1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
3 | #pragma once |
4 | |
5 | #include "Prerequisites/BsPrerequisitesUtil.h" |
6 | #include "Math/BsMath.h" |
7 | |
8 | namespace bs |
9 | { |
10 | /** @addtogroup Math |
11 | * @{ |
12 | */ |
13 | |
14 | /** A two dimensional vector. */ |
15 | class BS_UTILITY_EXPORT Vector2 |
16 | { |
17 | public: |
18 | float x, y; |
19 | |
20 | public: |
21 | Vector2() = default; |
22 | |
23 | constexpr Vector2(BS_ZERO) |
24 | :x(0.0f), y(0.0f) |
25 | { } |
26 | |
27 | constexpr Vector2(float x, float y) |
28 | :x(x), y(y) |
29 | { } |
30 | |
31 | /** Exchange the contents of this vector with another. */ |
32 | void swap(Vector2& other) |
33 | { |
34 | std::swap(x, other.x); |
35 | std::swap(y, other.y); |
36 | } |
37 | |
38 | float operator[] (UINT32 i) const |
39 | { |
40 | assert(i < 2); |
41 | |
42 | return *(&x+i); |
43 | } |
44 | |
45 | float& operator[] (UINT32 i) |
46 | { |
47 | assert(i < 2); |
48 | |
49 | return *(&x+i); |
50 | } |
51 | |
52 | /** Pointer accessor for direct copying. */ |
53 | float* ptr() |
54 | { |
55 | return &x; |
56 | } |
57 | |
58 | /** Pointer accessor for direct copying. */ |
59 | const float* ptr() const |
60 | { |
61 | return &x; |
62 | } |
63 | |
64 | Vector2& operator= (float rhs) |
65 | { |
66 | x = rhs; |
67 | y = rhs; |
68 | |
69 | return *this; |
70 | } |
71 | |
72 | bool operator== (const Vector2& rhs) const |
73 | { |
74 | return (x == rhs.x && y == rhs.y); |
75 | } |
76 | |
77 | bool operator!= (const Vector2& rhs) const |
78 | { |
79 | return (x != rhs.x || y != rhs.y); |
80 | } |
81 | |
82 | Vector2 operator+ (const Vector2& rhs) const |
83 | { |
84 | return Vector2(x + rhs.x, y + rhs.y); |
85 | } |
86 | |
87 | Vector2 operator- (const Vector2& rhs) const |
88 | { |
89 | return Vector2(x - rhs.x, y - rhs.y); |
90 | } |
91 | |
92 | Vector2 operator* (const float rhs) const |
93 | { |
94 | return Vector2(x * rhs, y * rhs); |
95 | } |
96 | |
97 | Vector2 operator* (const Vector2& rhs) const |
98 | { |
99 | return Vector2(x * rhs.x, y * rhs.y); |
100 | } |
101 | |
102 | Vector2 operator/ (const float rhs) const |
103 | { |
104 | assert(rhs != 0.0); |
105 | |
106 | float fInv = 1.0f / rhs; |
107 | |
108 | return Vector2(x * fInv, y * fInv); |
109 | } |
110 | |
111 | Vector2 operator/ (const Vector2& rhs) const |
112 | { |
113 | return Vector2(x / rhs.x, y / rhs.y); |
114 | } |
115 | |
116 | const Vector2& operator+ () const |
117 | { |
118 | return *this; |
119 | } |
120 | |
121 | Vector2 operator- () const |
122 | { |
123 | return Vector2(-x, -y); |
124 | } |
125 | |
126 | friend Vector2 operator* (float lhs, const Vector2& rhs) |
127 | { |
128 | return Vector2(lhs * rhs.x, lhs * rhs.y); |
129 | } |
130 | |
131 | friend Vector2 operator/ (float lhs, const Vector2& rhs) |
132 | { |
133 | return Vector2(lhs / rhs.x, lhs / rhs.y); |
134 | } |
135 | |
136 | friend Vector2 operator+ (Vector2& lhs, float rhs) |
137 | { |
138 | return Vector2(lhs.x + rhs, lhs.y + rhs); |
139 | } |
