| 1 | // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors |
| 2 | // Licensed under the MIT License: |
| 3 | // |
| 4 | // Permission is hereby granted, free of charge, to any person obtaining a copy |
| 5 | // of this software and associated documentation files (the "Software"), to deal |
| 6 | // in the Software without restriction, including without limitation the rights |
| 7 | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 8 | // copies of the Software, and to permit persons to whom the Software is |
| 9 | // furnished to do so, subject to the following conditions: |
| 10 | // |
| 11 | // The above copyright notice and this permission notice shall be included in |
| 12 | // all copies or substantial portions of the Software. |
| 13 | // |
| 14 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 17 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 18 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 19 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 20 | // THE SOFTWARE. |
| 21 | |
| 22 | #pragma once |
| 23 | |
| 24 | #if defined(__GNUC__) && !KJ_HEADER_WARNINGS |
| 25 | #pragma GCC system_header |
| 26 | #endif |
| 27 | |
| 28 | #include <initializer_list> |
| 29 | #include "array.h" |
| 30 | #include <string.h> |
| 31 | |
| 32 | namespace kj { |
| 33 | class StringPtr; |
| 34 | class String; |
| 35 | |
| 36 | class StringTree; // string-tree.h |
| 37 | } |
| 38 | |
| 39 | constexpr kj::StringPtr operator "" _kj(const char* str, size_t n); |
| 40 | // You can append _kj to a string literal to make its type be StringPtr. There are a few cases |
| 41 | // where you must do this for correctness: |
| 42 | // - When you want to declare a constexpr StringPtr. Without _kj, this is a compile error. |
| 43 | // - When you want to initialize a static/global StringPtr from a string literal without forcing |
| 44 | // global constructor code to run at dynamic initialization time. |
| 45 | // - When you have a string literal that contains NUL characters. Without _kj, the string will |
| 46 | // be considered to end at the first NUL. |
| 47 | // - When you want to initialize an ArrayPtr<const char> from a string literal, without including |
| 48 | // the NUL terminator in the data. (Initializing an ArrayPtr from a regular string literal is |
| 49 | // a compile error specifically due to this ambiguity.) |
| 50 | // |
| 51 | // In other cases, there should be no difference between initializing a StringPtr from a regular |
| 52 | // string literal vs. one with _kj (assuming the compiler is able to optimize away strlen() on a |
| 53 | // string literal). |
| 54 | |
| 55 | namespace kj { |
| 56 | |
| 57 | // Our STL string SFINAE trick does not work with GCC 4.7, but it works with Clang and GCC 4.8, so |
| 58 | // we'll just preprocess it out if not supported. |
| 59 | #if __clang__ || __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) || _MSC_VER |
| 60 | #define KJ_COMPILER_SUPPORTS_STL_STRING_INTEROP 1 |
| 61 | #endif |
| 62 | |
| 63 | // ======================================================================================= |
| 64 | // StringPtr -- A NUL-terminated ArrayPtr<const char> containing UTF-8 text. |
| 65 | // |
| 66 | // NUL bytes are allowed to appear before the end of the string. The only requirement is that |
| 67 | // a NUL byte appear immediately after the last byte of the content. This terminator byte is not |
| 68 | // counted in the string's size. |
| 69 | |
| 70 | class StringPtr { |
| 71 | public: |
| 72 | inline StringPtr(): content("" , 1) {} |
| 73 | inline StringPtr(decltype(nullptr)): content("" , 1) {} |
| 74 | inline StringPtr(const char* value): content(value, strlen(value) + 1) {} |
| 75 | inline StringPtr(const char* value, size_t size): content(value, size + 1) { |
| 76 | KJ_IREQUIRE(value[size] == '\0', "StringPtr must be NUL-terminated." ); |
| 77 | } |
| 78 | inline StringPtr(const char* begin, const char* end): StringPtr(begin, end - begin) {} |
| 79 | inline StringPtr(const String& value); |
| 80 | |
| 81 | #if KJ_COMPILER_SUPPORTS_STL_STRING_INTEROP |
| 82 | template <typename T, typename = decltype(instance<T>().c_str())> |
| 83 | inline StringPtr(const T& t): StringPtr(t.c_str()) {} |
