| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
| 3 | #pragma once |
| 4 | |
| 5 | #include "Prerequisites/BsPrerequisitesUtil.h" |
| 6 | #include "BsVector3.h" |
| 7 | #include "BsVector2.h" |
| 8 | |
| 9 | namespace bs |
| 10 | { |
| 11 | /** @addtogroup Math |
| 12 | * @{ |
| 13 | */ |
| 14 | |
| 15 | /** Generates pseudo random numbers using the Xorshift128 algorithm. Suitable for high performance requirements. */ |
| 16 | class BS_SCRIPT_EXPORT(m:Math) Random |
| 17 | { |
| 18 | public: |
| 19 | /** Initializes a new generator using the specified seed. */ |
| 20 | BS_SCRIPT_EXPORT() |
| 21 | Random(uint32_t seed = 0) |
| 22 | { |
| 23 | setSeed(seed); |
| 24 | } |
| 25 | |
| 26 | /** Changes the seed of the generator to the specified value. */ |
| 27 | BS_SCRIPT_EXPORT() |
| 28 | void setSeed(uint32_t seed) |
| 29 | { |
| 30 | mSeed[0] = seed; |
| 31 | mSeed[1] = seed * 0x72e0447c + 1; // Arbitrary random numbers |
| 32 | mSeed[2] = seed * 0x352ad225 + 1; |
| 33 | mSeed[3] = seed * 0x03c3629f + 1; |
| 34 | } |
| 35 | |
| 36 | /** Returns a random value in range [0, std::numeric_limits<uint32_t>::max()]. */ |
| 37 | BS_SCRIPT_EXPORT() |
| 38 | uint32_t get() const |
| 39 | { |
| 40 | // Using xorshift128 algorithm |
| 41 | uint32_t t = mSeed[3]; |
| 42 | t ^= t << 11; |
| 43 | t ^= t >> 8; |
| 44 | |
| 45 | mSeed[3] = mSeed[2]; |
| 46 | mSeed[2] = mSeed[1]; |
| 47 | mSeed[1] = mSeed[0]; |
| 48 | |
| 49 | const uint32_t s = mSeed[0]; |
| 50 | t ^= s; |
| 51 | t ^= s >> 19; |
| 52 | |
| 53 | mSeed[0] = t; |
| 54 | return t; |
| 55 | } |
| 56 | |
| 57 | /** Returns a random value in range [min, max]. */ |
| 58 | BS_SCRIPT_EXPORT() |
| 59 | int32_t getRange(int32_t min, int32_t max) const |
| 60 | { |
| 61 | assert(max > min); |
| 62 | |
| 63 | // Note: Not using modulo for performance |
| 64 | const int32_t range = max - min + 1; |
| 65 | |
| 66 | constexpr static float DELTA = 0e-5f; |
| 67 | return min + (int32_t)(getUNorm() * ((float)range - DELTA)); |
| 68 | } |
| 69 | |
| 70 | /** Returns a random value in range [0, 1]. */ |
| 71 | BS_SCRIPT_EXPORT() |
| 72 | float getUNorm() const |
| 73 | { |
| 74 | // Mask first 23 bits and divide by 2^23-1 |
| 75 | return float(get() & 0x007FFFFF) / 8388607.0f; |
| 76 | } |
| 77 | |
| 78 | /** Returns a random value in range [-1, 1]. */ |
| 79 | BS_SCRIPT_EXPORT() |
| 80 | float getSNorm() const |
| 81 | { |
| 82 | return getUNorm() * 2.0f - 1.0f; |
| 83 | } |
| 84 | |
| 85 | /** Returns a random unit vector in three dimensions. */ |
| 86 | BS_SCRIPT_EXPORT() |
| 87 | Vector3 getUnitVector() const |
| 88 | { |
| 89 | // Pick a random number on a unit cube and use the result only if squared size less than 1. This is faster |
| 90 | // than most other methods, and generally not many iterations are required to get the required vector. |
| 91 | |
| 92 | Vector3 output; |
| 93 | float sqrdSize; |
| 94 | |
| 95 | do |
| 96 | { |
| 97 | output.x = getSNorm(); |
| 98 | output.y = getSNorm(); |
| 99 | output.z = getSNorm(); |
| 100 | sqrdSize = output.squaredLength(); |
| 101 | |
| 102 | } while (sqrdSize > 1.0f || sqrdSize < 0.001f); |
| 103 | |
| 104 | return Vector3::normalize(output); |
| 105 | } |
| 106 | |
| 107 | /** Returns a random unit vector in two dimensions. */ |
| 108 | BS_SCRIPT_EXPORT() |
| 109 | Vector2 getUnitVector2D() const |
| 110 | { |
| 111 | // Pick a random number on a unit square and use the result only if squared size less than 1. This is faster |
| 112 | // than most other methods, and generally not many iterations are required to get the required vector. |
| 113 | |
| 114 | Vector2 output; |
| 115 | float sqrdSize; |
| 116 | |
| 117 | do |
| 118 | { |
| 119 | output.x = getSNorm(); |
| 120 | output.y = getSNorm(); |
| 121 | sqrdSize = output.squaredLength(); |
| 122 | |
| 123 | } while (sqrdSize > 1.0f || sqrdSize < 0.001f); |
| 124 | |
| 125 | return Vector2::normalize(output); |