140 | |
141 | friend Vector2 operator+ (float lhs, const Vector2& rhs) |
142 | { |
143 | return Vector2(lhs + rhs.x, lhs + rhs.y); |
144 | } |
145 | |
146 | friend Vector2 operator- (const Vector2& lhs, float rhs) |
147 | { |
148 | return Vector2(lhs.x - rhs, lhs.y - rhs); |
149 | } |
150 | |
151 | friend Vector2 operator- (const float lhs, const Vector2& rhs) |
152 | { |
153 | return Vector2(lhs - rhs.x, lhs - rhs.y); |
154 | } |
155 | |
156 | Vector2& operator+= (const Vector2& rhs) |
157 | { |
158 | x += rhs.x; |
159 | y += rhs.y; |
160 | |
161 | return *this; |
162 | } |
163 | |
164 | Vector2& operator+= (float rhs) |
165 | { |
166 | x += rhs; |
167 | y += rhs; |
168 | |
169 | return *this; |
170 | } |
171 | |
172 | Vector2& operator-= (const Vector2& rhs) |
173 | { |
174 | x -= rhs.x; |
175 | y -= rhs.y; |
176 | |
177 | return *this; |
178 | } |
179 | |
180 | Vector2& operator-= (float rhs) |
181 | { |
182 | x -= rhs; |
183 | y -= rhs; |
184 | |
185 | return *this; |
186 | } |
187 | |
188 | Vector2& operator*= (float rhs) |
189 | { |
190 | x *= rhs; |
191 | y *= rhs; |
192 | |
193 | return *this; |
194 | } |
195 | |
196 | Vector2& operator*= (const Vector2& rhs) |
197 | { |
198 | x *= rhs.x; |
199 | y *= rhs.y; |
200 | |
201 | return *this; |
202 | } |
203 | |
204 | Vector2& operator/= (float rhs) |
205 | { |
206 | assert(rhs != 0.0f); |
207 | |
208 | float inv = 1.0f / rhs; |
209 | |
210 | x *= inv; |
211 | y *= inv; |
212 | |
213 | return *this; |
214 | } |
215 | |
216 | Vector2& operator/= (const Vector2& rhs) |
217 | { |
218 | x /= rhs.x; |
219 | y /= rhs.y; |
220 | |
221 | return *this; |
222 | } |
223 | |
224 | /** Returns the length (magnitude) of the vector. */ |
225 | float length() const |
226 | { |
227 | return Math::sqrt(x * x + y * y); |
228 | } |
229 | |
230 | /** Returns the square of the length(magnitude) of the vector. */ |
231 | float squaredLength() const |
232 | { |
233 | return x * x + y * y; |
234 | } |
235 | |
236 | /** Returns the distance to another vector. */ |
237 | float distance(const Vector2& rhs) const |
238 | { |
239 | return (*this - rhs).length(); |
240 | } |
241 | |
242 | /** Returns the square of the distance to another vector. */ |
243 | float sqrdDistance(const Vector2& rhs) const |
244 | { |
245 | return (*this - rhs).squaredLength(); |
246 | } |
247 | |
248 | /** Calculates the dot (scalar) product of this vector with another. */ |
249 | float dot(const Vector2& vec) const |
250 | { |
251 | return x * vec.x + y * vec.y; |
252 | } |
253 | |
254 | /** Normalizes the vector. */ |
255 | float normalize() |
256 | { |
257 | float len = Math::sqrt(x * x + y * y); |
258 | |
259 | // Will also work for zero-sized vectors, but will change nothing |
260 | if (len > 1e-08f) |
261 | { |
262 | float invLen = 1.0f / len; |
263 | x *= invLen; |
264 | y *= invLen; |
265 | } |
266 | |
267 | return len; |
268 | } |
269 | |
270 | /** Generates a vector perpendicular to this vector. */ |
271 | Vector2 perpendicular() const |
272 | { |