| 84 | // Allow implicit conversion from any class that has a c_str() method (namely, std::string). |
| 85 | // We use a template trick to detect std::string in order to avoid including the header for |
| 86 | // those who don't want it. |
| 87 | |
| 88 | template <typename T, typename = decltype(instance<T>().c_str())> |
| 89 | inline operator T() const { return cStr(); } |
| 90 | // Allow implicit conversion to any class that has a c_str() method (namely, std::string). |
| 91 | // We use a template trick to detect std::string in order to avoid including the header for |
| 92 | // those who don't want it. |
| 93 | #endif |
| 94 | |
| 95 | inline constexpr operator ArrayPtr<const char>() const; |
| 96 | inline constexpr ArrayPtr<const char> asArray() const; |
| 97 | inline ArrayPtr<const byte> asBytes() const { return asArray().asBytes(); } |
| 98 | // Result does not include NUL terminator. |
| 99 | |
| 100 | inline const char* cStr() const { return content.begin(); } |
| 101 | // Returns NUL-terminated string. |
| 102 | |
| 103 | inline size_t size() const { return content.size() - 1; } |
| 104 | // Result does not include NUL terminator. |
| 105 | |
| 106 | inline char operator[](size_t index) const { return content[index]; } |
| 107 | |
| 108 | inline const char* begin() const { return content.begin(); } |
| 109 | inline const char* end() const { return content.end() - 1; } |
| 110 | |
| 111 | inline bool operator==(decltype(nullptr)) const { return content.size() <= 1; } |
| 112 | inline bool operator!=(decltype(nullptr)) const { return content.size() > 1; } |
| 113 | |
| 114 | inline bool operator==(const StringPtr& other) const; |
| 115 | inline bool operator!=(const StringPtr& other) const { return !(*this == other); } |
| 116 | inline bool operator< (const StringPtr& other) const; |
| 117 | inline bool operator> (const StringPtr& other) const { return other < *this; } |
| 118 | inline bool operator<=(const StringPtr& other) const { return !(other < *this); } |
| 119 | inline bool operator>=(const StringPtr& other) const { return !(*this < other); } |
| 120 | |
| 121 | inline StringPtr slice(size_t start) const; |
| 122 | inline ArrayPtr<const char> slice(size_t start, size_t end) const; |
| 123 | // A string slice is only NUL-terminated if it is a suffix, so slice() has a one-parameter |
| 124 | // version that assumes end = size(). |
| 125 | |
| 126 | inline bool startsWith(const StringPtr& other) const; |
| 127 | inline bool endsWith(const StringPtr& other) const; |
| 128 | |
| 129 | inline Maybe<size_t> findFirst(char c) const; |
| 130 | inline Maybe<size_t> findLast(char c) const; |
| 131 | |
| 132 | template <typename T> |
| 133 | T parseAs() const; |
| 134 | // Parse string as template number type. |
| 135 | // Integer numbers prefixed by "0x" and "0X" are parsed in base 16 (like strtoi with base 0). |
| 136 | // Integer numbers prefixed by "0" are parsed in base 10 (unlike strtoi with base 0). |
| 137 | // Overflowed integer numbers throw exception. |
| 138 | // Overflowed floating numbers return inf. |
| 139 | |
| 140 | private: |
| 141 | inline constexpr StringPtr(ArrayPtr<const char> content): content(content) {} |
| 142 | |
| 143 | ArrayPtr<const char> content; |
| 144 | |
| 145 | friend constexpr kj::StringPtr (::operator "" _kj)(const char* str, size_t n); |
| 146 | }; |
| 147 | |
| 148 | inline bool operator==(const char* a, const StringPtr& b) { return b == a; } |
| 149 | inline bool operator!=(const char* a, const StringPtr& b) { return b != a; } |
| 150 | |
| 151 | template <> char StringPtr::parseAs<char>() const; |
| 152 | template <> signed char StringPtr::parseAs<signed char>() const; |
| 153 | template <> unsigned char StringPtr::parseAs<unsigned char>() const; |
| 154 | template <> short StringPtr::parseAs<short>() const; |
| 155 | template <> unsigned short StringPtr::parseAs<unsigned short>() const; |
| 156 | template <> int StringPtr::parseAs<int>() const; |
| 157 | template <> unsigned StringPtr::parseAs<unsigned>() const; |
| 158 | template <> long StringPtr::parseAs<long>() const; |
| 159 | template <> unsigned long StringPtr::parseAs<unsigned long>() const; |
| 160 | template <> long long StringPtr::parseAs<long long>() const; |
