| 1 | /* |
| 2 | * Copyright 2016-2018 Uber Technologies, Inc. |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | /** @file algos.c |
| 17 | * @brief Hexagon grid algorithms |
| 18 | */ |
| 19 | |
| 20 | #include "algos.h" |
| 21 | #include <float.h> |
| 22 | #include <math.h> |
| 23 | #include <stdbool.h> |
| 24 | #include <stdlib.h> |
| 25 | #include "baseCells.h" |
| 26 | #include "bbox.h" |
| 27 | #include "faceijk.h" |
| 28 | #include "geoCoord.h" |
| 29 | #include "h3Index.h" |
| 30 | #include "h3api.h" |
| 31 | #include "linkedGeo.h" |
| 32 | #include "polygon.h" |
| 33 | #include "stackAlloc.h" |
| 34 | #include "vertexGraph.h" |
| 35 | |
| 36 | /* |
| 37 | * Return codes from hexRange and related functions. |
| 38 | */ |
| 39 | |
| 40 | #define HEX_RANGE_SUCCESS 0 |
| 41 | #define HEX_RANGE_PENTAGON 1 |
| 42 | #define HEX_RANGE_K_SUBSEQUENCE 2 |
| 43 | |
| 44 | /** |
| 45 | * Directions used for traversing a hexagonal ring counterclockwise around |
| 46 | * {1, 0, 0} |
| 47 | * |
| 48 | * <pre> |
| 49 | * _ |
| 50 | * _/ \\_ |
| 51 | * / \\5/ \\ |
| 52 | * \\0/ \\4/ |
| 53 | * / \\_/ \\ |
| 54 | * \\1/ \\3/ |
| 55 | * \\2/ |
| 56 | * </pre> |
| 57 | */ |
| 58 | static const Direction DIRECTIONS[6] = {J_AXES_DIGIT, JK_AXES_DIGIT, |
| 59 | K_AXES_DIGIT, IK_AXES_DIGIT, |
| 60 | I_AXES_DIGIT, IJ_AXES_DIGIT}; |
| 61 | |
| 62 | /** |
| 63 | * Direction used for traversing to the next outward hexagonal ring. |
| 64 | */ |
| 65 | static const Direction NEXT_RING_DIRECTION = I_AXES_DIGIT; |
| 66 | |
| 67 | /** |
| 68 | * New digit when traversing along class II grids. |
| 69 | * |
| 70 | * Current digit -> direction -> new digit. |
| 71 | */ |
| 72 | static const Direction NEW_DIGIT_II[7][7] = { |
| 73 | {CENTER_DIGIT, K_AXES_DIGIT, J_AXES_DIGIT, JK_AXES_DIGIT, I_AXES_DIGIT, |
| 74 | IK_AXES_DIGIT, IJ_AXES_DIGIT}, |
| 75 | {K_AXES_DIGIT, I_AXES_DIGIT, JK_AXES_DIGIT, IJ_AXES_DIGIT, IK_AXES_DIGIT, |
| 76 | J_AXES_DIGIT, CENTER_DIGIT}, |
| 77 | {J_AXES_DIGIT, JK_AXES_DIGIT, K_AXES_DIGIT, I_AXES_DIGIT, IJ_AXES_DIGIT, |
| 78 | CENTER_DIGIT, IK_AXES_DIGIT}, |
| 79 | {JK_AXES_DIGIT, IJ_AXES_DIGIT, I_AXES_DIGIT, IK_AXES_DIGIT, CENTER_DIGIT, |
| 80 | K_AXES_DIGIT, J_AXES_DIGIT}, |
| 81 | {I_AXES_DIGIT, IK_AXES_DIGIT, IJ_AXES_DIGIT, CENTER_DIGIT, J_AXES_DIGIT, |
| 82 | JK_AXES_DIGIT, K_AXES_DIGIT}, |
| 83 | {IK_AXES_DIGIT, J_AXES_DIGIT, CENTER_DIGIT, K_AXES_DIGIT, JK_AXES_DIGIT, |
| 84 | IJ_AXES_DIGIT, I_AXES_DIGIT}, |
| 85 | {IJ_AXES_DIGIT, CENTER_DIGIT, IK_AXES_DIGIT, J_AXES_DIGIT, K_AXES_DIGIT, |
| 86 | I_AXES_DIGIT, JK_AXES_DIGIT}}; |
| 87 | |
| 88 | /** |
| 89 | * New traversal direction when traversing along class II grids. |
| 90 | * |
| 91 | * Current digit -> direction -> new ap7 move (at coarser level). |
| 92 | */ |
| 93 | static const Direction NEW_ADJUSTMENT_II[7][7] = { |
| 94 | {CENTER_DIGIT, CENTER_DIGIT, CENTER_DIGIT, CENTER_DIGIT, CENTER_DIGIT, |
| 95 | CENTER_DIGIT, CENTER_DIGIT}, |
| 96 | {CENTER_DIGIT, K_AXES_DIGIT, CENTER_DIGIT, K_AXES_DIGIT, CENTER_DIGIT, |
| 97 | IK_AXES_DIGIT, CENTER_DIGIT}, |
| 98 | {CENTER_DIGIT, CENTER_DIGIT, J_AXES_DIGIT, JK_AXES_DIGIT, CENTER_DIGIT, |
| 99 | CENTER_DIGIT, J_AXES_DIGIT}, |
| 100 | {CENTER_DIGIT, K_AXES_DIGIT, JK_AXES_DIGIT, JK_AXES_DIGIT, CENTER_DIGIT, |
| 101 | CENTER_DIGIT, CENTER_DIGIT}, |
| 102 | {CENTER_DIGIT, CENTER_DIGIT, CENTER_DIGIT, CENTER_DIGIT, I_AXES_DIGIT, |
| 103 | I_AXES_DIGIT, IJ_AXES_DIGIT}, |
| 104 | {CENTER_DIGIT, IK_AXES_DIGIT, CENTER_DIGIT, CENTER_DIGIT, I_AXES_DIGIT, |
| 105 | IK_AXES_DIGIT, CENTER_DIGIT}, |
| 106 | {CENTER_DIGIT, CENTER_DIGIT, J_AXES_DIGIT, CENTER_DIGIT, IJ_AXES_DIGIT, |
| 107 | CENTER_DIGIT, IJ_AXES_DIGIT}}; |
| 108 | |
| 109 | /** |
| 110 | * New traversal direction when traversing along class III grids. |
| 111 | * |
| 112 | * Current digit -> direction -> new ap7 move (at coarser level). |
| 113 | */ |
| 114 | static const Direction NEW_DIGIT_III[7][7] = { |
| 115 | {CENTER_DIGIT, K_AXES_DIGIT, J_AXES_DIGIT, JK_AXES_DIGIT, I_AXES_DIGIT, |
| 116 | IK_AXES_DIGIT, IJ_AXES_DIGIT}, |
| 117 | {K_AXES_DIGIT, J_AXES_DIGIT, JK_AXES_DIGIT, I_AXES_DIGIT, IK_AXES_DIGIT, |
| 118 | IJ_AXES_DIGIT, CENTER_DIGIT}, |
| 119 | {J_AXES_DIGIT, JK_AXES_DIGIT, I_AXES_DIGIT, IK_AXES_DIGIT, IJ_AXES_DIGIT, |
