1 | /* |
2 | * Copyright 2016-2018 Uber Technologies, Inc. |
3 | * |
4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
5 | * you may not use this file except in compliance with the License. |
6 | * You may obtain a copy of the License at |
7 | * |
8 | * http://www.apache.org/licenses/LICENSE-2.0 |
9 | * |
10 | * Unless required by applicable law or agreed to in writing, software |
11 | * distributed under the License is distributed on an "AS IS" BASIS, |
12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13 | * See the License for the specific language governing permissions and |
14 | * limitations under the License. |
15 | */ |
16 | /** @file algos.c |
17 | * @brief Hexagon grid algorithms |
18 | */ |
19 | |
20 | #include "algos.h" |
21 | #include <float.h> |
22 | #include <math.h> |
23 | #include <stdbool.h> |
24 | #include <stdlib.h> |
25 | #include "baseCells.h" |
26 | #include "bbox.h" |
27 | #include "faceijk.h" |
28 | #include "geoCoord.h" |
29 | #include "h3Index.h" |
30 | #include "h3api.h" |
31 | #include "linkedGeo.h" |
32 | #include "polygon.h" |
33 | #include "stackAlloc.h" |
34 | #include "vertexGraph.h" |
35 | |
36 | /* |
37 | * Return codes from hexRange and related functions. |
38 | */ |
39 | |
40 | #define HEX_RANGE_SUCCESS 0 |
41 | #define HEX_RANGE_PENTAGON 1 |
42 | #define HEX_RANGE_K_SUBSEQUENCE 2 |
43 | |
44 | /** |
45 | * Directions used for traversing a hexagonal ring counterclockwise around |
46 | * {1, 0, 0} |
47 | * |
48 | * <pre> |
49 | * _ |
50 | * _/ \\_ |
51 | * / \\5/ \\ |
52 | * \\0/ \\4/ |
53 | * / \\_/ \\ |
54 | * \\1/ \\3/ |
55 | * \\2/ |
56 | * </pre> |
57 | */ |
58 | static const Direction DIRECTIONS[6] = {J_AXES_DIGIT, JK_AXES_DIGIT, |
59 | K_AXES_DIGIT, IK_AXES_DIGIT, |
60 | I_AXES_DIGIT, IJ_AXES_DIGIT}; |
61 | |
62 | /** |
63 | * Direction used for traversing to the next outward hexagonal ring. |
64 | */ |
65 | static const Direction NEXT_RING_DIRECTION = I_AXES_DIGIT; |
66 | |
67 | /** |
68 | * New digit when traversing along class II grids. |
69 | * |
70 | * Current digit -> direction -> new digit. |
71 | */ |
72 | static const Direction NEW_DIGIT_II[7][7] = { |
73 | {CENTER_DIGIT, K_AXES_DIGIT, J_AXES_DIGIT, JK_AXES_DIGIT, I_AXES_DIGIT, |
74 | IK_AXES_DIGIT, IJ_AXES_DIGIT}, |
75 | {K_AXES_DIGIT, I_AXES_DIGIT, JK_AXES_DIGIT, IJ_AXES_DIGIT, IK_AXES_DIGIT, |
76 | J_AXES_DIGIT, CENTER_DIGIT}, |
77 | {J_AXES_DIGIT, JK_AXES_DIGIT, K_AXES_DIGIT, I_AXES_DIGIT, IJ_AXES_DIGIT, |
78 | CENTER_DIGIT, IK_AXES_DIGIT}, |
79 | {JK_AXES_DIGIT, IJ_AXES_DIGIT, I_AXES_DIGIT, IK_AXES_DIGIT, CENTER_DIGIT, |
80 | K_AXES_DIGIT, J_AXES_DIGIT}, |
81 | {I_AXES_DIGIT, IK_AXES_DIGIT, IJ_AXES_DIGIT, CENTER_DIGIT, J_AXES_DIGIT, |
82 | JK_AXES_DIGIT, K_AXES_DIGIT}, |
83 | {IK_AXES_DIGIT, J_AXES_DIGIT, CENTER_DIGIT, K_AXES_DIGIT, JK_AXES_DIGIT, |
84 | IJ_AXES_DIGIT, I_AXES_DIGIT}, |
85 | {IJ_AXES_DIGIT, CENTER_DIGIT, IK_AXES_DIGIT, J_AXES_DIGIT, K_AXES_DIGIT, |
86 | I_AXES_DIGIT, JK_AXES_DIGIT}}; |
87 | |
88 | /** |
89 | * New traversal direction when traversing along class II grids. |
90 | * |
91 | * Current digit -> direction -> new ap7 move (at coarser level). |
92 | */ |
93 | static const Direction NEW_ADJUSTMENT_II[7][7] = { |
94 | {CENTER_DIGIT, CENTER_DIGIT, CENTER_DIGIT, CENTER_DIGIT, CENTER_DIGIT, |
95 | CENTER_DIGIT, CENTER_DIGIT}, |
96 | {CENTER_DIGIT, K_AXES_DIGIT, CENTER_DIGIT, K_AXES_DIGIT, CENTER_DIGIT, |
97 | IK_AXES_DIGIT, CENTER_DIGIT}, |
98 | {CENTER_DIGIT, CENTER_DIGIT, J_AXES_DIGIT, JK_AXES_DIGIT, CENTER_DIGIT, |
99 | CENTER_DIGIT, J_AXES_DIGIT}, |
100 | {CENTER_DIGIT, K_AXES_DIGIT, JK_AXES_DIGIT, JK_AXES_DIGIT, CENTER_DIGIT, |
101 | CENTER_DIGIT, CENTER_DIGIT}, |
102 | {CENTER_DIGIT, CENTER_DIGIT, CENTER_DIGIT, CENTER_DIGIT, I_AXES_DIGIT, |
103 | I_AXES_DIGIT, IJ_AXES_DIGIT}, |
104 | {CENTER_DIGIT, IK_AXES_DIGIT, CENTER_DIGIT, CENTER_DIGIT, I_AXES_DIGIT, |
105 | IK_AXES_DIGIT, CENTER_DIGIT}, |
106 | {CENTER_DIGIT, CENTER_DIGIT, J_AXES_DIGIT, CENTER_DIGIT, IJ_AXES_DIGIT, |
107 | CENTER_DIGIT, IJ_AXES_DIGIT}}; |
108 | |
109 | /** |
110 | * New traversal direction when traversing along class III grids. |