| 161 | template <> unsigned long long StringPtr::parseAs<unsigned long long>() const; |
| 162 | template <> float StringPtr::parseAs<float>() const; |
| 163 | template <> double StringPtr::parseAs<double>() const; |
| 164 | |
| 165 | // ======================================================================================= |
| 166 | // String -- A NUL-terminated Array<char> containing UTF-8 text. |
| 167 | // |
| 168 | // NUL bytes are allowed to appear before the end of the string. The only requirement is that |
| 169 | // a NUL byte appear immediately after the last byte of the content. This terminator byte is not |
| 170 | // counted in the string's size. |
| 171 | // |
| 172 | // To allocate a String, you must call kj::heapString(). We do not implement implicit copying to |
| 173 | // the heap because this hides potential inefficiency from the developer. |
| 174 | |
| 175 | class String { |
| 176 | public: |
| 177 | String() = default; |
| 178 | inline String(decltype(nullptr)): content(nullptr) {} |
| 179 | inline String(char* value, size_t size, const ArrayDisposer& disposer); |
| 180 | // Does not copy. `size` does not include NUL terminator, but `value` must be NUL-terminated. |
| 181 | inline explicit String(Array<char> buffer); |
| 182 | // Does not copy. Requires `buffer` ends with `\0`. |
| 183 | |
| 184 | inline operator ArrayPtr<char>(); |
| 185 | inline operator ArrayPtr<const char>() const; |
| 186 | inline ArrayPtr<char> asArray(); |
| 187 | inline ArrayPtr<const char> asArray() const; |
| 188 | inline ArrayPtr<byte> asBytes() { return asArray().asBytes(); } |
| 189 | inline ArrayPtr<const byte> asBytes() const { return asArray().asBytes(); } |
| 190 | // Result does not include NUL terminator. |
| 191 | |
| 192 | inline Array<char> releaseArray() { return kj::mv(content); } |
| 193 | // Disowns the backing array (which includes the NUL terminator) and returns it. The String value |
| 194 | // is clobbered (as if moved away). |
| 195 | |
| 196 | inline const char* cStr() const; |
| 197 | |
| 198 | inline size_t size() const; |
| 199 | // Result does not include NUL terminator. |
| 200 | |
| 201 | inline char operator[](size_t index) const; |
| 202 | inline char& operator[](size_t index); |
| 203 | |
| 204 | inline char* begin(); |
| 205 | inline char* end(); |
| 206 | inline const char* begin() const; |
| 207 | inline const char* end() const; |
| 208 | |
| 209 | inline bool operator==(decltype(nullptr)) const { return content.size() <= 1; } |
| 210 | inline bool operator!=(decltype(nullptr)) const { return content.size() > 1; } |
| 211 | |
| 212 | inline bool operator==(const StringPtr& other) const { return StringPtr(*this) == other; } |
| 213 | inline bool operator!=(const StringPtr& other) const { return StringPtr(*this) != other; } |
| 214 | inline bool operator< (const StringPtr& other) const { return StringPtr(*this) < other; } |
| 215 | inline bool operator> (const StringPtr& other) const { return StringPtr(*this) > other; } |
| 216 | inline bool operator<=(const StringPtr& other) const { return StringPtr(*this) <= other; } |
| 217 | inline bool operator>=(const StringPtr& other) const { return StringPtr(*this) >= other; } |
| 218 | |
| 219 | inline bool startsWith(const StringPtr& other) const { return StringPtr(*this).startsWith(other);} |
| 220 | inline bool endsWith(const StringPtr& other) const { return StringPtr(*this).endsWith(other); } |
| 221 | |
| 222 | inline StringPtr slice(size_t start) const { return StringPtr(*this).slice(start); } |
| 223 | inline ArrayPtr<const char> slice(size_t start, size_t end) const { |
| 224 | return StringPtr(*this).slice(start, end); |
| 225 | } |
| 226 | |
| 227 | inline Maybe<size_t> findFirst(char c) const { return StringPtr(*this).findFirst(c); } |
| 228 | inline Maybe<size_t> findLast(char c) const { return StringPtr(*this).findLast(c); } |
| 229 | |
| 230 | template <typename T> |
| 231 | T parseAs() const { return StringPtr(*this).parseAs<T>(); } |
| 232 | // Parse as number |
| 233 | |
| 234 | private: |
| 235 | Array<char> content; |
| 236 | }; |
| 237 | |
| 238 | inline bool operator==(const char* a, const String& b) { return b == a; } |