| 120 | CENTER_DIGIT, K_AXES_DIGIT}, |
| 121 | {JK_AXES_DIGIT, I_AXES_DIGIT, IK_AXES_DIGIT, IJ_AXES_DIGIT, CENTER_DIGIT, |
| 122 | K_AXES_DIGIT, J_AXES_DIGIT}, |
| 123 | {I_AXES_DIGIT, IK_AXES_DIGIT, IJ_AXES_DIGIT, CENTER_DIGIT, K_AXES_DIGIT, |
| 124 | J_AXES_DIGIT, JK_AXES_DIGIT}, |
| 125 | {IK_AXES_DIGIT, IJ_AXES_DIGIT, CENTER_DIGIT, K_AXES_DIGIT, J_AXES_DIGIT, |
| 126 | JK_AXES_DIGIT, I_AXES_DIGIT}, |
| 127 | {IJ_AXES_DIGIT, CENTER_DIGIT, K_AXES_DIGIT, J_AXES_DIGIT, JK_AXES_DIGIT, |
| 128 | I_AXES_DIGIT, IK_AXES_DIGIT}}; |
| 129 | |
| 130 | /** |
| 131 | * New traversal direction when traversing along class III grids. |
| 132 | * |
| 133 | * Current digit -> direction -> new ap7 move (at coarser level). |
| 134 | */ |
| 135 | static const Direction NEW_ADJUSTMENT_III[7][7] = { |
| 136 | {CENTER_DIGIT, CENTER_DIGIT, CENTER_DIGIT, CENTER_DIGIT, CENTER_DIGIT, |
| 137 | CENTER_DIGIT, CENTER_DIGIT}, |
| 138 | {CENTER_DIGIT, K_AXES_DIGIT, CENTER_DIGIT, JK_AXES_DIGIT, CENTER_DIGIT, |
| 139 | K_AXES_DIGIT, CENTER_DIGIT}, |
| 140 | {CENTER_DIGIT, CENTER_DIGIT, J_AXES_DIGIT, J_AXES_DIGIT, CENTER_DIGIT, |
| 141 | CENTER_DIGIT, IJ_AXES_DIGIT}, |
| 142 | {CENTER_DIGIT, JK_AXES_DIGIT, J_AXES_DIGIT, JK_AXES_DIGIT, CENTER_DIGIT, |
| 143 | CENTER_DIGIT, CENTER_DIGIT}, |
| 144 | {CENTER_DIGIT, CENTER_DIGIT, CENTER_DIGIT, CENTER_DIGIT, I_AXES_DIGIT, |
| 145 | IK_AXES_DIGIT, I_AXES_DIGIT}, |
| 146 | {CENTER_DIGIT, K_AXES_DIGIT, CENTER_DIGIT, CENTER_DIGIT, IK_AXES_DIGIT, |
| 147 | IK_AXES_DIGIT, CENTER_DIGIT}, |
| 148 | {CENTER_DIGIT, CENTER_DIGIT, IJ_AXES_DIGIT, CENTER_DIGIT, I_AXES_DIGIT, |
| 149 | CENTER_DIGIT, IJ_AXES_DIGIT}}; |
| 150 | |
| 151 | /** |
| 152 | * Maximum number of indices that result from the kRing algorithm with the given |
| 153 | * k. Formula source and proof: https://oeis.org/A003215 |
| 154 | * |
| 155 | * @param k k value, k >= 0. |
| 156 | */ |
| 157 | int H3_EXPORT(maxKringSize)(int k) { return 3 * k * (k + 1) + 1; } |
| 158 | |
| 159 | /** |
| 160 | * k-rings produces indices within k distance of the origin index. |
| 161 | * |
| 162 | * k-ring 0 is defined as the origin index, k-ring 1 is defined as k-ring 0 and |
| 163 | * all neighboring indices, and so on. |
| 164 | * |
| 165 | * Output is placed in the provided array in no particular order. Elements of |
| 166 | * the output array may be left zero, as can happen when crossing a pentagon. |
| 167 | * |
| 168 | * @param origin Origin location. |
| 169 | * @param k k >= 0 |
| 170 | * @param out Zero-filled array which must be of size maxKringSize(k). |
| 171 | */ |
| 172 | void H3_EXPORT(kRing)(H3Index origin, int k, H3Index* out) { |
| 173 | int maxIdx = H3_EXPORT(maxKringSize)(k); |
| 174 | int* distances = malloc(maxIdx * sizeof(int)); |
| 175 | H3_EXPORT(kRingDistances)(origin, k, out, distances); |
| 176 | free(distances); |
| 177 | } |
| 178 | |
| 179 | /** |
| 180 | * k-rings produces indices within k distance of the origin index. |
| 181 | * |
| 182 | * k-ring 0 is defined as the origin index, k-ring 1 is defined as k-ring 0 and |
| 183 | * all neighboring indices, and so on. |
| 184 | * |
| 185 | * Output is placed in the provided array in no particular order. Elements of |
| 186 | * the output array may be left zero, as can happen when crossing a pentagon. |
| 187 | * |
| 188 | * @param origin Origin location. |
| 189 | * @param k k >= 0 |
| 190 | * @param out Zero-filled array which must be of size maxKringSize(k). |
| 191 | * @param distances Zero-filled array which must be of size maxKringSize(k). |
| 192 | */ |
| 193 | void H3_EXPORT(kRingDistances)(H3Index origin, int k, H3Index* out, |
| 194 | int* distances) { |
| 195 | const int maxIdx = H3_EXPORT(maxKringSize)(k); |
| 196 | // Optimistically try the faster hexRange algorithm first |
| 197 | const bool failed = H3_EXPORT(hexRangeDistances)(origin, k, out, distances); |
| 198 | if (failed) { |
| 199 | // Fast algo failed, fall back to slower, correct algo |
| 200 | // and also wipe out array because contents untrustworthy |
| 201 | memset(out, 0, maxIdx * sizeof(out[0])); |
| 202 | memset(distances, 0, maxIdx * sizeof(distances[0])); |
| 203 | _kRingInternal(origin, k, out, distances, maxIdx, 0); |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | /** |