111 | * |
112 | * Current digit -> direction -> new ap7 move (at coarser level). |
113 | */ |
114 | static const Direction NEW_DIGIT_III[7][7] = { |
115 | {CENTER_DIGIT, K_AXES_DIGIT, J_AXES_DIGIT, JK_AXES_DIGIT, I_AXES_DIGIT, |
116 | IK_AXES_DIGIT, IJ_AXES_DIGIT}, |
117 | {K_AXES_DIGIT, J_AXES_DIGIT, JK_AXES_DIGIT, I_AXES_DIGIT, IK_AXES_DIGIT, |
118 | IJ_AXES_DIGIT, CENTER_DIGIT}, |
119 | {J_AXES_DIGIT, JK_AXES_DIGIT, I_AXES_DIGIT, IK_AXES_DIGIT, IJ_AXES_DIGIT, |
120 | CENTER_DIGIT, K_AXES_DIGIT}, |
121 | {JK_AXES_DIGIT, I_AXES_DIGIT, IK_AXES_DIGIT, IJ_AXES_DIGIT, CENTER_DIGIT, |
122 | K_AXES_DIGIT, J_AXES_DIGIT}, |
123 | {I_AXES_DIGIT, IK_AXES_DIGIT, IJ_AXES_DIGIT, CENTER_DIGIT, K_AXES_DIGIT, |
124 | J_AXES_DIGIT, JK_AXES_DIGIT}, |
125 | {IK_AXES_DIGIT, IJ_AXES_DIGIT, CENTER_DIGIT, K_AXES_DIGIT, J_AXES_DIGIT, |
126 | JK_AXES_DIGIT, I_AXES_DIGIT}, |
127 | {IJ_AXES_DIGIT, CENTER_DIGIT, K_AXES_DIGIT, J_AXES_DIGIT, JK_AXES_DIGIT, |
128 | I_AXES_DIGIT, IK_AXES_DIGIT}}; |
129 | |
130 | /** |
131 | * New traversal direction when traversing along class III grids. |
132 | * |
133 | * Current digit -> direction -> new ap7 move (at coarser level). |
134 | */ |
135 | static const Direction NEW_ADJUSTMENT_III[7][7] = { |
136 | {CENTER_DIGIT, CENTER_DIGIT, CENTER_DIGIT, CENTER_DIGIT, CENTER_DIGIT, |
137 | CENTER_DIGIT, CENTER_DIGIT}, |
138 | {CENTER_DIGIT, K_AXES_DIGIT, CENTER_DIGIT, JK_AXES_DIGIT, CENTER_DIGIT, |
139 | K_AXES_DIGIT, CENTER_DIGIT}, |
140 | {CENTER_DIGIT, CENTER_DIGIT, J_AXES_DIGIT, J_AXES_DIGIT, CENTER_DIGIT, |
141 | CENTER_DIGIT, IJ_AXES_DIGIT}, |
142 | {CENTER_DIGIT, JK_AXES_DIGIT, J_AXES_DIGIT, JK_AXES_DIGIT, CENTER_DIGIT, |
143 | CENTER_DIGIT, CENTER_DIGIT}, |
144 | {CENTER_DIGIT, CENTER_DIGIT, CENTER_DIGIT, CENTER_DIGIT, I_AXES_DIGIT, |
145 | IK_AXES_DIGIT, I_AXES_DIGIT}, |
146 | {CENTER_DIGIT, K_AXES_DIGIT, CENTER_DIGIT, CENTER_DIGIT, IK_AXES_DIGIT, |
147 | IK_AXES_DIGIT, CENTER_DIGIT}, |
148 | {CENTER_DIGIT, CENTER_DIGIT, IJ_AXES_DIGIT, CENTER_DIGIT, I_AXES_DIGIT, |
149 | CENTER_DIGIT, IJ_AXES_DIGIT}}; |
150 | |
151 | /** |
152 | * Maximum number of indices that result from the kRing algorithm with the given |
153 | * k. Formula source and proof: https://oeis.org/A003215 |
154 | * |
155 | * @param k k value, k >= 0. |
156 | */ |
157 | int H3_EXPORT(maxKringSize)(int k) { return 3 * k * (k + 1) + 1; } |
158 | |
159 | /** |
160 | * k-rings produces indices within k distance of the origin index. |
161 | * |
162 | * k-ring 0 is defined as the origin index, k-ring 1 is defined as k-ring 0 and |
163 | * all neighboring indices, and so on. |
164 | * |
165 | * Output is placed in the provided array in no particular order. Elements of |
166 | * the output array may be left zero, as can happen when crossing a pentagon. |
167 | * |
168 | * @param origin Origin location. |
169 | * @param k k >= 0 |
170 | * @param out Zero-filled array which must be of size maxKringSize(k). |
171 | */ |
172 | void H3_EXPORT(kRing)(H3Index origin, int k, H3Index* out) { |
173 | int maxIdx = H3_EXPORT(maxKringSize)(k); |
174 | int* distances = malloc(maxIdx * sizeof(int)); |
175 | H3_EXPORT(kRingDistances)(origin, k, out, distances); |
176 | free(distances); |
177 | } |
178 | |
179 | /** |
180 | * k-rings produces indices within k distance of the origin index. |
181 | * |
182 | * k-ring 0 is defined as the origin index, k-ring 1 is defined as k-ring 0 and |
183 | * all neighboring indices, and so on. |
184 | * |
185 | * Output is placed in the provided array in no particular order. Elements of |
186 | * the output array may be left zero, as can happen when crossing a pentagon. |
187 | * |
188 | * @param origin Origin location. |
189 | * @param k k >= 0 |
190 | * @param out Zero-filled array which must be of size maxKringSize(k). |
191 | * @param distances Zero-filled array which must be of size maxKringSize(k). |
192 | */ |
193 | void H3_EXPORT(kRingDistances)(H3Index origin, int k, H3Index* out, |
194 | int* distances) { |
195 | const int maxIdx = H3_EXPORT(maxKringSize)(k); |