| 239 | inline bool operator!=(const char* a, const String& b) { return b != a; } |
| 240 | |
| 241 | String heapString(size_t size); |
| 242 | // Allocate a String of the given size on the heap, not including NUL terminator. The NUL |
| 243 | // terminator will be initialized automatically but the rest of the content is not initialized. |
| 244 | |
| 245 | String heapString(const char* value); |
| 246 | String heapString(const char* value, size_t size); |
| 247 | String heapString(StringPtr value); |
| 248 | String heapString(const String& value); |
| 249 | String heapString(ArrayPtr<const char> value); |
| 250 | // Allocates a copy of the given value on the heap. |
| 251 | |
| 252 | // ======================================================================================= |
| 253 | // Magic str() function which transforms parameters to text and concatenates them into one big |
| 254 | // String. |
| 255 | |
| 256 | namespace _ { // private |
| 257 | |
| 258 | inline size_t sum(std::initializer_list<size_t> nums) { |
| 259 | size_t result = 0; |
| 260 | for (auto num: nums) { |
| 261 | result += num; |
| 262 | } |
| 263 | return result; |
| 264 | } |
| 265 | |
| 266 | inline char* fill(char* ptr) { return ptr; } |
| 267 | inline char* fillLimited(char* ptr, char* limit) { return ptr; } |
| 268 | |
| 269 | template <typename... Rest> |
| 270 | char* fill(char* __restrict__ target, const StringTree& first, Rest&&... rest); |
| 271 | template <typename... Rest> |
| 272 | char* fillLimited(char* __restrict__ target, char* limit, const StringTree& first, Rest&&... rest); |
| 273 | // Make str() work with stringifiers that return StringTree by patching fill(). |
| 274 | // |
| 275 | // Defined in string-tree.h. |
| 276 | |
| 277 | template <typename First, typename... Rest> |
| 278 | char* fill(char* __restrict__ target, const First& first, Rest&&... rest) { |
| 279 | auto i = first.begin(); |
| 280 | auto end = first.end(); |
| 281 | while (i != end) { |
| 282 | *target++ = *i++; |
| 283 | } |
| 284 | return fill(target, kj::fwd<Rest>(rest)...); |
| 285 | } |
| 286 | |
| 287 | template <typename... Params> |
| 288 | String concat(Params&&... params) { |
| 289 | // Concatenate a bunch of containers into a single Array. The containers can be anything that |
| 290 | // is iterable and whose elements can be converted to `char`. |
| 291 | |
| 292 | String result = heapString(sum({params.size()...})); |
| 293 | fill(result.begin(), kj::fwd<Params>(params)...); |
| 294 | return result; |
| 295 | } |
| 296 | |
| 297 | inline String concat(String&& arr) { |
| 298 | return kj::mv(arr); |
| 299 | } |
| 300 | |
| 301 | template <typename First, typename... Rest> |
| 302 | char* fillLimited(char* __restrict__ target, char* limit, const First& first, Rest&&... rest) { |
| 303 | auto i = first.begin(); |
| 304 | auto end = first.end(); |
| 305 | while (i != end) { |
| 306 | if (target == limit) return target; |
| 307 | *target++ = *i++; |
| 308 | } |
| 309 | return fillLimited(target, limit, kj::fwd<Rest>(rest)...); |
| 310 | } |
| 311 | |
| 312 | template <typename T> |
| 313 | class Delimited; |
| 314 | // Delimits a sequence of type T with a string delimiter. Implements kj::delimited(). |
| 315 | |
| 316 | template <typename T, typename... Rest> |
| 317 | char* fill(char* __restrict__ target, Delimited<T> first, Rest&&... rest); |
| 318 | template <typename T, typename... Rest> |
| 319 | char* fillLimited(char* __restrict__ target, char* limit, Delimited<T> first,Rest&&... rest); |
| 320 | // As with StringTree, we special-case Delimited<T>. |
| 321 | |
| 322 | struct Stringifier { |
| 323 | // This is a dummy type with only one instance: STR (below). To make an arbitrary type |
| 324 | // stringifiable, define `operator*(Stringifier, T)` to return an iterable container of `char`. |
| 325 | // The container type must have a `size()` method. Be sure to declare the operator in the same |
| 326 | // namespace as `T` **or** in the global scope. |
| 327 | // |
| 328 | // A more usual way to accomplish what we're doing here would be to require that you define |
| 329 | // a function like `toString(T)` and then rely on argument-dependent lookup. However, this has |