| 208 | * Internal helper function called recursively for kRingDistances. |
| 209 | * |
| 210 | * Adds the origin index to the output set (treating it as a hash set) |
| 211 | * and recurses to its neighbors, if needed. |
| 212 | * |
| 213 | * @param origin |
| 214 | * @param k Maximum distance to move from the origin. |
| 215 | * @param out Array treated as a hash set, elements being either H3Index or 0. |
| 216 | * @param distances Scratch area, with elements paralleling the out array. |
| 217 | * Elements indicate ijk distance from the origin index to the output index. |
| 218 | * @param maxIdx Size of out and scratch arrays (must be maxKringSize(k)) |
| 219 | * @param curK Current distance from the origin. |
| 220 | */ |
| 221 | void _kRingInternal(H3Index origin, int k, H3Index* out, int* distances, |
| 222 | int maxIdx, int curK) { |
| 223 | if (origin == 0) return; |
| 224 | |
| 225 | // Put origin in the output array. out is used as a hash set. |
| 226 | int off = origin % maxIdx; |
| 227 | while (out[off] != 0 && out[off] != origin) { |
| 228 | off = (off + 1) % maxIdx; |
| 229 | } |
| 230 | |
| 231 | // We either got a free slot in the hash set or hit a duplicate |
| 232 | // We might need to process the duplicate anyways because we got |
| 233 | // here on a longer path before. |
| 234 | if (out[off] == origin && distances[off] <= curK) return; |
| 235 | |
| 236 | out[off] = origin; |
| 237 | distances[off] = curK; |
| 238 | |
| 239 | // Base case: reached an index k away from the origin. |
| 240 | if (curK >= k) return; |
| 241 | |
| 242 | // Recurse to all neighbors in no particular order. |
| 243 | for (int i = 0; i < 6; i++) { |
| 244 | int rotations = 0; |
| 245 | _kRingInternal(h3NeighborRotations(origin, DIRECTIONS[i], &rotations), |
| 246 | k, out, distances, maxIdx, curK + 1); |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | /** |
| 251 | * Returns the hexagon index neighboring the origin, in the direction dir. |
| 252 | * |
| 253 | * Implementation note: The only reachable case where this returns 0 is if the |
| 254 | * origin is a pentagon and the translation is in the k direction. Thus, |
| 255 | * 0 can only be returned if origin is a pentagon. |
| 256 | * |
| 257 | * @param origin Origin index |
| 258 | * @param dir Direction to move in |
| 259 | * @param rotations Number of ccw rotations to perform to reorient the |
| 260 | * translation vector. Will be modified to the new number of |
| 261 | * rotations to perform (such as when crossing a face edge.) |
| 262 | * @return H3Index of the specified neighbor or 0 if deleted k-subsequence |
| 263 | * distortion is encountered. |
| 264 | */ |
| 265 | H3Index h3NeighborRotations(H3Index origin, Direction dir, int* rotations) { |
| 266 | H3Index out = origin; |
| 267 | |
| 268 | for (int i = 0; i < *rotations; i++) { |
| 269 | dir = _rotate60ccw(dir); |
| 270 | } |
| 271 | |
| 272 | int newRotations = 0; |
| 273 | int oldBaseCell = H3_GET_BASE_CELL(out); |
| 274 | Direction oldLeadingDigit = _h3LeadingNonZeroDigit(out); |
| 275 | |
| 276 | // Adjust the indexing digits and, if needed, the base cell. |
| 277 | int r = H3_GET_RESOLUTION(out) - 1; |
| 278 | while (true) { |
| 279 | if (r == -1) { |
| 280 | H3_SET_BASE_CELL(out, baseCellNeighbors[oldBaseCell][dir]); |
| 281 | newRotations = baseCellNeighbor60CCWRots[oldBaseCell][dir]; |
| 282 | |
| 283 | if (H3_GET_BASE_CELL(out) == INVALID_BASE_CELL) { |
| 284 | // Adjust for the deleted k vertex at the base cell level. |
| 285 | // This edge actually borders a different neighbor. |
| 286 | H3_SET_BASE_CELL(out, |
| 287 | baseCellNeighbors[oldBaseCell][IK_AXES_DIGIT]); |
| 288 | newRotations = |
| 289 | baseCellNeighbor60CCWRots[oldBaseCell][IK_AXES_DIGIT]; |
| 290 | |
| 291 | // perform the adjustment for the k-subsequence we're skipping |
| 292 | // over. |
| 293 | out = _h3Rotate60ccw(out); |
| 294 | *rotations = *rotations + 1; |
| 295 | } |
| 296 | |
| 297 | break; |
| 298 | } else { |
| 299 | Direction oldDigit = H3_GET_INDEX_DIGIT(out, r + 1); |
| 300 | Direction nextDir; |
| 301 | if (isResClassIII(r + 1)) { |
| 302 | H3_SET_INDEX_DIGIT(out, r + 1, NEW_DIGIT_II[oldDigit][dir]); |
