |
178 | float val = getUNorm() * angle.valueRadians(); |
179 | return Vector2(Math::cos(val), Math::sin(val)); |
180 | } |
181 | |
182 | /** |
183 | * Returns a random point inside the specified range in an arc shell of unit radius, with the specified |
184 | * length (angle) and thickness in range [0, 1]. Angle of 360 represents a circle shell. Thickness of 0 will |
185 | * generate points on the arc edge, while thickness of 1 will generate points on the entire arc 'slice'. |
186 | * Intermediate vlaues represent the shell, which is the surface between two concentric circles. |
187 | */ |
188 | BS_SCRIPT_EXPORT() |
189 | Vector2 getPointInArcShell(Degree angle, float thickness) const |
190 | { |
191 | const float minRadius = 1.0f - thickness; |
192 | |
193 | const float val = getUNorm() * angle.valueRadians(); |
194 | const Vector2 dir(Math::cos(val), Math::sin(val)); |
195 | |
196 | return dir * (minRadius + thickness * std::pow(getUNorm(), 1.0f / 2.0f)); |
197 | } |
198 | |
199 | /** Returns a random set of Barycentric coordinates that may be used for generating random points on a triangle. */ |
200 | BS_SCRIPT_EXPORT() |
201 | Vector3 getBarycentric() const |
202 | { |
203 | float u = getUNorm(); |
204 | float v = getUNorm(); |
205 | |
206 | if((u + v) > 1.0f) |
207 | { |
208 | u = 1.0f - u; |
209 | v = 1.0f - v; |
210 | } |
211 | |
212 | const float w = 1.0f - u - v; |
213 | return Vector3(u, v, w); |
214 | } |
215 | |
216 | private: |
217 | mutable uint32_t mSeed[4]; |
218 | }; |
219 | |
220 | /** @} */ |
221 | } |
222 | |