| 330 | // the problem that it pollutes other people's namespaces and even the global namespace. For |
| 331 | // example, some other project may already have functions called `toString` which do something |
| 332 | // different. Declaring `operator*` with `Stringifier` as the left operand cannot conflict with |
| 333 | // anything. |
| 334 | |
| 335 | inline ArrayPtr<const char> operator*(ArrayPtr<const char> s) const { return s; } |
| 336 | inline ArrayPtr<const char> operator*(ArrayPtr<char> s) const { return s; } |
| 337 | inline ArrayPtr<const char> operator*(const Array<const char>& s) const { return s; } |
| 338 | inline ArrayPtr<const char> operator*(const Array<char>& s) const { return s; } |
| 339 | template<size_t n> |
| 340 | inline ArrayPtr<const char> operator*(const CappedArray<char, n>& s) const { return s; } |
| 341 | template<size_t n> |
| 342 | inline ArrayPtr<const char> operator*(const FixedArray<char, n>& s) const { return s; } |
| 343 | inline ArrayPtr<const char> operator*(const char* s) const { return arrayPtr(s, strlen(s)); } |
| 344 | inline ArrayPtr<const char> operator*(const String& s) const { return s.asArray(); } |
| 345 | inline ArrayPtr<const char> operator*(const StringPtr& s) const { return s.asArray(); } |
| 346 | |
| 347 | inline Range<char> operator*(const Range<char>& r) const { return r; } |
| 348 | inline Repeat<char> operator*(const Repeat<char>& r) const { return r; } |
| 349 | |
| 350 | inline FixedArray<char, 1> operator*(char c) const { |
| 351 | FixedArray<char, 1> result; |
| 352 | result[0] = c; |
| 353 | return result; |
| 354 | } |
| 355 | |
| 356 | StringPtr operator*(decltype(nullptr)) const; |
| 357 | StringPtr operator*(bool b) const; |
| 358 | |
| 359 | CappedArray<char, 5> operator*(signed char i) const; |
| 360 | CappedArray<char, 5> operator*(unsigned char i) const; |
| 361 | CappedArray<char, sizeof(short) * 3 + 2> operator*(short i) const; |
| 362 | CappedArray<char, sizeof(unsigned short) * 3 + 2> operator*(unsigned short i) const; |
| 363 | CappedArray<char, sizeof(int) * 3 + 2> operator*(int i) const; |
| 364 | CappedArray<char, sizeof(unsigned int) * 3 + 2> operator*(unsigned int i) const; |
| 365 | CappedArray<char, sizeof(long) * 3 + 2> operator*(long i) const; |
| 366 | CappedArray<char, sizeof(unsigned long) * 3 + 2> operator*(unsigned long i) const; |
| 367 | CappedArray<char, sizeof(long long) * 3 + 2> operator*(long long i) const; |
| 368 | CappedArray<char, sizeof(unsigned long long) * 3 + 2> operator*(unsigned long long i) const; |
| 369 | CappedArray<char, 24> operator*(float f) const; |
| 370 | CappedArray<char, 32> operator*(double f) const; |
| 371 | CappedArray<char, sizeof(const void*) * 2 + 1> operator*(const void* s) const; |
| 372 | |
| 373 | template <typename T> |
| 374 | _::Delimited<ArrayPtr<T>> operator*(ArrayPtr<T> arr) const; |
| 375 | template <typename T> |
| 376 | _::Delimited<ArrayPtr<const T>> operator*(const Array<T>& arr) const; |
| 377 | |
| 378 | #if KJ_COMPILER_SUPPORTS_STL_STRING_INTEROP // supports expression SFINAE? |
| 379 | template <typename T, typename Result = decltype(instance<T>().toString())> |
| 380 | inline Result operator*(T&& value) const { return kj::fwd<T>(value).toString(); } |
| 381 | #endif |
| 382 | }; |
| 383 | static KJ_CONSTEXPR(const) Stringifier STR = Stringifier(); |
| 384 | |
| 385 | } // namespace _ (private) |
| 386 | |
| 387 | template <typename T> |
| 388 | auto toCharSequence(T&& value) -> decltype(_::STR * kj::fwd<T>(value)) { |
| 389 | // Returns an iterable of chars that represent a textual representation of the value, suitable |
| 390 | // for debugging. |
| 391 | // |
| 392 | // Most users should use str() instead, but toCharSequence() may occasionally be useful to avoid |
| 393 | // heap allocation overhead that str() implies. |
| 394 | // |
| 395 | // To specialize this function for your type, see KJ_STRINGIFY. |
| 396 | |
| 397 | return _::STR * kj::fwd<T>(value); |
| 398 | } |
| 399 | |
| 400 | CappedArray<char, sizeof(unsigned char) * 2 + 1> hex(unsigned char i); |
| 401 | CappedArray<char, sizeof(unsigned short) * 2 + 1> hex(unsigned short i); |
| 402 | CappedArray<char, sizeof(unsigned int) * 2 + 1> hex(unsigned int i); |