| 303 | nextDir = NEW_ADJUSTMENT_II[oldDigit][dir]; |
| 304 | } else { |
| 305 | H3_SET_INDEX_DIGIT(out, r + 1, NEW_DIGIT_III[oldDigit][dir]); |
| 306 | nextDir = NEW_ADJUSTMENT_III[oldDigit][dir]; |
| 307 | } |
| 308 | |
| 309 | if (nextDir != CENTER_DIGIT) { |
| 310 | dir = nextDir; |
| 311 | r--; |
| 312 | } else { |
| 313 | // No more adjustment to perform |
| 314 | break; |
| 315 | } |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | int newBaseCell = H3_GET_BASE_CELL(out); |
| 320 | if (_isBaseCellPentagon(newBaseCell)) { |
| 321 | int alreadyAdjustedKSubsequence = 0; |
| 322 | |
| 323 | // force rotation out of missing k-axes sub-sequence |
| 324 | if (_h3LeadingNonZeroDigit(out) == K_AXES_DIGIT) { |
| 325 | if (oldBaseCell != newBaseCell) { |
| 326 | // in this case, we traversed into the deleted |
| 327 | // k subsequence of a pentagon base cell. |
| 328 | // We need to rotate out of that case depending |
| 329 | // on how we got here. |
| 330 | // check for a cw/ccw offset face; default is ccw |
| 331 | |
| 332 | if (_baseCellIsCwOffset( |
| 333 | newBaseCell, baseCellData[oldBaseCell].homeFijk.face)) { |
| 334 | out = _h3Rotate60cw(out); |
| 335 | } else { |
| 336 | // See cwOffsetPent in testKRing.c for why this is |
| 337 | // unreachable. |
| 338 | out = _h3Rotate60ccw(out); // LCOV_EXCL_LINE |
| 339 | } |
| 340 | alreadyAdjustedKSubsequence = 1; |
| 341 | } else { |
| 342 | // In this case, we traversed into the deleted |
| 343 | // k subsequence from within the same pentagon |
| 344 | // base cell. |
| 345 | if (oldLeadingDigit == CENTER_DIGIT) { |
| 346 | // Undefined: the k direction is deleted from here |
| 347 | return H3_INVALID_INDEX; |
| 348 | } else if (oldLeadingDigit == JK_AXES_DIGIT) { |
| 349 | // Rotate out of the deleted k subsequence |
| 350 | // We also need an additional change to the direction we're |
| 351 | // moving in |
| 352 | out = _h3Rotate60ccw(out); |
| 353 | *rotations = *rotations + 1; |
| 354 | } else if (oldLeadingDigit == IK_AXES_DIGIT) { |
| 355 | // Rotate out of the deleted k subsequence |
| 356 | // We also need an additional change to the direction we're |
| 357 | // moving in |
| 358 | out = _h3Rotate60cw(out); |
| 359 | *rotations = *rotations + 5; |
| 360 | } else { |
| 361 | // Should never occur |
| 362 | return H3_INVALID_INDEX; // LCOV_EXCL_LINE |
| 363 | } |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | for (int i = 0; i < newRotations; i++) out = _h3RotatePent60ccw(out); |
| 368 | |
| 369 | // Account for differing orientation of the base cells (this edge |
| 370 | // might not follow properties of some other edges.) |
| 371 | if (oldBaseCell != newBaseCell) { |
| 372 | if (_isBaseCellPolarPentagon(newBaseCell)) { |
| 373 | // 'polar' base cells behave differently because they have all |
| 374 | // i neighbors. |
| 375 | if (oldBaseCell != 118 && oldBaseCell != 8 && |
| 376 | _h3LeadingNonZeroDigit(out) != JK_AXES_DIGIT) { |
| 377 | *rotations = *rotations + 1; |
| 378 | } |
| 379 | } else if (_h3LeadingNonZeroDigit(out) == IK_AXES_DIGIT && |
| 380 | !alreadyAdjustedKSubsequence) { |
| 381 | // account for distortion introduced to the 5 neighbor by the |
| 382 | // deleted k subsequence. |
| 383 | *rotations = *rotations + 1; |
| 384 | } |
| 385 | } |
| 386 | } else { |
| 387 | for (int i = 0; i < newRotations; i++) out = _h3Rotate60ccw(out); |
| 388 | } |
| 389 | |
| 390 | *rotations = (*rotations + newRotations) % 6; |
| 391 | |
| 392 | return out; |
| 393 | } |
| 394 | |
| 395 | /** |
| 396 | * hexRange produces indexes within k distance of the origin index. |
| 397 | * Output behavior is undefined when one of the indexes returned by this |
| 398 | * function is a pentagon or is in the pentagon distortion area. |
| 399 | * |
| 400 | * k-ring 0 is defined as the origin index, k-ring 1 is defined as k-ring 0 and |
| 401 | * all neighboring indexes, and so on. |
| 402 | * |
| 403 | * Output is placed in the provided array in order of increasing distance from |
| 404 | * the origin. |
| 405 | * |
| 406 | * @param origin Origin location. |
| 407 | * @param k k >= 0 |
| 408 | * @param out Array which must be of size maxKringSize(k). |