273 | return Vector2 (-y, x); |
274 | } |
275 | |
276 | /** |
277 | * Calculates the 2 dimensional cross-product of 2 vectors, which results in a single floating point value which |
278 | * is 2 times the area of the triangle. |
279 | */ |
280 | float cross(const Vector2& other) const |
281 | { |
282 | return x * other.y - y * other.x; |
283 | } |
284 | |
285 | /** Sets this vector's components to the minimum of its own and the ones of the passed in vector. */ |
286 | void floor(const Vector2& cmp) |
287 | { |
288 | if(cmp.x < x) x = cmp.x; |
289 | if(cmp.y < y) y = cmp.y; |
290 | } |
291 | |
292 | /** Sets this vector's components to the maximum of its own and the ones of the passed in vector. */ |
293 | void ceil(const Vector2& cmp) |
294 | { |
295 | if(cmp.x > x) x = cmp.x; |
296 | if(cmp.y > y) y = cmp.y; |
297 | } |
298 | |
299 | /** Returns true if this vector is zero length. */ |
300 | bool isZeroLength() const |
301 | { |
302 | float sqlen = (x * x) + (y * y); |
303 | return (sqlen < (1e-06f * 1e-06f)); |
304 | } |
305 | |
306 | /** Calculates a reflection vector to the plane with the given normal. */ |
307 | Vector2 reflect(const Vector2& normal) const |
308 | { |
309 | return Vector2(*this - (2 * this->dot(normal) * normal)); |
310 | } |
311 | |
312 | /** Performs Gram-Schmidt orthonormalization. */ |
313 | static void orthonormalize(Vector2& u, Vector2& v) |
314 | { |
315 | u.normalize(); |
316 | |
317 | float dot = u.dot(v); |
318 | v -= u*dot; |
319 | v.normalize(); |
320 | } |
321 | |
322 | /** Normalizes the provided vector and returns a new normalized instance. */ |
323 | static Vector2 normalize(const Vector2& val) |
324 | { |
325 | float len = Math::sqrt(val.x * val.x + val.y * val.y); |
326 | |
327 | // Will also work for zero-sized vectors, but will change nothing |
328 | Vector2 normalizedVec = val; |
329 | if (len > 1e-08f) |
330 | { |
331 | float invLen = 1.0f / len; |
332 | normalizedVec.x *= invLen; |
333 | normalizedVec.y *= invLen; |
334 | } |
335 | |
336 | return normalizedVec; |
337 | } |
338 | |
339 | /** Checks are any of the vector components NaN. */ |
340 | bool isNaN() const |
341 | { |
342 | return Math::isNaN(x) || Math::isNaN(y); |
343 | } |
344 | |
345 | /** Returns the minimum of all the vector components as a new vector. */ |
346 | static Vector2 min(const Vector2& a, const Vector2& b) |
347 | { |
348 | return Vector2(std::min(a.x, b.x), std::min(a.y, b.y)); |
349 | } |
350 | |
351 | /** Returns the maximum of all the vector components as a new vector. */ |
352 | static Vector2 max(const Vector2& a, const Vector2& b) |
353 | { |
354 | return Vector2(std::max(a.x, b.x), std::max(a.y, b.y)); |
355 | } |
356 | |
357 | static const Vector2 ZERO; |
358 | static const Vector2 ONE; |
359 | static const Vector2 UNIT_X; |
360 | static const Vector2 UNIT_Y; |
361 | }; |
362 | |
363 | /** @} */ |
364 | |
365 | /** @cond SPECIALIZATIONS */ |
366 | BS_ALLOW_MEMCPY_SERIALIZATION(Vector2); |
367 | /** @endcond */ |
368 | } |
369 | |