| 1 | /* Copyright (C) 2017 Povilas Kanapickas <povilas@radix.lt> |
| 2 | |
| 3 | Distributed under the Boost Software License, Version 1.0. |
| 4 | (See accompanying file LICENSE_1_0.txt or copy at |
| 5 | http://www.boost.org/LICENSE_1_0.txt) |
| 6 | */ |
| 7 | |
| 8 | #ifndef LIBSIMDPP_SIMDPP_DETAIL_INSN_CONV_FLOAT_TO_INT32_H |
| 9 | #define LIBSIMDPP_SIMDPP_DETAIL_INSN_CONV_FLOAT_TO_INT32_H |
| 10 | |
| 11 | #ifndef LIBSIMDPP_SIMD_H |
| 12 | #error "This file must be included through simd.h" |
| 13 | #endif |
| 14 | |
| 15 | #include <simdpp/types.h> |
| 16 | #include <simdpp/core/i_add.h> |
| 17 | #include <simdpp/core/f_sub.h> |
| 18 | #include <simdpp/core/cmp_ge.h> |
| 19 | #include <simdpp/detail/vector_array_conv_macros.h> |
| 20 | |
| 21 | namespace simdpp { |
| 22 | namespace SIMDPP_ARCH_NAMESPACE { |
| 23 | namespace detail { |
| 24 | namespace insn { |
| 25 | |
| 26 | // ----------------------------------------------------------------------------- |
| 27 | |
| 28 | static SIMDPP_INL |
| 29 | int32<4> i_to_int32(const float32<4>& a) |
| 30 | { |
| 31 | #if SIMDPP_USE_NULL |
| 32 | int32x4 r; |
| 33 | for (unsigned i = 0; i < a.length; i++) { |
| 34 | r.el(i) = int32_t(a.el(i)); |
| 35 | } |
| 36 | return r; |
| 37 | #elif SIMDPP_USE_SSE2 |
| 38 | return _mm_cvttps_epi32(a.native()); |
| 39 | #elif SIMDPP_USE_NEON && !SIMDPP_USE_NEON_FLT_SP |
| 40 | detail::mem_block<float32x4> mf(a); |
| 41 | detail::mem_block<int32x4> mi; |
| 42 | mi[0] = int(mf[0]); |
| 43 | mi[1] = int(mf[1]); |
| 44 | mi[2] = int(mf[2]); |
| 45 | mi[3] = int(mf[3]); |
| 46 | return mi; |
| 47 | #elif SIMDPP_USE_NEON_FLT_SP |
| 48 | return vcvtq_s32_f32(a.native()); |
| 49 | #elif SIMDPP_USE_MSA |
| 50 | return __msa_ftrunc_s_w(a.native()); |
| 51 | #elif SIMDPP_USE_ALTIVEC |
| 52 | return vec_cts(a.native(), 0); |
| 53 | #endif |
| 54 | } |
| 55 | |
| 56 | #if SIMDPP_USE_AVX |
| 57 | static SIMDPP_INL |
| 58 | int32<8> i_to_int32(const float32<8>& a) |
| 59 | { |
| 60 | #if SIMDPP_USE_AVX2 |
| 61 | return _mm256_cvttps_epi32(a.native()); |
| 62 | #else |
| 63 | __m256i r = _mm256_cvttps_epi32(a.native()); |
| 64 | uint32<4> r1, r2; |
| 65 | r1 = _mm256_castsi256_si128(r); |
| 66 | r2 = _mm256_extractf128_si256(r, 1); |
| 67 | return combine(r1, r2); |
| 68 | #endif |
| 69 | } |
| 70 | #endif |
| 71 | |
| 72 | #if SIMDPP_USE_AVX512F |
| 73 | static SIMDPP_INL |
| 74 | int32<16> i_to_int32(const float32<16>& a) |
| 75 | { |
| 76 | return _mm512_cvttps_epi32(a.native()); |
| 77 | } |
| 78 | #endif |
| 79 | |
| 80 | template<unsigned N> SIMDPP_INL |
| 81 | int32<N> i_to_int32(const float32<N>& a) |
| 82 | { |
| 83 | SIMDPP_VEC_ARRAY_IMPL_CONV_INSERT(int32<N>, i_to_int32, a) |
| 84 | } |
| 85 | |