| 409 | * @return 0 if no pentagon or pentagonal distortion area was encountered. |
| 410 | */ |
| 411 | int H3_EXPORT(hexRange)(H3Index origin, int k, H3Index* out) { |
| 412 | return H3_EXPORT(hexRangeDistances)(origin, k, out, 0); |
| 413 | } |
| 414 | |
| 415 | /** |
| 416 | * hexRange produces indexes within k distance of the origin index. |
| 417 | * Output behavior is undefined when one of the indexes returned by this |
| 418 | * function is a pentagon or is in the pentagon distortion area. |
| 419 | * |
| 420 | * k-ring 0 is defined as the origin index, k-ring 1 is defined as k-ring 0 and |
| 421 | * all neighboring indexes, and so on. |
| 422 | * |
| 423 | * Output is placed in the provided array in order of increasing distance from |
| 424 | * the origin. The distances in hexagons is placed in the distances array at |
| 425 | * the same offset. |
| 426 | * |
| 427 | * @param origin Origin location. |
| 428 | * @param k k >= 0 |
| 429 | * @param out Array which must be of size maxKringSize(k). |
| 430 | * @param distances Null or array which must be of size maxKringSize(k). |
| 431 | * @return 0 if no pentagon or pentagonal distortion area was encountered. |
| 432 | */ |
| 433 | int H3_EXPORT(hexRangeDistances)(H3Index origin, int k, H3Index* out, |
| 434 | int* distances) { |
| 435 | // Return codes: |
| 436 | // 1 Pentagon was encountered |
| 437 | // 2 Pentagon distortion (deleted k subsequence) was encountered |
| 438 | // Pentagon being encountered is not itself a problem; really the deleted |
| 439 | // k-subsequence is the problem, but for compatibility reasons we fail on |
| 440 | // the pentagon. |
| 441 | |
| 442 | // k must be >= 0, so origin is always needed |
| 443 | int idx = 0; |
| 444 | out[idx] = origin; |
| 445 | if (distances) { |
| 446 | distances[idx] = 0; |
| 447 | } |
| 448 | idx++; |
| 449 | |
| 450 | if (H3_EXPORT(h3IsPentagon)(origin)) { |
| 451 | // Pentagon was encountered; bail out as user doesn't want this. |
| 452 | return HEX_RANGE_PENTAGON; |
| 453 | } |
| 454 | |
| 455 | // 0 < ring <= k, current ring |
| 456 | int ring = 1; |
| 457 | // 0 <= direction < 6, current side of the ring |
| 458 | int direction = 0; |
| 459 | // 0 <= i < ring, current position on the side of the ring |
| 460 | int i = 0; |
| 461 | // Number of 60 degree ccw rotations to perform on the direction (based on |
| 462 | // which faces have been crossed.) |
| 463 | int rotations = 0; |
| 464 | |
| 465 | while (ring <= k) { |
| 466 | if (direction == 0 && i == 0) { |
| 467 | // Not putting in the output set as it will be done later, at |
| 468 | // the end of this ring. |
| 469 | origin = |
| 470 | h3NeighborRotations(origin, NEXT_RING_DIRECTION, &rotations); |
| 471 | if (origin == 0) { |
| 472 | // Should not be possible because `origin` would have to be a |
| 473 | // pentagon |
| 474 | return HEX_RANGE_K_SUBSEQUENCE; // LCOV_EXCL_LINE |
| 475 | } |
| 476 | |
| 477 | if (H3_EXPORT(h3IsPentagon)(origin)) { |
| 478 | // Pentagon was encountered; bail out as user doesn't want this. |
| 479 | return HEX_RANGE_PENTAGON; |
| 480 | } |
| 481 | } |
| 482 | |
| 483 | origin = h3NeighborRotations(origin, DIRECTIONS[direction], &rotations); |
| 484 | if (origin == 0) { |
| 485 | // Should not be possible because `origin` would have to be a |
| 486 | // pentagon |
| 487 | return HEX_RANGE_K_SUBSEQUENCE; // LCOV_EXCL_LINE |
| 488 | } |
| 489 | out[idx] = origin; |
| 490 | if (distances) { |
| 491 | distances[idx] = ring; |
| 492 | } |
| 493 | idx++; |
| 494 | |
| 495 | i++; |
| 496 | // Check if end of this side of the k-ring |
| 497 | if (i == ring) { |
| 498 | i = 0; |
| 499 | direction++; |
| 500 | // Check if end of this ring. |
| 501 | if (direction == 6) { |
| 502 | direction = 0; |
| 503 | ring++; |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | if (H3_EXPORT(h3IsPentagon)(origin)) { |
| 508 | // Pentagon was encountered; bail out as user doesn't want this. |
| 509 | return HEX_RANGE_PENTAGON; |
| 510 | } |
| 511 | } |
| 512 | return HEX_RANGE_SUCCESS; |
| 513 | } |
| 514 | |
| 515 | /** |
| 516 | * hexRanges takes an array of input hex IDs and a max k-ring and returns an |
| 517 | * array of hexagon IDs sorted first by the original hex IDs and then by the |
