| 1 | // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors |
| 2 | // Licensed under the MIT License: |
| 3 | // |
| 4 | // Permission is hereby granted, free of charge, to any person obtaining a copy |
| 5 | // of this software and associated documentation files (the "Software"), to deal |
| 6 | // in the Software without restriction, including without limitation the rights |
| 7 | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 8 | // copies of the Software, and to permit persons to whom the Software is |
| 9 | // furnished to do so, subject to the following conditions: |
| 10 | // |
| 11 | // The above copyright notice and this permission notice shall be included in |
| 12 | // all copies or substantial portions of the Software. |
| 13 | // |
| 14 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 17 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 18 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 19 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 20 | // THE SOFTWARE. |
| 21 | |
| 22 | #pragma once |
| 23 | |
| 24 | #if defined(__GNUC__) && !KJ_HEADER_WARNINGS |
| 25 | #pragma GCC system_header |
| 26 | #endif |
| 27 | |
| 28 | #include "memory.h" |
| 29 | |
| 30 | namespace kj { |
| 31 | |
| 32 | template <typename Signature> |
| 33 | class Function; |
| 34 | // Function wrapper using virtual-based polymorphism. Use this when template polymorphism is |
| 35 | // not possible. You can, for example, accept a Function as a parameter: |
| 36 | // |
| 37 | // void setFilter(Function<bool(const Widget&)> filter); |
| 38 | // |
| 39 | // The caller of `setFilter()` may then pass any callable object as the parameter. The callable |
| 40 | // object does not have to have the exact signature specified, just one that is "compatible" -- |
| 41 | // i.e. the return type is covariant and the parameters are contravariant. |
| 42 | // |
| 43 | // Unlike `std::function`, `kj::Function`s are movable but not copyable, just like `kj::Own`. This |
| 44 | // is to avoid unexpected heap allocation or slow atomic reference counting. |
| 45 | // |
| 46 | // When a `Function` is constructed from an lvalue, it captures only a reference to the value. |
| 47 | // When constructed from an rvalue, it invokes the value's move constructor. So, for example: |
| 48 | // |
| 49 | // struct AddN { |
| 50 | // int n; |
| 51 | // int operator(int i) { return i + n; } |
| 52 | // } |
| 53 | // |
| 54 | // Function<int(int, int)> f1 = AddN{2}; |
| 55 | // // f1 owns an instance of AddN. It may safely be moved out |
| 56 | // // of the local scope. |
| 57 | // |
| 58 | // AddN adder(2); |
| 59 | // Function<int(int, int)> f2 = adder; |
| 60 | // // f2 contains a reference to `adder`. Thus, it becomes invalid |
| 61 | // // when `adder` goes out-of-scope. |
| 62 | // |
| 63 | // AddN adder2(2); |
| 64 | // Function<int(int, int)> f3 = kj::mv(adder2); |
| 65 | // // f3 owns an insatnce of AddN moved from `adder2`. f3 may safely |
| 66 | // // be moved out of the local scope. |
| 67 | // |
| 68 | // Additionally, a Function may be bound to a class method using KJ_BIND_METHOD(object, methodName). |
| 69 | // For example: |
| 70 | // |
| 71 | // class Printer { |
| 72 | // public: |
| 73 | // void print(int i); |
| 74 | // void print(kj::StringPtr s); |
| 75 | // }; |
| 76 | // |
| 77 | // Printer p; |
| 78 | // |
| 79 | // Function<void(uint)> intPrinter = KJ_BIND_METHOD(p, print); |
| 80 | // // Will call Printer::print(int). |
| 81 | // |
| 82 | // Function<void(const char*)> strPrinter = KJ_BIND_METHOD(p, print); |
| 83 | // // Will call Printer::print(kj::StringPtr). |
| 84 | // |
| 85 | // Notice how KJ_BIND_METHOD is able to figure out which overload to use depending on the kind of |
| 86 | // Function it is binding to. |
| 87 | |
| 88 | template <typename Signature> |
| 89 | class ConstFunction; |
| 90 | // Like Function, but wraps a "const" (i.e. thread-safe) call. |
| 91 | |
| 92 | template <typename Signature> |
| 93 | class FunctionParam; |