| 86 | // ----------------------------------------------------------------------------- |
| 87 | |
| 88 | static SIMDPP_INL |
| 89 | uint32<4> i_to_uint32(const float32<4>& a) |
| 90 | { |
| 91 | #if SIMDPP_USE_NULL |
| 92 | uint32x4 r; |
| 93 | for (unsigned i = 0; i < a.length; i++) { |
| 94 | r.el(i) = uint32_t(a.el(i)); |
| 95 | } |
| 96 | return r; |
| 97 | #elif SIMDPP_USE_AVX512VL |
| 98 | return _mm_cvttps_epu32(a.native()); |
| 99 | #elif SIMDPP_USE_AVX512F |
| 100 | __m512 a512 = _mm512_castps128_ps512(a.native()); |
| 101 | return _mm512_castsi512_si128(_mm512_cvttps_epu32(a512)); |
| 102 | #elif SIMDPP_USE_NEON && !SIMDPP_USE_NEON_FLT_SP |
| 103 | detail::mem_block<float32x4> mf(a); |
| 104 | detail::mem_block<uint32x4> mi; |
| 105 | mi[0] = unsigned(mf[0]); |
| 106 | mi[1] = unsigned(mf[1]); |
| 107 | mi[2] = unsigned(mf[2]); |
| 108 | mi[3] = unsigned(mf[3]); |
| 109 | return mi; |
| 110 | #elif SIMDPP_USE_NEON_FLT_SP |
| 111 | return vcvtq_u32_f32(a.native()); |
| 112 | #elif SIMDPP_USE_MSA |
| 113 | return __msa_ftrunc_u_w(a.native()); |
| 114 | #elif SIMDPP_USE_ALTIVEC |
| 115 | return vec_ctu(a.native(), 0); |
| 116 | #else |
| 117 | // Smaller than 0x80000000 numbers can be represented as int32, so we can |
| 118 | // use i_to_int32 which is available as instruction on all supported |
| 119 | // architectures. Values >= 0x80000000 are biased into the range -0x80000000..0xffffffff. |
| 120 | // These conveniently convert through i_to_int32() to 0x80000000..0xffffffff. No further |
| 121 | // unbiasing is required. No attempt is made to produce a reliable overflow value for |
| 122 | // values outside the range 0 .. 0xffffffff. |
| 123 | mask_float32<4> is_large = cmp_ge(a, 0x80000000); |
| 124 | return uint32<4>( i_to_int32(sub(a, bit_and(is_large, splat<float32<4>>(0x100000000)))) ); |
| 125 | #endif |
| 126 | } |
| 127 | |
| 128 | #if SIMDPP_USE_AVX |
| 129 | static SIMDPP_INL |
| 130 | uint32<8> i_to_uint32(const float32<8>& a) |
| 131 | { |
| 132 | #if SIMDPP_USE_AVX512VL |
| 133 | return _mm256_cvttps_epu32(a.native()); |
| 134 | #elif SIMDPP_USE_AVX512F |
| 135 | __m512 a512 = _mm512_castps256_ps512(a.native()); |
| 136 | return _mm512_castsi512_si256(_mm512_cvttps_epu32(a512)); |
| 137 | #else |
| 138 | mask_float32<8> is_large = cmp_ge(a, 0x80000000); |
| 139 | return uint32<8>( i_to_int32(sub(a, bit_and(is_large, splat<float32<8>>(0x100000000)))) ); |
| 140 | #endif |
| 141 | } |
| 142 | #endif |
| 143 | |
| 144 | #if SIMDPP_USE_AVX512F |
| 145 | static SIMDPP_INL |
| 146 | uint32<16> i_to_uint32(const float32<16>& a) |
| 147 | { |
| 148 | return _mm512_cvttps_epu32(a.native()); |
| 149 | } |
| 150 | #endif |
| 151 | |
| 152 | template<unsigned N> SIMDPP_INL |