| 403 | CappedArray<char, sizeof(unsigned long) * 2 + 1> hex(unsigned long i); |
| 404 | CappedArray<char, sizeof(unsigned long long) * 2 + 1> hex(unsigned long long i); |
| 405 | |
| 406 | template <typename... Params> |
| 407 | String str(Params&&... params) { |
| 408 | // Magic function which builds a string from a bunch of arbitrary values. Example: |
| 409 | // str(1, " / ", 2, " = ", 0.5) |
| 410 | // returns: |
| 411 | // "1 / 2 = 0.5" |
| 412 | // To teach `str` how to stringify a type, see `Stringifier`. |
| 413 | |
| 414 | return _::concat(toCharSequence(kj::fwd<Params>(params))...); |
| 415 | } |
| 416 | |
| 417 | inline String str(String&& s) { return mv(s); } |
| 418 | // Overload to prevent redundant allocation. |
| 419 | |
| 420 | template <typename T> |
| 421 | _::Delimited<T> delimited(T&& arr, kj::StringPtr delim); |
| 422 | // Use to stringify an array. |
| 423 | |
| 424 | template <typename T> |
| 425 | String strArray(T&& arr, const char* delim) { |
| 426 | size_t delimLen = strlen(delim); |
| 427 | KJ_STACK_ARRAY(decltype(_::STR * arr[0]), pieces, kj::size(arr), 8, 32); |
| 428 | size_t size = 0; |
| 429 | for (size_t i = 0; i < kj::size(arr); i++) { |
| 430 | if (i > 0) size += delimLen; |
| 431 | pieces[i] = _::STR * arr[i]; |
| 432 | size += pieces[i].size(); |
| 433 | } |
| 434 | |
| 435 | String result = heapString(size); |
| 436 | char* pos = result.begin(); |
| 437 | for (size_t i = 0; i < kj::size(arr); i++) { |
| 438 | if (i > 0) { |
| 439 | memcpy(pos, delim, delimLen); |
| 440 | pos += delimLen; |
| 441 | } |
| 442 | pos = _::fill(pos, pieces[i]); |
| 443 | } |
| 444 | return result; |
| 445 | } |
| 446 | |
| 447 | template <typename... Params> |
| 448 | StringPtr strPreallocated(ArrayPtr<char> buffer, Params&&... params) { |
| 449 | // Like str() but writes into a preallocated buffer. If the buffer is not long enough, the result |
| 450 | // is truncated (but still NUL-terminated). |
| 451 | // |
| 452 | // This can be used like: |
| 453 | // |
| 454 | // char buffer[256]; |
| 455 | // StringPtr text = strPreallocated(buffer, params...); |
| 456 | // |
| 457 | // This is useful for optimization. It can also potentially be used safely in async signal |
| 458 | // handlers. HOWEVER, to use in an async signal handler, all of the stringifiers for the inputs |
| 459 | // must also be signal-safe. KJ guarantees signal safety when stringifying any built-in integer |
| 460 | // type (but NOT floating-points), basic char/byte sequences (ArrayPtr<byte>, String, etc.), as |
| 461 | // well as Array<T> as long as T can also be stringified safely. To safely stringify a delimited |
| 462 | // array, you must use kj::delimited(arr, delim) rather than the deprecated |
| 463 | // kj::strArray(arr, delim). |
| 464 | |
| 465 | char* end = _::fillLimited(buffer.begin(), buffer.end() - 1, |
| 466 | toCharSequence(kj::fwd<Params>(params))...); |
| 467 | *end = '\0'; |
| 468 | return StringPtr(buffer.begin(), end); |
| 469 | } |
| 470 | |
| 471 | namespace _ { // private |
| 472 | |
| 473 | template <typename T> |
| 474 | inline _::Delimited<ArrayPtr<T>> Stringifier::operator*(ArrayPtr<T> arr) const { |
| 475 | return _::Delimited<ArrayPtr<T>>(arr, ", " ); |
| 476 | } |
| 477 | |
| 478 | template <typename T> |
| 479 | inline _::Delimited<ArrayPtr<const T>> Stringifier::operator*(const Array<T>& arr) const { |
| 480 | return _::Delimited<ArrayPtr<const T>>(arr, ", " ); |
| 481 | } |
| 482 | |
| 483 | } // namespace _ (private) |
| 484 | |
| 485 | #define KJ_STRINGIFY(...) operator*(::kj::_::Stringifier, __VA_ARGS__) |
| 486 | // Defines a stringifier for a custom type. Example: |
| 487 | // |
| 488 | // class Foo {...}; |
| 489 | // inline StringPtr KJ_STRINGIFY(const Foo& foo) { return foo.name(); } |
| 490 | // |
| 491 | // This allows Foo to be passed to str(). |
| 492 | // |
| 493 | // The function should be declared either in the same namespace as the target type or in the global |
| 494 | // namespace. It can return any type which is an iterable container of chars. |
| 495 | |
| 496 | // ======================================================================================= |
| 497 | // Inline implementation details. |
| 498 | |