196 | // Optimistically try the faster hexRange algorithm first |
197 | const bool failed = H3_EXPORT(hexRangeDistances)(origin, k, out, distances); |
198 | if (failed) { |
199 | // Fast algo failed, fall back to slower, correct algo |
200 | // and also wipe out array because contents untrustworthy |
201 | memset(out, 0, maxIdx * sizeof(out[0])); |
202 | memset(distances, 0, maxIdx * sizeof(distances[0])); |
203 | _kRingInternal(origin, k, out, distances, maxIdx, 0); |
204 | } |
205 | } |
206 | |
207 | /** |
208 | * Internal helper function called recursively for kRingDistances. |
209 | * |
210 | * Adds the origin index to the output set (treating it as a hash set) |
211 | * and recurses to its neighbors, if needed. |
212 | * |
213 | * @param origin |
214 | * @param k Maximum distance to move from the origin. |
215 | * @param out Array treated as a hash set, elements being either H3Index or 0. |
216 | * @param distances Scratch area, with elements paralleling the out array. |
217 | * Elements indicate ijk distance from the origin index to the output index. |
218 | * @param maxIdx Size of out and scratch arrays (must be maxKringSize(k)) |
219 | * @param curK Current distance from the origin. |
220 | */ |
221 | void _kRingInternal(H3Index origin, int k, H3Index* out, int* distances, |
222 | int maxIdx, int curK) { |
223 | if (origin == 0) return; |
224 | |
225 | // Put origin in the output array. out is used as a hash set. |
226 | int off = origin % maxIdx; |
227 | while (out[off] != 0 && out[off] != origin) { |
228 | off = (off + 1) % maxIdx; |
229 | } |
230 | |
231 | // We either got a free slot in the hash set or hit a duplicate |
232 | // We might need to process the duplicate anyways because we got |
233 | // here on a longer path before. |
234 | if (out[off] == origin && distances[off] <= curK) return; |
235 | |
236 | out[off] = origin; |
237 | distances[off] = curK; |
238 | |
239 | // Base case: reached an index k away from the origin. |
240 | if (curK >= k) return; |
241 | |
242 | // Recurse to all neighbors in no particular order. |
243 | for (int i = 0; i < 6; i++) { |
244 | int rotations = 0; |
245 | _kRingInternal(h3NeighborRotations(origin, DIRECTIONS[i], &rotations), |
246 | k, out, distances, maxIdx, curK + 1); |
247 | } |
248 | } |
249 | |
250 | /** |
251 | * Returns the hexagon index neighboring the origin, in the direction dir. |
252 | * |
253 | * Implementation note: The only reachable case where this returns 0 is if the |
254 | * origin is a pentagon and the translation is in the k direction. Thus, |
255 | * 0 can only be returned if origin is a pentagon. |
256 | * |
257 | * @param origin Origin index |
258 | * @param dir Direction to move in |
259 | * @param rotations Number of ccw rotations to perform to reorient the |
260 | * translation vector. Will be modified to the new number of |
261 | * rotations to perform (such as when crossing a face edge.) |
262 | * @return H3Index of the specified neighbor or 0 if deleted k-subsequence |
263 | * distortion is encountered. |
264 | */ |
265 | H3Index h3NeighborRotations(H3Index origin, Direction dir, int* rotations) { |
266 | H3Index out = origin; |
267 | |
268 | for (int i = 0; i < *rotations; i++) { |
269 | dir = _rotate60ccw(dir); |
270 | } |
271 | |
272 | int newRotations = 0; |
273 | int oldBaseCell = H3_GET_BASE_CELL(out); |
274 | Direction oldLeadingDigit = _h3LeadingNonZeroDigit(out); |
275 | |
276 | // Adjust the indexing digits and, if needed, the base cell. |
277 | int r = H3_GET_RESOLUTION(out) - 1; |
278 | while (true) { |
279 | if (r == -1) { |
280 | H3_SET_BASE_CELL(out, baseCellNeighbors[oldBaseCell][dir]); |
281 | newRotations = baseCellNeighbor60CCWRots[oldBaseCell][dir]; |
282 | |
283 | if (H3_GET_BASE_CELL(out) == INVALID_BASE_CELL) { |
284 | // Adjust for the deleted k vertex at the base cell level. |
285 | // This edge actually borders a different neighbor. |
286 | H3_SET_BASE_CELL(out, |
287 | baseCellNeighbors[oldBaseCell][IK_AXES_DIGIT]); |
288 | newRotations = |
289 | baseCellNeighbor60CCWRots[oldBaseCell][IK_AXES_DIGIT]; |
290 | |