| 126 | } |
| 127 | |
| 128 | /** Returns a random point inside a unit sphere. */ |
| 129 | BS_SCRIPT_EXPORT() |
| 130 | Vector3 getPointInSphere() const |
| 131 | { |
| 132 | const Vector3 dir = getUnitVector(); |
| 133 | return dir * std::pow(getUNorm(), 1.0f / 3.0f); |
| 134 | } |
| 135 | |
| 136 | /** |
| 137 | * Returns a random point inside the specified range in a sphere shell of unit radius, with the specified |
| 138 | * thickness, in range [0, 1]. Thickness of 0 will generate points on the sphere surface, while thickness of 1 |
| 139 | * will generate points within the entire sphere volume. Intermediate values represent the shell, which is a volume |
| 140 | * between two concentric spheres. |
| 141 | */ |
| 142 | BS_SCRIPT_EXPORT() |
| 143 | Vector3 getPointInSphereShell(float thickness) const |
| 144 | { |
| 145 | const float minRadius = 1.0f - thickness; |
| 146 | |
| 147 | const Vector3 dir = getUnitVector(); |
| 148 | return dir * (minRadius + thickness * std::pow(getUNorm(), 1.0f / 3.0f)); |
| 149 | } |
| 150 | |
| 151 | /** Returns a random point inside a unit circle. */ |
| 152 | BS_SCRIPT_EXPORT() |
| 153 | Vector2 getPointInCircle() const |
| 154 | { |
| 155 | const Vector2 dir = getUnitVector2D(); |
| 156 | return dir * std::pow(getUNorm(), 1.0f / 2.0f); |
| 157 | } |
| 158 | |
| 159 | /** |
| 160 | * Returns a random point inside the specified range in a circle shell of unit radius, with the specified |
| 161 | * thickness, in range [0, 1]. Thickness of 0 will generate points on the circle edge, while thickness of 1 will |
| 162 | * generate points within the entire circle surface. Intermediate values represent the shell, which is the surface |
| 163 | * between two concentric circles. |
| 164 | */ |
| 165 | BS_SCRIPT_EXPORT() |
| 166 | Vector2 getPointInCircleShell(float thickness) const |
| 167 | { |
| 168 | const float minRadius = 1.0f - thickness; |
| 169 | |
| 170 | const Vector2 dir = getUnitVector2D(); |
| 171 | return dir * (minRadius + thickness * std::pow(getUNorm(), 1.0f / 2.0f)); |
| 172 | } |
| 173 | |
| 174 | /** Returns a random point on a unit arc with the specified length (angle). Angle of 360 represents a circle. */ |
| 175 | BS_SCRIPT_EXPORT() |
| 176 | Vector2 getPointInArc(Degree angle) const |
| 177 | { |
| 178 | float val = getUNorm() * angle.valueRadians(); |
| 179 | return Vector2(Math::cos(val), Math::sin(val)); |
| 180 | } |
| 181 | |
| 182 | /** |
| 183 | * Returns a random point inside the specified range in an arc shell of unit radius, with the specified |
| 184 | * length (angle) and thickness in range [0, 1]. Angle of 360 represents a circle shell. Thickness of 0 will |
| 185 | * generate points on the arc edge, while thickness of 1 will generate points on the entire arc 'slice'. |
| 186 | * Intermediate vlaues represent the shell, which is the surface between two concentric circles. |
| 187 | */ |
| 188 | BS_SCRIPT_EXPORT() |
| 189 | Vector2 getPointInArcShell(Degree angle, float thickness) const |
| 190 | { |
| 191 | const float minRadius = 1.0f - thickness; |
| 192 | |
| 193 | const float val = getUNorm() * angle.valueRadians(); |
| 194 | const Vector2 dir(Math::cos(val), Math::sin(val)); |
| 195 | |
| 196 | return dir * (minRadius + thickness * std::pow(getUNorm(), 1.0f / 2.0f)); |
| 197 | } |
| 198 | |
| 199 | /** Returns a random set of Barycentric coordinates that may be used for generating random points on a triangle. */ |
| 200 | BS_SCRIPT_EXPORT() |
| 201 | Vector3 getBarycentric() const |
| 202 | { |
| 203 | float u = getUNorm(); |
| 204 | float v = getUNorm(); |
| 205 | |
| 206 | if((u + v) > 1.0f) |
| 207 | { |
| 208 | u = 1.0f - u; |
| 209 | v = 1.0f - v; |
| 210 | } |
| 211 | |
| 212 | const float w = 1.0f - u - v; |
| 213 | return Vector3(u, v, w); |
| 214 | } |
| 215 | |
| 216 | private: |
| 217 | mutable uint32_t mSeed[4]; |
| 218 | }; |
| 219 | |
| 220 | /** @} */ |
| 221 | } |
| 222 | |