| 518 | * k-ring (0 to max), with no guaranteed sorting within each k-ring group. |
| 519 | * |
| 520 | * @param h3Set A pointer to an array of H3Indexes |
| 521 | * @param length The total number of H3Indexes in h3Set |
| 522 | * @param k The number of rings to generate |
| 523 | * @param out A pointer to the output memory to dump the new set of H3Indexes to |
| 524 | * The memory block should be equal to maxKringSize(k) * length |
| 525 | * @return 0 if no pentagon is encountered. Cannot trust output otherwise |
| 526 | */ |
| 527 | int H3_EXPORT(hexRanges)(H3Index* h3Set, int length, int k, H3Index* out) { |
| 528 | int success = 0; |
| 529 | H3Index* segment; |
| 530 | int segmentSize = H3_EXPORT(maxKringSize)(k); |
| 531 | for (int i = 0; i < length; i++) { |
| 532 | // Determine the appropriate segment of the output array to operate on |
| 533 | segment = out + i * segmentSize; |
| 534 | success = H3_EXPORT(hexRange)(h3Set[i], k, segment); |
| 535 | if (success != 0) return success; |
| 536 | } |
| 537 | return 0; |
| 538 | } |
| 539 | |
| 540 | /** |
| 541 | * Returns the hollow hexagonal ring centered at origin with sides of length k. |
| 542 | * |
| 543 | * @param origin Origin location. |
| 544 | * @param k k >= 0 |
| 545 | * @param out Array which must be of size 6 * k (or 1 if k == 0) |
| 546 | * @return 0 if no pentagonal distortion was encountered. |
| 547 | */ |
| 548 | int H3_EXPORT(hexRing)(H3Index origin, int k, H3Index* out) { |
| 549 | // Short-circuit on 'identity' ring |
| 550 | if (k == 0) { |
| 551 | out[0] = origin; |
| 552 | return 0; |
| 553 | } |
| 554 | int idx = 0; |
| 555 | // Number of 60 degree ccw rotations to perform on the direction (based on |
| 556 | // which faces have been crossed.) |
| 557 | int rotations = 0; |
| 558 | // Scratch structure for checking for pentagons |
| 559 | if (H3_EXPORT(h3IsPentagon)(origin)) { |
| 560 | // Pentagon was encountered; bail out as user doesn't want this. |
| 561 | return HEX_RANGE_PENTAGON; |
| 562 | } |
| 563 | |
| 564 | for (int ring = 0; ring < k; ring++) { |
| 565 | origin = h3NeighborRotations(origin, NEXT_RING_DIRECTION, &rotations); |
| 566 | if (origin == 0) { |
| 567 | // Should not be possible because `origin` would have to be a |
| 568 | // pentagon |
| 569 | return HEX_RANGE_K_SUBSEQUENCE; // LCOV_EXCL_LINE |
| 570 | } |
| 571 | |
| 572 | if (H3_EXPORT(h3IsPentagon)(origin)) { |
| 573 | return HEX_RANGE_PENTAGON; |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | H3Index lastIndex = origin; |
| 578 | |
| 579 | out[idx] = origin; |
| 580 | idx++; |
| 581 | |
| 582 | for (int direction = 0; direction < 6; direction++) { |
| 583 | for (int pos = 0; pos < k; pos++) { |
| 584 | origin = |
| 585 | h3NeighborRotations(origin, DIRECTIONS[direction], &rotations); |
| 586 | if (origin == 0) { |
| 587 | // Should not be possible because `origin` would have to be a |
| 588 | // pentagon |
| 589 | return HEX_RANGE_K_SUBSEQUENCE; // LCOV_EXCL_LINE |
| 590 | } |
| 591 | |
| 592 | // Skip the very last index, it was already added. We do |
| 593 | // however need to traverse to it because of the pentagonal |
| 594 | // distortion check, below. |
| 595 | if (pos != k - 1 || direction != 5) { |
| 596 | out[idx] = origin; |
| 597 | idx++; |
| 598 | |
| 599 | if (H3_EXPORT(h3IsPentagon)(origin)) { |
| 600 | return HEX_RANGE_PENTAGON; |
| 601 | } |
| 602 | } |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | // Check that this matches the expected lastIndex, if it doesn't, |
| 607 | // it indicates pentagonal distortion occurred and we should report |
| 608 | // failure. |
| 609 | if (lastIndex != origin) { |
| 610 | return HEX_RANGE_PENTAGON; |
| 611 | } else { |
| 612 | return HEX_RANGE_SUCCESS; |
| 613 | } |
| 614 | } |
| 615 | |
| 616 | /** |
| 617 | * maxPolyfillSize returns the number of hexagons to allocate space for when |
| 618 | * performing a polyfill on the given GeoJSON-like data structure. |
| 619 | * |
| 620 | * Currently a laughably padded response, being a k-ring that wholly contains |
| 621 | * a bounding box of the GeoJSON, but still less wasted memory than initializing |
| 622 | * a Python application? ;) |
| 623 | * |
| 624 | * @param geoPolygon A GeoJSON-like data structure indicating the poly to fill |