291 | // perform the adjustment for the k-subsequence we're skipping |
292 | // over. |
293 | out = _h3Rotate60ccw(out); |
294 | *rotations = *rotations + 1; |
295 | } |
296 | |
297 | break; |
298 | } else { |
299 | Direction oldDigit = H3_GET_INDEX_DIGIT(out, r + 1); |
300 | Direction nextDir; |
301 | if (isResClassIII(r + 1)) { |
302 | H3_SET_INDEX_DIGIT(out, r + 1, NEW_DIGIT_II[oldDigit][dir]); |
303 | nextDir = NEW_ADJUSTMENT_II[oldDigit][dir]; |
304 | } else { |
305 | H3_SET_INDEX_DIGIT(out, r + 1, NEW_DIGIT_III[oldDigit][dir]); |
306 | nextDir = NEW_ADJUSTMENT_III[oldDigit][dir]; |
307 | } |
308 | |
309 | if (nextDir != CENTER_DIGIT) { |
310 | dir = nextDir; |
311 | r--; |
312 | } else { |
313 | // No more adjustment to perform |
314 | break; |
315 | } |
316 | } |
317 | } |
318 | |
319 | int newBaseCell = H3_GET_BASE_CELL(out); |
320 | if (_isBaseCellPentagon(newBaseCell)) { |
321 | int alreadyAdjustedKSubsequence = 0; |
322 | |
323 | // force rotation out of missing k-axes sub-sequence |
324 | if (_h3LeadingNonZeroDigit(out) == K_AXES_DIGIT) { |
325 | if (oldBaseCell != newBaseCell) { |
326 | // in this case, we traversed into the deleted |
327 | // k subsequence of a pentagon base cell. |
328 | // We need to rotate out of that case depending |
329 | // on how we got here. |
330 | // check for a cw/ccw offset face; default is ccw |
331 | |
332 | if (_baseCellIsCwOffset( |
333 | newBaseCell, baseCellData[oldBaseCell].homeFijk.face)) { |
334 | out = _h3Rotate60cw(out); |
335 | } else { |
336 | // See cwOffsetPent in testKRing.c for why this is |
337 | // unreachable. |
338 | out = _h3Rotate60ccw(out); // LCOV_EXCL_LINE |
339 | } |
340 | alreadyAdjustedKSubsequence = 1; |
341 | } else { |
342 | // In this case, we traversed into the deleted |
343 | // k subsequence from within the same pentagon |
344 | // base cell. |
345 | if (oldLeadingDigit == CENTER_DIGIT) { |
346 | // Undefined: the k direction is deleted from here |
347 | return H3_INVALID_INDEX; |
348 | } else if (oldLeadingDigit == JK_AXES_DIGIT) { |
349 | // Rotate out of the deleted k subsequence |
350 | // We also need an additional change to the direction we're |
351 | // moving in |
352 | out = _h3Rotate60ccw(out); |
353 | *rotations = *rotations + 1; |
354 | } else if (oldLeadingDigit == IK_AXES_DIGIT) { |
355 | // Rotate out of the deleted k subsequence |
356 | // We also need an additional change to the direction we're |
357 | // moving in |
358 | out = _h3Rotate60cw(out); |
359 | *rotations = *rotations + 5; |
360 | } else { |
361 | // Should never occur |
362 | return H3_INVALID_INDEX; // LCOV_EXCL_LINE |
363 | } |
364 | } |
365 | } |
366 | |
367 | for (int i = 0; i < newRotations; i++) out = _h3RotatePent60ccw(out); |
368 | |
369 | // Account for differing orientation of the base cells (this edge |
370 | // might not follow properties of some other edges.) |
371 | if (oldBaseCell != newBaseCell) { |
372 | if (_isBaseCellPolarPentagon(newBaseCell)) { |
373 | // 'polar' base cells behave differently because they have all |
374 | // i neighbors. |
375 | if (oldBaseCell != 118 && oldBaseCell != 8 && |
376 | _h3LeadingNonZeroDigit(out) != JK_AXES_DIGIT) { |
377 | *rotations = *rotations + 1; |
378 | } |
379 | } else if (_h3LeadingNonZeroDigit(out) == IK_AXES_DIGIT && |
380 | !alreadyAdjustedKSubsequence) { |
381 | // account for distortion introduced to the 5 neighbor by the |
382 | // deleted k subsequence. |
383 | *rotations = *rotations + 1; |
384 | } |
385 | } |
386 | } else { |
387 | for (int i = 0; i < newRotations; i++) out = _h3Rotate60ccw(out); |
388 | } |
389 | |
390 | *rotations = (*rotations + newRotations) % 6; |
391 | |
392 | return out; |
393 | } |
394 | |
395 | /** |
396 | * hexRange produces indexes within k distance of the origin index. |
397 | * Output behavior is undefined when one of the indexes returned by this |
398 | * function is a pentagon or is in the pentagon distortion area. |
399 | * |
400 | * k-ring 0 is defined as the origin index, k-ring 1 is defined as k-ring 0 and |
401 | * all neighboring indexes, and so on. |
402 | * |