| 499 | inline StringPtr::StringPtr(const String& value): content(value.cStr(), value.size() + 1) {} |
| 500 | |
| 501 | inline constexpr StringPtr::operator ArrayPtr<const char>() const { |
| 502 | return ArrayPtr<const char>(content.begin(), content.size() - 1); |
| 503 | } |
| 504 | |
| 505 | inline constexpr ArrayPtr<const char> StringPtr::asArray() const { |
| 506 | return ArrayPtr<const char>(content.begin(), content.size() - 1); |
| 507 | } |
| 508 | |
| 509 | inline bool StringPtr::operator==(const StringPtr& other) const { |
| 510 | return content.size() == other.content.size() && |
| 511 | memcmp(content.begin(), other.content.begin(), content.size() - 1) == 0; |
| 512 | } |
| 513 | |
| 514 | inline bool StringPtr::operator<(const StringPtr& other) const { |
| 515 | bool shorter = content.size() < other.content.size(); |
| 516 | int cmp = memcmp(content.begin(), other.content.begin(), |
| 517 | shorter ? content.size() : other.content.size()); |
| 518 | return cmp < 0 || (cmp == 0 && shorter); |
| 519 | } |
| 520 | |
| 521 | inline StringPtr StringPtr::slice(size_t start) const { |
| 522 | return StringPtr(content.slice(start, content.size())); |
| 523 | } |
| 524 | inline ArrayPtr<const char> StringPtr::slice(size_t start, size_t end) const { |
| 525 | return content.slice(start, end); |
| 526 | } |
| 527 | |
| 528 | inline bool StringPtr::startsWith(const StringPtr& other) const { |
| 529 | return other.content.size() <= content.size() && |
| 530 | memcmp(content.begin(), other.content.begin(), other.size()) == 0; |
| 531 | } |
| 532 | inline bool StringPtr::endsWith(const StringPtr& other) const { |
| 533 | return other.content.size() <= content.size() && |
| 534 | memcmp(end() - other.size(), other.content.begin(), other.size()) == 0; |
| 535 | } |
| 536 | |
| 537 | inline Maybe<size_t> StringPtr::findFirst(char c) const { |
| 538 | const char* pos = reinterpret_cast<const char*>(memchr(content.begin(), c, size())); |
| 539 | if (pos == nullptr) { |
| 540 | return nullptr; |
| 541 | } else { |
| 542 | return pos - content.begin(); |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | inline Maybe<size_t> StringPtr::findLast(char c) const { |
| 547 | for (size_t i = size(); i > 0; --i) { |
| 548 | if (content[i-1] == c) { |
| 549 | return i-1; |
| 550 | } |
| 551 | } |
| 552 | return nullptr; |
| 553 | } |
| 554 | |
| 555 | inline String::operator ArrayPtr<char>() { |
| 556 | return content == nullptr ? ArrayPtr<char>(nullptr) : content.slice(0, content.size() - 1); |
| 557 | } |
| 558 | inline String::operator ArrayPtr<const char>() const { |
| 559 | return content == nullptr ? ArrayPtr<const char>(nullptr) : content.slice(0, content.size() - 1); |
| 560 | } |
| 561 | |
| 562 | inline ArrayPtr<char> String::asArray() { |
| 563 | return content == nullptr ? ArrayPtr<char>(nullptr) : content.slice(0, content.size() - 1); |
| 564 | } |
| 565 | inline ArrayPtr<const char> String::asArray() const { |
| 566 | return content == nullptr ? ArrayPtr<const char>(nullptr) : content.slice(0, content.size() - 1); |
| 567 | } |
| 568 | |
| 569 | inline const char* String::cStr() const { return content == nullptr ? "" : content.begin(); } |
| 570 | |
| 571 | inline size_t String::size() const { return content == nullptr ? 0 : content.size() - 1; } |
| 572 | |
| 573 | inline char String::operator[](size_t index) const { return content[index]; } |
| 574 | inline char& String::operator[](size_t index) { return content[index]; } |
| 575 | |
| 576 | inline char* String::begin() { return content == nullptr ? nullptr : content.begin(); } |
| 577 | inline char* String::end() { return content == nullptr ? nullptr : content.end() - 1; } |
| 578 | inline const char* String::begin() const { return content == nullptr ? nullptr : content.begin(); } |
| 579 | inline const char* String::end() const { return content == nullptr ? nullptr : content.end() - 1; } |
| 580 | |
| 581 | inline String::String(char* value, size_t size, const ArrayDisposer& disposer) |
| 582 | : content(value, size + 1, disposer) { |
| 583 | KJ_IREQUIRE(value[size] == '\0', "String must be NUL-terminated." ); |
| 584 | } |
| 585 | |
| 586 | inline String::String(Array<char> buffer): content(kj::mv(buffer)) { |