| 94 | // Like Function, but used specifically as a call parameter type. Does not do any heap allocation. |
| 95 | // |
| 96 | // This type MUST NOT be used for anything other than a parameter type to a function or method. |
| 97 | // This is because if FunctionParam binds to a temporary, it assumes that the temporary will |
| 98 | // outlive the FunctionParam instance. This is true when FunctionParam is used as a parameter type, |
| 99 | // but not if it is used as a local variable nor a class member variable. |
| 100 | |
| 101 | template <typename Return, typename... Params> |
| 102 | class Function<Return(Params...)> { |
| 103 | public: |
| 104 | template <typename F> |
| 105 | inline Function(F&& f): impl(heap<Impl<F>>(kj::fwd<F>(f))) {} |
| 106 | Function() = default; |
| 107 | |
| 108 | // Make sure people don't accidentally end up wrapping a reference when they meant to return |
| 109 | // a function. |
| 110 | KJ_DISALLOW_COPY(Function); |
| 111 | Function(Function&) = delete; |
| 112 | Function& operator=(Function&) = delete; |
| 113 | template <typename T> Function(const Function<T>&) = delete; |
| 114 | template <typename T> Function& operator=(const Function<T>&) = delete; |
| 115 | template <typename T> Function(const ConstFunction<T>&) = delete; |
| 116 | template <typename T> Function& operator=(const ConstFunction<T>&) = delete; |
| 117 | Function(Function&&) = default; |
| 118 | Function& operator=(Function&&) = default; |
| 119 | |
| 120 | inline Return operator()(Params... params) { |
| 121 | return (*impl)(kj::fwd<Params>(params)...); |
| 122 | } |
| 123 | |
| 124 | Function reference() { |
| 125 | // Forms a new Function of the same type that delegates to this Function by reference. |
| 126 | // Therefore, this Function must outlive the returned Function, but otherwise they behave |
| 127 | // exactly the same. |
| 128 | |
| 129 | return *impl; |
| 130 | } |
| 131 | |
| 132 | private: |
| 133 | class Iface { |
| 134 | public: |
| 135 | virtual Return operator()(Params... params) = 0; |
| 136 | }; |
| 137 | |
| 138 | template <typename F> |
| 139 | class Impl final: public Iface { |
| 140 | public: |
| 141 | explicit Impl(F&& f): f(kj::fwd<F>(f)) {} |
| 142 | |
| 143 | Return operator()(Params... params) override { |
| 144 | return f(kj::fwd<Params>(params)...); |
| 145 | } |
| 146 | |
| 147 | private: |
| 148 | F f; |
| 149 | }; |
| 150 | |
| 151 | Own<Iface> impl; |
| 152 | }; |
| 153 | |
| 154 | template <typename Return, typename... Params> |
| 155 | class ConstFunction<Return(Params...)> { |
| 156 | public: |
| 157 | template <typename F> |
| 158 | inline ConstFunction(F&& f): impl(heap<Impl<F>>(kj::fwd<F>(f))) {} |
| 159 | ConstFunction() = default; |
| 160 | |
| 161 | // Make sure people don't accidentally end up wrapping a reference when they meant to return |
| 162 | // a function. |
| 163 | KJ_DISALLOW_COPY(ConstFunction); |
| 164 | ConstFunction(ConstFunction&) = delete; |
| 165 | ConstFunction& operator=(ConstFunction&) = delete; |
| 166 | template <typename T> ConstFunction(const ConstFunction<T>&) = delete; |
| 167 | template <typename T> ConstFunction& operator=(const ConstFunction<T>&) = delete; |
| 168 | template <typename T> ConstFunction(const Function<T>&) = delete; |
| 169 | template <typename T> ConstFunction& operator=(const Function<T>&) = delete; |
| 170 | ConstFunction(ConstFunction&&) = default; |
| 171 | ConstFunction& operator=(ConstFunction&&) = default; |
| 172 | |
| 173 | inline Return operator()(Params... params) const { |
| 174 | return (*impl)(kj::fwd<Params>(params)...); |
| 175 | } |
| 176 | |
| 177 | ConstFunction reference() const { |
| 178 | // Forms a new ConstFunction of the same type that delegates to this ConstFunction by reference. |
| 179 | // Therefore, this ConstFunction must outlive the returned ConstFunction, but otherwise they |
| 180 | // behave exactly the same. |
| 181 | |
| 182 | return *impl; |
| 183 | } |
| 184 | |
| 185 | private: |
| 186 | class Iface { |