403 | * Output is placed in the provided array in order of increasing distance from |
404 | * the origin. |
405 | * |
406 | * @param origin Origin location. |
407 | * @param k k >= 0 |
408 | * @param out Array which must be of size maxKringSize(k). |
409 | * @return 0 if no pentagon or pentagonal distortion area was encountered. |
410 | */ |
411 | int H3_EXPORT(hexRange)(H3Index origin, int k, H3Index* out) { |
412 | return H3_EXPORT(hexRangeDistances)(origin, k, out, 0); |
413 | } |
414 | |
415 | /** |
416 | * hexRange produces indexes within k distance of the origin index. |
417 | * Output behavior is undefined when one of the indexes returned by this |
418 | * function is a pentagon or is in the pentagon distortion area. |
419 | * |
420 | * k-ring 0 is defined as the origin index, k-ring 1 is defined as k-ring 0 and |
421 | * all neighboring indexes, and so on. |
422 | * |
423 | * Output is placed in the provided array in order of increasing distance from |
424 | * the origin. The distances in hexagons is placed in the distances array at |
425 | * the same offset. |
426 | * |
427 | * @param origin Origin location. |
428 | * @param k k >= 0 |
429 | * @param out Array which must be of size maxKringSize(k). |
430 | * @param distances Null or array which must be of size maxKringSize(k). |
431 | * @return 0 if no pentagon or pentagonal distortion area was encountered. |
432 | */ |
433 | int H3_EXPORT(hexRangeDistances)(H3Index origin, int k, H3Index* out, |
434 | int* distances) { |
435 | // Return codes: |
436 | // 1 Pentagon was encountered |
437 | // 2 Pentagon distortion (deleted k subsequence) was encountered |
438 | // Pentagon being encountered is not itself a problem; really the deleted |
439 | // k-subsequence is the problem, but for compatibility reasons we fail on |
440 | // the pentagon. |
441 | |
442 | // k must be >= 0, so origin is always needed |
443 | int idx = 0; |
444 | out[idx] = origin; |
445 | if (distances) { |
446 | distances[idx] = 0; |
447 | } |
448 | idx++; |
449 | |
450 | if (H3_EXPORT(h3IsPentagon)(origin)) { |
451 | // Pentagon was encountered; bail out as user doesn't want this. |
452 | return HEX_RANGE_PENTAGON; |
453 | } |
454 | |
455 | // 0 < ring <= k, current ring |
456 | int ring = 1; |
457 | // 0 <= direction < 6, current side of the ring |
458 | int direction = 0; |
459 | // 0 <= i < ring, current position on the side of the ring |
460 | int i = 0; |
461 | // Number of 60 degree ccw rotations to perform on the direction (based on |
462 | // which faces have been crossed.) |
463 | int rotations = 0; |
464 | |
465 | while (ring <= k) { |
466 | if (direction == 0 && i == 0) { |
467 | // Not putting in the output set as it will be done later, at |
468 | // the end of this ring. |
469 | origin = |
470 | h3NeighborRotations(origin, NEXT_RING_DIRECTION, &rotations); |
471 | if (origin == 0) { |
472 | // Should not be possible because `origin` would have to be a |
473 | // pentagon |
474 | return HEX_RANGE_K_SUBSEQUENCE; // LCOV_EXCL_LINE |
475 | } |
476 | |
477 | if (H3_EXPORT(h3IsPentagon)(origin)) { |
478 | // Pentagon was encountered; bail out as user doesn't want this. |
479 | return HEX_RANGE_PENTAGON; |
480 | } |
481 | } |
482 | |
483 | origin = h3NeighborRotations(origin, DIRECTIONS[direction], &rotations); |
484 | if (origin == 0) { |
485 | // Should not be possible because `origin` would have to be a |
486 | // pentagon |
487 | return HEX_RANGE_K_SUBSEQUENCE; // LCOV_EXCL_LINE |
488 | } |
489 | out[idx] = origin; |
490 | if (distances) { |
491 | distances[idx] = ring; |
492 | } |
493 | idx++; |
494 | |
495 | i++; |
496 | // Check if end of this side of the k-ring |
497 | if (i == ring) { |
498 | i = 0; |
499 | direction++; |
500 | // Check if end of this ring. |
501 | if (direction == 6) { |
502 | direction = 0; |
503 | ring++; |
504 | } |
505 | } |
506 | |
507 | if (H3_EXPORT(h3IsPentagon)(origin)) { |
508 | // Pentagon was encountered; bail out as user doesn't want this. |
509 | return HEX_RANGE_PENTAGON; |
510 | } |
511 | } |
512 | return HEX_RANGE_SUCCESS; |
513 | } |
514 | |
515 | /** |