| 587 | KJ_IREQUIRE(content.size() > 0 && content.back() == '\0', "String must be NUL-terminated." ); |
| 588 | } |
| 589 | |
| 590 | inline String heapString(const char* value) { |
| 591 | return heapString(value, strlen(value)); |
| 592 | } |
| 593 | inline String heapString(StringPtr value) { |
| 594 | return heapString(value.begin(), value.size()); |
| 595 | } |
| 596 | inline String heapString(const String& value) { |
| 597 | return heapString(value.begin(), value.size()); |
| 598 | } |
| 599 | inline String heapString(ArrayPtr<const char> value) { |
| 600 | return heapString(value.begin(), value.size()); |
| 601 | } |
| 602 | |
| 603 | namespace _ { // private |
| 604 | |
| 605 | template <typename T> |
| 606 | class Delimited { |
| 607 | public: |
| 608 | Delimited(T array, kj::StringPtr delimiter) |
| 609 | : array(kj::fwd<T>(array)), delimiter(delimiter) {} |
| 610 | |
| 611 | // TODO(someday): In theory we should support iteration as a character sequence, but the iterator |
| 612 | // will be pretty complicated. |
| 613 | |
| 614 | size_t size() { |
| 615 | ensureStringifiedInitialized(); |
| 616 | |
| 617 | size_t result = 0; |
| 618 | bool first = true; |
| 619 | for (auto& e: stringified) { |
| 620 | if (first) { |
| 621 | first = false; |
| 622 | } else { |
| 623 | result += delimiter.size(); |
| 624 | } |
| 625 | result += e.size(); |
| 626 | } |
| 627 | return result; |
| 628 | } |
| 629 | |
| 630 | char* flattenTo(char* __restrict__ target) { |
| 631 | ensureStringifiedInitialized(); |
| 632 | |
| 633 | bool first = true; |
| 634 | for (auto& elem: stringified) { |
| 635 | if (first) { |
| 636 | first = false; |
| 637 | } else { |
| 638 | target = fill(target, delimiter); |
| 639 | } |
| 640 | target = fill(target, elem); |
| 641 | } |
| 642 | return target; |
| 643 | } |
| 644 | |
| 645 | char* flattenTo(char* __restrict__ target, char* limit) { |
| 646 | // This is called in the strPreallocated(). We want to avoid allocation. size() will not have |
| 647 | // been called in this case, so hopefully `stringified` is still uninitialized. We will |
| 648 | // stringify each item and immediately use it. |
| 649 | bool first = true; |
| 650 | for (auto&& elem: array) { |
| 651 | if (target == limit) return target; |
| 652 | if (first) { |
| 653 | first = false; |
| 654 | } else { |
| 655 | target = fillLimited(target, limit, delimiter); |
| 656 | } |
| 657 | target = fillLimited(target, limit, kj::toCharSequence(elem)); |
| 658 | } |
| 659 | return target; |
| 660 | } |
| 661 | |
| 662 | private: |
| 663 | typedef decltype(toCharSequence(*instance<T>().begin())) StringifiedItem; |
| 664 | T array; |
| 665 | kj::StringPtr delimiter; |
| 666 | Array<StringifiedItem> stringified; |
| 667 | |
| 668 | void ensureStringifiedInitialized() { |
| 669 | if (array.size() > 0 && stringified.size() == 0) { |
| 670 | stringified = KJ_MAP(e, array) { return toCharSequence(e); }; |
| 671 | } |
| 672 | } |
| 673 | }; |
| 674 | |
| 675 | template <typename T, typename... Rest> |
| 676 | char* fill(char* __restrict__ target, Delimited<T> first, Rest&&... rest) { |
| 677 | target = first.flattenTo(target); |
| 678 | return fill(target, kj::fwd<Rest>(rest)...); |
| 679 | } |
| 680 | template <typename T, typename... Rest> |
| 681 | char* fillLimited(char* __restrict__ target, char* limit, Delimited<T> first, Rest&&... rest) { |
| 682 | target = first.flattenTo(target, limit); |
| 683 | return fillLimited(target, limit, kj::fwd<Rest>(rest)...); |
| 684 | } |
| 685 | |
| 686 | template <typename T> |
| 687 | inline Delimited<T>&& KJ_STRINGIFY(Delimited<T>&& delimited) { return kj::mv(delimited); } |
| 688 | template <typename T> |
| 689 | inline const Delimited<T>& KJ_STRINGIFY(const Delimited<T>& delimited) { return delimited; } |
| 690 | |
| 691 | } // namespace _ (private) |
| 692 | |
| 693 | template <typename T> |
| 694 | _::Delimited<T> delimited(T&& arr, kj::StringPtr delim) { |
| 695 | return _::Delimited<T>(kj::fwd<T>(arr), delim); |
| 696 | } |
| 697 | |
| 698 | } // namespace kj |
| 699 | |
| 700 | constexpr kj::StringPtr operator "" _kj(const char* str, size_t n) { |
| 701 | return kj::StringPtr(kj::ArrayPtr<const char>(str, n + 1)); |
| 702 | }; |
| 703 | |