| 625 | * @param res Hexagon resolution (0-15) |
| 626 | * @return number of hexagons to allocate for |
| 627 | */ |
| 628 | int H3_EXPORT(maxPolyfillSize)(const GeoPolygon* geoPolygon, int res) { |
| 629 | // Get the bounding box for the GeoJSON-like struct |
| 630 | BBox bbox; |
| 631 | bboxFromGeofence(&geoPolygon->geofence, &bbox); |
| 632 | int minK = bboxHexRadius(&bbox, res); |
| 633 | |
| 634 | // The total number of hexagons to allocate can now be determined by |
| 635 | // the k-ring hex allocation helper function. |
| 636 | return H3_EXPORT(maxKringSize)(minK); |
| 637 | } |
| 638 | |
| 639 | /** |
| 640 | * polyfill takes a given GeoJSON-like data structure and preallocated, |
| 641 | * zeroed memory, and fills it with the hexagons that are contained by |
| 642 | * the GeoJSON-like data structure. |
| 643 | * |
| 644 | * The current implementation is very primitive and slow, but correct, |
| 645 | * performing a point-in-poly operation on every hexagon in a k-ring defined |
| 646 | * around the given geofence. |
| 647 | * |
| 648 | * @param geoPolygon The geofence and holes defining the relevant area |
| 649 | * @param res The Hexagon resolution (0-15) |
| 650 | * @param out The slab of zeroed memory to write to. Assumed to be big enough. |
| 651 | */ |
| 652 | void H3_EXPORT(polyfill)(const GeoPolygon* geoPolygon, int res, H3Index* out) { |
| 653 | // One of the goals of the polyfill algorithm is that two adjacent polygons |
| 654 | // with zero overlap have zero overlapping hexagons. That the hexagons are |
| 655 | // uniquely assigned. There are a few approaches to take here, such as |
| 656 | // deciding based on which polygon has the greatest overlapping area of the |
| 657 | // hexagon, or the most number of contained points on the hexagon (using the |
| 658 | // center point as a tiebreaker). |
| 659 | // |
| 660 | // But if the polygons are convex, both of these more complex algorithms can |
| 661 | // be reduced down to checking whether or not the center of the hexagon is |
| 662 | // contained in the polygon, and so this is the approach that this polyfill |
| 663 | // algorithm will follow, as it's simpler, faster, and the error for concave |
| 664 | // polygons is still minimal (only affecting concave shapes on the order of |
| 665 | // magnitude of the hexagon size or smaller, not impacting larger concave |
| 666 | // shapes) |
| 667 | // |
| 668 | // This first part is identical to the maxPolyfillSize above. |
| 669 | |
| 670 | // Get the bounding boxes for the polygon and any holes |
| 671 | BBox* bboxes = malloc((geoPolygon->numHoles + 1) * sizeof(BBox)); |
| 672 | assert(bboxes != NULL); |
| 673 | bboxesFromGeoPolygon(geoPolygon, bboxes); |
| 674 | int minK = bboxHexRadius(&bboxes[0], res); |
| 675 | int numHexagons = H3_EXPORT(maxKringSize)(minK); |
| 676 | |
| 677 | // Get the center hex |
| 678 | GeoCoord center; |
| 679 | bboxCenter(&bboxes[0], ¢er); |
| 680 | H3Index centerH3 = H3_EXPORT(geoToH3)(¢er, res); |
| 681 | |
| 682 | // From here on it works differently, first we get all potential |
| 683 | // hexagons inserted into the available memory |
| 684 | H3_EXPORT(kRing)(centerH3, minK, out); |
| 685 | |
| 686 | // Next we iterate through each hexagon, and test its center point to see if |
| 687 | // it's contained in the GeoJSON-like struct |
| 688 | for (int i = 0; i < numHexagons; i++) { |
| 689 | // Skip records that are already zeroed |
| 690 | if (out[i] == 0) { |
| 691 | continue; |
| 692 | } |
| 693 | // Check if hexagon is inside of polygon |
| 694 | GeoCoord hexCenter; |
| 695 | H3_EXPORT(h3ToGeo)(out[i], &hexCenter); |
| 696 | hexCenter.lat = constrainLat(hexCenter.lat); |
| 697 | hexCenter.lon = constrainLng(hexCenter.lon); |
| 698 | // And remove from list if not |
| 699 | if (!pointInsidePolygon(geoPolygon, bboxes, &hexCenter)) { |
| 700 | out[i] = H3_INVALID_INDEX; |
| 701 | } |
| 702 | } |
| 703 | free(bboxes); |
| 704 | } |
| 705 | |
| 706 | /** |
| 707 | * Internal: Create a vertex graph from a set of hexagons. It is the |
| 708 | * responsibility of the caller to call destroyVertexGraph on the populated |
| 709 | * graph, otherwise the memory in the graph nodes will not be freed. |