516 | * hexRanges takes an array of input hex IDs and a max k-ring and returns an |
517 | * array of hexagon IDs sorted first by the original hex IDs and then by the |
518 | * k-ring (0 to max), with no guaranteed sorting within each k-ring group. |
519 | * |
520 | * @param h3Set A pointer to an array of H3Indexes |
521 | * @param length The total number of H3Indexes in h3Set |
522 | * @param k The number of rings to generate |
523 | * @param out A pointer to the output memory to dump the new set of H3Indexes to |
524 | * The memory block should be equal to maxKringSize(k) * length |
525 | * @return 0 if no pentagon is encountered. Cannot trust output otherwise |
526 | */ |
527 | int H3_EXPORT(hexRanges)(H3Index* h3Set, int length, int k, H3Index* out) { |
528 | int success = 0; |
529 | H3Index* segment; |
530 | int segmentSize = H3_EXPORT(maxKringSize)(k); |
531 | for (int i = 0; i < length; i++) { |
532 | // Determine the appropriate segment of the output array to operate on |
533 | segment = out + i * segmentSize; |
534 | success = H3_EXPORT(hexRange)(h3Set[i], k, segment); |
535 | if (success != 0) return success; |
536 | } |
537 | return 0; |
538 | } |
539 | |
540 | /** |
541 | * Returns the hollow hexagonal ring centered at origin with sides of length k. |
542 | * |
543 | * @param origin Origin location. |
544 | * @param k k >= 0 |
545 | * @param out Array which must be of size 6 * k (or 1 if k == 0) |
546 | * @return 0 if no pentagonal distortion was encountered. |
547 | */ |
548 | int H3_EXPORT(hexRing)(H3Index origin, int k, H3Index* out) { |
549 | // Short-circuit on 'identity' ring |
550 | if (k == 0) { |
551 | out[0] = origin; |
552 | return 0; |
553 | } |
554 | int idx = 0; |
555 | // Number of 60 degree ccw rotations to perform on the direction (based on |
556 | // which faces have been crossed.) |
557 | int rotations = 0; |
558 | // Scratch structure for checking for pentagons |
559 | if (H3_EXPORT(h3IsPentagon)(origin)) { |
560 | // Pentagon was encountered; bail out as user doesn't want this. |
561 | return HEX_RANGE_PENTAGON; |
562 | } |
563 | |
564 | for (int ring = 0; ring < k; ring++) { |
565 | origin = h3NeighborRotations(origin, NEXT_RING_DIRECTION, &rotations); |
566 | if (origin == 0) { |
567 | // Should not be possible because `origin` would have to be a |
568 | // pentagon |
569 | return HEX_RANGE_K_SUBSEQUENCE; // LCOV_EXCL_LINE |
570 | } |
571 | |
572 | if (H3_EXPORT(h3IsPentagon)(origin)) { |
573 | return HEX_RANGE_PENTAGON; |
574 | } |
575 | } |
576 | |
577 | H3Index lastIndex = origin; |
578 | |
579 | out[idx] = origin; |
580 | idx++; |
581 | |
582 | for (int direction = 0; direction < 6; direction++) { |
583 | for (int pos = 0; pos < k; pos++) { |
584 | origin = |
585 | h3NeighborRotations(origin, DIRECTIONS[direction], &rotations); |
586 | if (origin == 0) { |
587 | // Should not be possible because `origin` would have to be a |
588 | // pentagon |
589 | return HEX_RANGE_K_SUBSEQUENCE; // LCOV_EXCL_LINE |
590 | } |
591 | |
592 | // Skip the very last index, it was already added. We do |
593 | // however need to traverse to it because of the pentagonal |
594 | // distortion check, below. |
595 | if (pos != k - 1 || direction != 5) { |
596 | out[idx] = origin; |
597 | idx++; |
598 | |
599 | if (H3_EXPORT(h3IsPentagon)(origin)) { |
600 | return HEX_RANGE_PENTAGON; |
601 | } |
602 | } |
603 | } |
604 | } |
605 | |
606 | // Check that this matches the expected lastIndex, if it doesn't, |
607 | // it indicates pentagonal distortion occurred and we should report |
608 | // failure. |
609 | if (lastIndex != origin) { |
610 | return HEX_RANGE_PENTAGON; |
611 | } else { |
612 | return HEX_RANGE_SUCCESS; |
613 | } |
614 | } |
615 | |
616 | /** |
617 | * maxPolyfillSize returns the number of hexagons to allocate space for when |
618 | * performing a polyfill on the given GeoJSON-like data structure. |
619 | * |
620 | * Currently a laughably padded response, being a k-ring that wholly contains |
621 | * a bounding box of the GeoJSON, but still less wasted memory than initializing |
622 | * a Python application? ;) |