| 187 | public: |
| 188 | virtual Return operator()(Params... params) const = 0; |
| 189 | }; |
| 190 | |
| 191 | template <typename F> |
| 192 | class Impl final: public Iface { |
| 193 | public: |
| 194 | explicit Impl(F&& f): f(kj::fwd<F>(f)) {} |
| 195 | |
| 196 | Return operator()(Params... params) const override { |
| 197 | return f(kj::fwd<Params>(params)...); |
| 198 | } |
| 199 | |
| 200 | private: |
| 201 | F f; |
| 202 | }; |
| 203 | |
| 204 | Own<Iface> impl; |
| 205 | }; |
| 206 | |
| 207 | template <typename Return, typename... Params> |
| 208 | class FunctionParam<Return(Params...)> { |
| 209 | public: |
| 210 | template <typename Func> |
| 211 | FunctionParam(Func&& func) { |
| 212 | typedef Wrapper<Decay<Func>> WrapperType; |
| 213 | |
| 214 | // All instances of Wrapper<Func> are two pointers in size: a vtable, and a Func&. So if we |
| 215 | // allocate space for two pointers, we can construct a Wrapper<Func> in it! |
| 216 | static_assert(sizeof(WrapperType) == sizeof(space), |
| 217 | "expected WrapperType to be two pointers" ); |
| 218 | |
| 219 | // Even if `func` is an rvalue reference, it's OK to use it as an lvalue here, because |
| 220 | // FunctionParam is used strictly for parameters. If we captured a temporary, we know that |
| 221 | // temporary will not be destroyed until after the function call completes. |
| 222 | ctor(*reinterpret_cast<WrapperType*>(space), func); |
| 223 | } |
| 224 | |
| 225 | FunctionParam(const FunctionParam& other) = default; |
| 226 | FunctionParam(FunctionParam&& other) = default; |
| 227 | // Magically, a plain copy works. |
| 228 | |
| 229 | inline Return operator()(Params... params) { |
| 230 | return (*reinterpret_cast<WrapperBase*>(space))(kj::fwd<Params>(params)...); |
| 231 | } |
| 232 | |
| 233 | private: |
| 234 | void* space[2]; |
| 235 | |
| 236 | class WrapperBase { |
| 237 | public: |
| 238 | virtual Return operator()(Params... params) = 0; |
| 239 | }; |
| 240 | |
| 241 | template <typename Func> |
| 242 | class Wrapper: public WrapperBase { |
| 243 | public: |
| 244 | Wrapper(Func& func): func(func) {} |
| 245 | |
| 246 | inline Return operator()(Params... params) override { |
| 247 | return func(kj::fwd<Params>(params)...); |
| 248 | } |
| 249 | |
| 250 | private: |
| 251 | Func& func; |
| 252 | }; |
| 253 | }; |
| 254 | |
| 255 | namespace _ { // private |
| 256 | |
| 257 | template <typename T, typename Func, typename ConstFunc> |
| 258 | class BoundMethod { |
| 259 | public: |
| 260 | BoundMethod(T&& t, Func&& func, ConstFunc&& constFunc) |
| 261 | : t(kj::fwd<T>(t)), func(kj::mv(func)), constFunc(kj::mv(constFunc)) {} |
| 262 | |
| 263 | template <typename... Params> |
| 264 | auto operator()(Params&&... params) { |
| 265 | return func(t, kj::fwd<Params>(params)...); |
| 266 | } |
| 267 | template <typename... Params> |
| 268 | auto operator()(Params&&... params) const { |
| 269 | return constFunc(t, kj::fwd<Params>(params)...); |
| 270 | } |
| 271 | |
| 272 | private: |
| 273 | T t; |
| 274 | Func func; |
| 275 | ConstFunc constFunc; |
| 276 | }; |
| 277 | |
| 278 | template <typename T, typename Func, typename ConstFunc> |
| 279 | BoundMethod<T, Func, ConstFunc> boundMethod(T&& t, Func&& func, ConstFunc&& constFunc) { |
| 280 | return { kj::fwd<T>(t), kj::fwd<Func>(func), kj::fwd<ConstFunc>(constFunc) }; |
| 281 | } |
| 282 | |
| 283 | } // namespace _ (private) |
| 284 | |
| 285 | #define KJ_BIND_METHOD(obj, method) \ |
| 286 | ::kj::_::boundMethod(obj, \ |
| 287 | [](auto& s, auto&&... p) mutable { return s.method(kj::fwd<decltype(p)>(p)...); }, \ |
| 288 | [](auto& s, auto&&... p) { return s.method(kj::fwd<decltype(p)>(p)...); }) |
| 289 | // Macro that produces a functor object which forwards to the method `obj.name`. If `obj` is an |
| 290 | // lvalue, the functor will hold a reference to it. If `obj` is an rvalue, the functor will |
| 291 | // contain a copy (by move) of it. The method is allowed to be overloaded. |
| 292 | |
| 293 | } // namespace kj |
| 294 | |