| 710 | * @private |
| 711 | * @param h3Set Set of hexagons |
| 712 | * @param numHexes Number of hexagons in the set |
| 713 | * @param graph Output graph |
| 714 | */ |
| 715 | void h3SetToVertexGraph(const H3Index* h3Set, const int numHexes, |
| 716 | VertexGraph* graph) { |
| 717 | GeoBoundary vertices; |
| 718 | GeoCoord* fromVtx; |
| 719 | GeoCoord* toVtx; |
| 720 | VertexNode* edge; |
| 721 | if (numHexes < 1) { |
| 722 | // We still need to init the graph, or calls to destroyVertexGraph will |
| 723 | // fail |
| 724 | initVertexGraph(graph, 0, 0); |
| 725 | return; |
| 726 | } |
| 727 | int res = H3_GET_RESOLUTION(h3Set[0]); |
| 728 | const int minBuckets = 6; |
| 729 | // TODO: Better way to calculate/guess? |
| 730 | int numBuckets = numHexes > minBuckets ? numHexes : minBuckets; |
| 731 | initVertexGraph(graph, numBuckets, res); |
| 732 | // Iterate through every hexagon |
| 733 | for (int i = 0; i < numHexes; i++) { |
| 734 | H3_EXPORT(h3ToGeoBoundary)(h3Set[i], &vertices); |
| 735 | // iterate through every edge |
| 736 | for (int j = 0; j < vertices.numVerts; j++) { |
| 737 | fromVtx = &vertices.verts[j]; |
| 738 | toVtx = &vertices.verts[(j + 1) % vertices.numVerts]; |
| 739 | // If we've seen this edge already, it will be reversed |
| 740 | edge = findNodeForEdge(graph, toVtx, fromVtx); |
| 741 | if (edge != NULL) { |
| 742 | // If we've seen it, drop it. No edge is shared by more than 2 |
| 743 | // hexagons, so we'll never see it again. |
| 744 | removeVertexNode(graph, edge); |
| 745 | } else { |
| 746 | // Add a new node for this edge |
| 747 | addVertexNode(graph, fromVtx, toVtx); |
| 748 | } |
| 749 | } |
| 750 | } |
| 751 | } |
| 752 | |
| 753 | /** |
| 754 | * Internal: Create a LinkedGeoPolygon from a vertex graph. It is the |
| 755 | * responsibility of the caller to call destroyLinkedPolygon on the populated |
| 756 | * linked geo structure, or the memory for that structure will not be freed. |
| 757 | * @private |
| 758 | * @param graph Input graph |
| 759 | * @param out Output polygon |
| 760 | */ |
| 761 | void _vertexGraphToLinkedGeo(VertexGraph* graph, LinkedGeoPolygon* out) { |
| 762 | *out = (LinkedGeoPolygon){0}; |
| 763 | LinkedGeoLoop* loop; |
| 764 | VertexNode* edge; |
| 765 | GeoCoord nextVtx; |
| 766 | // Find the next unused entry point |
| 767 | while ((edge = firstVertexNode(graph)) != NULL) { |
| 768 | loop = addNewLinkedLoop(out); |
| 769 | // Walk the graph to get the outline |
| 770 | do { |
| 771 | addLinkedCoord(loop, &edge->from); |
| 772 | nextVtx = edge->to; |
| 773 | // Remove frees the node, so we can't use edge after this |
| 774 | removeVertexNode(graph, edge); |
| 775 | edge = findNodeForVertex(graph, &nextVtx); |
| 776 | } while (edge); |
| 777 | } |
| 778 | } |
| 779 | |
| 780 | /** |
| 781 | * Create a LinkedGeoPolygon describing the outline(s) of a set of hexagons. |
| 782 | * Polygon outlines will follow GeoJSON MultiPolygon order: Each polygon will |
| 783 | * have one outer loop, which is first in the list, followed by any holes. |
| 784 | * |
| 785 | * It is the responsibility of the caller to call destroyLinkedPolygon on the |
| 786 | * populated linked geo structure, or the memory for that structure will |
| 787 | * not be freed. |
| 788 | * |
| 789 | * It is expected that all hexagons in the set have the same resolution and |
| 790 | * that the set contains no duplicates. Behavior is undefined if duplicates |
| 791 | * or multiple resolutions are present, and the algorithm may produce |
| 792 | * unexpected or invalid output. |
| 793 | * |
| 794 | * @param h3Set Set of hexagons |
| 795 | * @param numHexes Number of hexagons in set |
| 796 | * @param out Output polygon |
| 797 | */ |
| 798 | void H3_EXPORT(h3SetToLinkedGeo)(const H3Index* h3Set, const int numHexes, |
| 799 | LinkedGeoPolygon* out) { |
| 800 | VertexGraph graph; |
| 801 | h3SetToVertexGraph(h3Set, numHexes, &graph); |
| 802 | _vertexGraphToLinkedGeo(&graph, out); |
| 803 | // TODO: The return value, possibly indicating an error, is discarded here - |
| 804 | // we should use this when we update the API to return a value |
| 805 | normalizeMultiPolygon(out); |
| 806 | destroyVertexGraph(&graph); |
| 807 | } |
| 808 | |