623 | * |
624 | * @param geoPolygon A GeoJSON-like data structure indicating the poly to fill |
625 | * @param res Hexagon resolution (0-15) |
626 | * @return number of hexagons to allocate for |
627 | */ |
628 | int H3_EXPORT(maxPolyfillSize)(const GeoPolygon* geoPolygon, int res) { |
629 | // Get the bounding box for the GeoJSON-like struct |
630 | BBox bbox; |
631 | bboxFromGeofence(&geoPolygon->geofence, &bbox); |
632 | int minK = bboxHexRadius(&bbox, res); |
633 | |
634 | // The total number of hexagons to allocate can now be determined by |
635 | // the k-ring hex allocation helper function. |
636 | return H3_EXPORT(maxKringSize)(minK); |
637 | } |
638 | |
639 | /** |
640 | * polyfill takes a given GeoJSON-like data structure and preallocated, |
641 | * zeroed memory, and fills it with the hexagons that are contained by |
642 | * the GeoJSON-like data structure. |
643 | * |
644 | * The current implementation is very primitive and slow, but correct, |
645 | * performing a point-in-poly operation on every hexagon in a k-ring defined |
646 | * around the given geofence. |
647 | * |
648 | * @param geoPolygon The geofence and holes defining the relevant area |
649 | * @param res The Hexagon resolution (0-15) |
650 | * @param out The slab of zeroed memory to write to. Assumed to be big enough. |
651 | */ |
652 | void H3_EXPORT(polyfill)(const GeoPolygon* geoPolygon, int res, H3Index* out) { |
653 | // One of the goals of the polyfill algorithm is that two adjacent polygons |
654 | // with zero overlap have zero overlapping hexagons. That the hexagons are |
655 | // uniquely assigned. There are a few approaches to take here, such as |
656 | // deciding based on which polygon has the greatest overlapping area of the |
657 | // hexagon, or the most number of contained points on the hexagon (using the |
658 | // center point as a tiebreaker). |
659 | // |
660 | // But if the polygons are convex, both of these more complex algorithms can |
661 | // be reduced down to checking whether or not the center of the hexagon is |
662 | // contained in the polygon, and so this is the approach that this polyfill |
663 | // algorithm will follow, as it's simpler, faster, and the error for concave |
664 | // polygons is still minimal (only affecting concave shapes on the order of |
665 | // magnitude of the hexagon size or smaller, not impacting larger concave |
666 | // shapes) |
667 | // |
668 | // This first part is identical to the maxPolyfillSize above. |
669 | |
670 | // Get the bounding boxes for the polygon and any holes |
671 | BBox* bboxes = malloc((geoPolygon->numHoles + 1) * sizeof(BBox)); |
672 | assert(bboxes != NULL); |
673 | bboxesFromGeoPolygon(geoPolygon, bboxes); |
674 | int minK = bboxHexRadius(&bboxes[0], res); |
675 | int numHexagons = H3_EXPORT(maxKringSize)(minK); |
676 | |
677 | // Get the center hex |
678 | GeoCoord center; |
679 | bboxCenter(&bboxes[0], ¢er); |
680 | H3Index centerH3 = H3_EXPORT(geoToH3)(¢er, res); |
681 | |
682 | // From here on it works differently, first we get all potential |
683 | // hexagons inserted into the available memory |
684 | H3_EXPORT(kRing)(centerH3, minK, out); |
685 | |
686 | // Next we iterate through each hexagon, and test its center point to see if |
687 | // it's contained in the GeoJSON-like struct |
688 | for (int i = 0; i < numHexagons; i++) { |
689 | // Skip records that are already zeroed |
690 | if (out[i] == 0) { |
691 | continue; |
692 | } |
693 | // Check if hexagon is inside of polygon |
694 | GeoCoord hexCenter; |
695 | H3_EXPORT(h3ToGeo)(out[i], &hexCenter); |
696 | hexCenter.lat = constrainLat(hexCenter.lat); |
697 | hexCenter.lon = constrainLng(hexCenter.lon); |
698 | // And remove from list if not |
699 | if (!pointInsidePolygon(geoPolygon, bboxes, &hexCenter)) { |
700 | out[i] = H3_INVALID_INDEX; |
701 | } |
702 | } |
703 | free(bboxes); |
704 | } |
705 | |
706 | /** |
707 | * Internal: Create a vertex graph from a set of hexagons. It is the |
708 | * responsibility of the caller to call destroyVertexGraph on the populated |