| 153 | uint32<N> i_to_uint32(const float32<N>& a) |
| 154 | { |
| 155 | SIMDPP_VEC_ARRAY_IMPL_CONV_INSERT(uint32<N>, i_to_uint32, a) |
| 156 | } |
| 157 | |
| 158 | // ----------------------------------------------------------------------------- |
| 159 | |
| 160 | static SIMDPP_INL |
| 161 | uint32<4> i_to_uint32(const float64<4>& a) |
| 162 | { |
| 163 | #if SIMDPP_USE_AVX512VL |
| 164 | return _mm256_cvttpd_epu32(a.native()); |
| 165 | #elif SIMDPP_USE_AVX512F |
| 166 | __m512d a512 = _mm512_castpd256_pd512(a.native()); |
| 167 | return _mm256_castsi256_si128(_mm512_cvttpd_epu32(a512)); |
| 168 | #elif SIMDPP_USE_NEON64 |
| 169 | uint64x2_t r1, r2; |
| 170 | r1 = vcvtq_u64_f64(a.vec(0).native()); |
| 171 | r2 = vcvtq_u64_f64(a.vec(1).native()); |
| 172 | // FIXME: saturation |
| 173 | uint32<4> r = vcombine_u32(vqmovn_u64(r1), vqmovn_u64(r2)); |
| 174 | return r; |
| 175 | #elif SIMDPP_USE_VSX_206 |
| 176 | uint32<4> r, r1, r2; |
| 177 | r1 = (__vector uint32_t) vec_ctu(a.vec(0).native(), 0); |
| 178 | r2 = (__vector uint32_t) vec_ctu(a.vec(1).native(), 0); |
| 179 | r = unzip4_lo(r1, r2); |
| 180 | return r; |
| 181 | #elif SIMDPP_USE_MSA |
| 182 | uint64<2> r1, r2; |
| 183 | r1 = __msa_ftrunc_u_d(a.vec(0).native()); |
| 184 | r2 = __msa_ftrunc_u_d(a.vec(1).native()); |
| 185 | return unzip4_lo((uint32<4>)r1, (uint32<4>)r2); |
| 186 | #elif SIMDPP_USE_NULL || SIMDPP_USE_NEON32 || SIMDPP_USE_ALTIVEC |
| 187 | detail::mem_block<uint32x4> r; |
| 188 | r[0] = uint32_t(a.vec(0).el(0)); |
| 189 | r[1] = uint32_t(a.vec(0).el(1)); |
| 190 | r[2] = uint32_t(a.vec(1).el(0)); |
| 191 | r[3] = uint32_t(a.vec(1).el(1)); |
| 192 | return r; |
| 193 | #else |
| 194 | return SIMDPP_NOT_IMPLEMENTED1(a); |
| 195 | #endif |
| 196 | } |
| 197 | |
| 198 | #if SIMDPP_USE_AVX |
| 199 | static SIMDPP_INL |
| 200 | uint32<8> i_to_uint32(const float64<8>& a) |
| 201 | { |
| 202 | #if SIMDPP_USE_AVX512F |
| 203 | return _mm512_cvttpd_epu32(a.native()); |
| 204 | #else |
| 205 | return SIMDPP_NOT_IMPLEMENTED1(a); |
| 206 | #endif |
| 207 | } |
| 208 | #endif |
| 209 | |
| 210 | #if SIMDPP_USE_AVX512F |
| 211 | static SIMDPP_INL |
| 212 | uint32<16> i_to_uint32(const float64<16>& a) |
| 213 | { |
| 214 | uint32<8> r0, r1; |
| 215 | r0 = _mm512_cvttpd_epu32(a.vec(0).native()); |
| 216 | r1 = _mm512_cvttpd_epu32(a.vec(1).native()); |
| 217 | return combine(r0, r1); |
| 218 | } |
| 219 | #endif |
| 220 | |
| 221 | template<unsigned N> SIMDPP_INL |
| 222 | uint32<N> i_to_uint32(const float64<N>& a) |
| 223 | { |
| 224 | SIMDPP_VEC_ARRAY_IMPL_CONV_EXTRACT(uint32<N>, i_to_uint32, a) |
| 225 | } |
| 226 | |
| 227 | // ----------------------------------------------------------------------------- |
| 228 | |
| 229 | static SIMDPP_INL |