709 | * graph, otherwise the memory in the graph nodes will not be freed. |
710 | * @private |
711 | * @param h3Set Set of hexagons |
712 | * @param numHexes Number of hexagons in the set |
713 | * @param graph Output graph |
714 | */ |
715 | void h3SetToVertexGraph(const H3Index* h3Set, const int numHexes, |
716 | VertexGraph* graph) { |
717 | GeoBoundary vertices; |
718 | GeoCoord* fromVtx; |
719 | GeoCoord* toVtx; |
720 | VertexNode* edge; |
721 | if (numHexes < 1) { |
722 | // We still need to init the graph, or calls to destroyVertexGraph will |
723 | // fail |
724 | initVertexGraph(graph, 0, 0); |
725 | return; |
726 | } |
727 | int res = H3_GET_RESOLUTION(h3Set[0]); |
728 | const int minBuckets = 6; |
729 | // TODO: Better way to calculate/guess? |
730 | int numBuckets = numHexes > minBuckets ? numHexes : minBuckets; |
731 | initVertexGraph(graph, numBuckets, res); |
732 | // Iterate through every hexagon |
733 | for (int i = 0; i < numHexes; i++) { |
734 | H3_EXPORT(h3ToGeoBoundary)(h3Set[i], &vertices); |
735 | // iterate through every edge |
736 | for (int j = 0; j < vertices.numVerts; j++) { |
737 | fromVtx = &vertices.verts[j]; |
738 | toVtx = &vertices.verts[(j + 1) % vertices.numVerts]; |
739 | // If we've seen this edge already, it will be reversed |
740 | edge = findNodeForEdge(graph, toVtx, fromVtx); |
741 | if (edge != NULL) { |
742 | // If we've seen it, drop it. No edge is shared by more than 2 |
743 | // hexagons, so we'll never see it again. |
744 | removeVertexNode(graph, edge); |
745 | } else { |
746 | // Add a new node for this edge |
747 | addVertexNode(graph, fromVtx, toVtx); |
748 | } |
749 | } |
750 | } |
751 | } |
752 | |
753 | /** |
754 | * Internal: Create a LinkedGeoPolygon from a vertex graph. It is the |
755 | * responsibility of the caller to call destroyLinkedPolygon on the populated |
756 | * linked geo structure, or the memory for that structure will not be freed. |
757 | * @private |
758 | * @param graph Input graph |
759 | * @param out Output polygon |
760 | */ |
761 | void _vertexGraphToLinkedGeo(VertexGraph* graph, LinkedGeoPolygon* out) { |
762 | *out = (LinkedGeoPolygon){0}; |
763 | LinkedGeoLoop* loop; |
764 | VertexNode* edge; |
765 | GeoCoord nextVtx; |
766 | // Find the next unused entry point |
767 | while ((edge = firstVertexNode(graph)) != NULL) { |
768 | loop = addNewLinkedLoop(out); |
769 | // Walk the graph to get the outline |
770 | do { |
771 | addLinkedCoord(loop, &edge->from); |
772 | nextVtx = edge->to; |
773 | // Remove frees the node, so we can't use edge after this |
774 | removeVertexNode(graph, edge); |
775 | edge = findNodeForVertex(graph, &nextVtx); |
776 | } while (edge); |
777 | } |
778 | } |
779 | |
780 | /** |
781 | * Create a LinkedGeoPolygon describing the outline(s) of a set of hexagons. |
782 | * Polygon outlines will follow GeoJSON MultiPolygon order: Each polygon will |
783 | * have one outer loop, which is first in the list, followed by any holes. |
784 | * |
785 | * It is the responsibility of the caller to call destroyLinkedPolygon on the |
786 | * populated linked geo structure, or the memory for that structure will |
787 | * not be freed. |
788 | * |
789 | * It is expected that all hexagons in the set have the same resolution and |
790 | * that the set contains no duplicates. Behavior is undefined if duplicates |
791 | * or multiple resolutions are present, and the algorithm may produce |
792 | * unexpected or invalid output. |
793 | * |
794 | * @param h3Set Set of hexagons |
795 | * @param numHexes Number of hexagons in set |
796 | * @param out Output polygon |
797 | */ |
798 | void H3_EXPORT(h3SetToLinkedGeo)(const H3Index* h3Set, const int numHexes, |
799 | LinkedGeoPolygon* out) { |
800 | VertexGraph graph; |
801 | h3SetToVertexGraph(h3Set, numHexes, &graph); |
802 | _vertexGraphToLinkedGeo(&graph, out); |
803 | // TODO: The return value, possibly indicating an error, is discarded here - |
804 | // we should use this when we update the API to return a value |
805 | normalizeMultiPolygon(out); |
806 | destroyVertexGraph(&graph); |
807 | } |
808 | |