| 230 | int32x4 i_to_int32(const float64x4& a) |
| 231 | { |
| 232 | #if SIMDPP_USE_AVX512VL |
| 233 | return _mm256_cvttpd_epi32(a.native()); |
| 234 | #elif SIMDPP_USE_SSE2 |
| 235 | int32x4 r, r1, r2; |
| 236 | float64x2 a1, a2; |
| 237 | split(a, a1, a2); |
| 238 | r1 = _mm_cvttpd_epi32(a1.native()); |
| 239 | r2 = _mm_cvttpd_epi32(a2.native()); |
| 240 | r = zip2_lo(int64<2>(r1), int64<2>(r2)); |
| 241 | return r; |
| 242 | #elif SIMDPP_USE_NEON64 |
| 243 | int64x2_t r1, r2; |
| 244 | r1 = vcvtq_s64_f64(a.vec(0).native()); |
| 245 | r2 = vcvtq_s64_f64(a.vec(1).native()); |
| 246 | // FIXME: saturation |
| 247 | int32<4> r = vcombine_s32(vqmovn_s64(r1), vqmovn_s64(r2)); |
| 248 | return r; |
| 249 | #elif SIMDPP_USE_VSX_206 |
| 250 | int32<4> r, r1, r2; |
| 251 | r1 = (__vector int32_t) vec_cts(a.vec(0).native(), 0); |
| 252 | r2 = (__vector int32_t) vec_cts(a.vec(1).native(), 0); |
| 253 | r = unzip4_lo(r1, r2); |
| 254 | return r; |
| 255 | #elif SIMDPP_USE_MSA |
| 256 | int64<2> r1, r2; |
| 257 | r1 = __msa_ftrunc_s_d(a.vec(0).native()); |
| 258 | r2 = __msa_ftrunc_s_d(a.vec(1).native()); |
| 259 | return unzip4_lo((int32<4>)r1, (int32<4>)r2); |
| 260 | #elif SIMDPP_USE_NULL || SIMDPP_USE_NEON32 || SIMDPP_USE_ALTIVEC |
| 261 | detail::mem_block<int32x4> r; |
| 262 | r[0] = int32_t(a.vec(0).el(0)); |
| 263 | r[1] = int32_t(a.vec(0).el(1)); |
| 264 | r[2] = int32_t(a.vec(1).el(0)); |
| 265 | r[3] = int32_t(a.vec(1).el(1)); |
| 266 | return r; |
| 267 | #else |
| 268 | return SIMDPP_NOT_IMPLEMENTED1(a); |
| 269 | #endif |
| 270 | } |
| 271 | |
| 272 | #if SIMDPP_USE_AVX |
| 273 | static SIMDPP_INL |
| 274 | int32<8> i_to_int32(const float64<8>& a) |
| 275 | { |
| 276 | #if SIMDPP_USE_AVX512F |
| 277 | return _mm512_cvttpd_epi32(a.native()); |
| 278 | #else |
| 279 | int32<4> r1, r2; |
| 280 | r1 = _mm256_cvttpd_epi32(a.vec(0).native()); |
| 281 | r2 = _mm256_cvttpd_epi32(a.vec(1).native()); |
| 282 | return combine(r1, r2); |
| 283 | #endif |
| 284 | } |
| 285 | #endif |
| 286 | |
| 287 | #if SIMDPP_USE_AVX512F |
| 288 | static SIMDPP_INL |
| 289 | int32<16> i_to_int32(const float64<16>& a) |
| 290 | { |
| 291 | int32<8> r0, r1; |
| 292 | r0 = _mm512_cvttpd_epi32(a.vec(0).native()); |
| 293 | r1 = _mm512_cvttpd_epi32(a.vec(1).native()); |
| 294 | return combine(r0, r1); |
| 295 | } |
| 296 | #endif |
| 297 | |
| 298 | template<unsigned N> SIMDPP_INL |
| 299 | int32<N> i_to_int32(const float64<N>& a) |
| 300 | { |
| 301 | SIMDPP_VEC_ARRAY_IMPL_CONV_EXTRACT(int32<N>, i_to_int32, a) |
| 302 | } |
| 303 | |
| 304 | |
| 305 | } // namespace insn |
| 306 | } // namespace detail |
| 307 | } // namespace SIMDPP_ARCH_NAMESPACE |
| 308 | } // namespace simdpp |
| 309 | |
| 310 | #endif |
| 311 | |
| 312 | |
| 313 | |