| 1 | /* |
| 2 | * Copyright (c) 2015-2017, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | #include "fdr.h" |
| 30 | #include "fdr_confirm.h" |
| 31 | #include "fdr_confirm_runtime.h" |
| 32 | #include "fdr_internal.h" |
| 33 | #include "fdr_loadval.h" |
| 34 | #include "flood_runtime.h" |
| 35 | #include "scratch.h" |
| 36 | #include "teddy.h" |
| 37 | #include "teddy_internal.h" |
| 38 | #include "util/arch.h" |
| 39 | #include "util/simd_utils.h" |
| 40 | #include "util/uniform_ops.h" |
| 41 | |
| 42 | /** \brief number of bytes processed in each iteration */ |
| 43 | #define ITER_BYTES 16 |
| 44 | |
| 45 | /** \brief total zone buffer size */ |
| 46 | #define ZONE_TOTAL_SIZE 64 |
| 47 | |
| 48 | /** \brief maximum number of allowed zones */ |
| 49 | #define ZONE_MAX 3 |
| 50 | |
| 51 | /** \brief zone information. |
| 52 | * |
| 53 | * Zone represents a region of data to scan in FDR. |
| 54 | * |
| 55 | * The incoming buffer is to split in multiple zones to ensure two properties: |
| 56 | * 1: that we can read 8? bytes behind to generate a hash safely |
| 57 | * 2: that we can read the 3 byte after the current byte (domain > 8) |
| 58 | */ |
| 59 | struct zone { |
| 60 | /** \brief copied buffer, used only when it is a boundary zone. */ |
| 61 | u8 ALIGN_CL_DIRECTIVE buf[ZONE_TOTAL_SIZE]; |
| 62 | |
| 63 | /** \brief shift amount for fdr state to avoid unwanted match. */ |
| 64 | u8 shift; |
| 65 | |
| 66 | /** \brief if boundary zone, start points into the zone buffer after the |
| 67 | * pre-padding. Otherwise, points to the main buffer, appropriately. */ |
| 68 | const u8 *start; |
| 69 | |
| 70 | /** \brief if boundary zone, end points to the end of zone. Otherwise, |
| 71 | * pointer to the main buffer, appropriately. */ |
| 72 | const u8 *end; |
| 73 | |
| 74 | /** \brief the amount to adjust to go from a pointer in the zones region |
| 75 | * (between start and end) to a pointer in the original data buffer. */ |
| 76 | ptrdiff_t zone_pointer_adjust; |
| 77 | |
| 78 | /** \brief firstFloodDetect from FDR_Runtime_Args for non-boundary zones, |
| 79 | * otherwise end of the zone buf. floodPtr always points inside the same |
| 80 | * buffer as the start pointe. */ |
| 81 | const u8 *floodPtr; |
| 82 | }; |
| 83 | |
| 84 | static |
| 85 | const ALIGN_CL_DIRECTIVE u8 zone_or_mask[ITER_BYTES+1][ITER_BYTES] = { |
| 86 | { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 87 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| 88 | { 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 89 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| 90 | { 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 91 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| 92 | { 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 93 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| 94 | { 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, |
| 95 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| 96 | { 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, |
| 97 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| 98 | { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, |
| 99 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| 100 | { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, |
| 101 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| 102 | { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 103 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| 104 | { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 105 | 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| 106 | { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 107 | 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| 108 | { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 109 | 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00 }, |
| 110 | { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 111 | 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00 }, |
| 112 | { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 113 | 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00 }, |
| 114 | { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 115 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00 }, |
| 116 | { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 117 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 }, |
| 118 | { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 119 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } |
| 120 | }; |
| 121 | |
| 122 | /* compilers don't reliably synthesize the 32-bit ANDN instruction here, |
| 123 | * so we force its generation. |
| 124 | */ |
| 125 | static really_inline |
| 126 | u64a andn(const u32 a, const u8 *b) { |
| 127 | u64a r; |
| 128 | #if defined(HAVE_BMI) && !defined(NO_ASM) |
| 129 | __asm__ ("andn\t%2,%1,%k0" : "=r" (r) : "r" (a), "m" (*(const u32 *)b)); |
| 130 | #else |
| 131 | r = unaligned_load_u32(b) & ~a; |
| 132 | #endif |
| 133 | return r; |
| 134 | } |
| 135 | |
| 136 | /* generates an initial state mask based on the last byte-ish of history rather |
| 137 | * than being all accepting. If there is no history to consider, the state is |
| 138 | * generated based on the minimum length of each bucket in order to prevent |
| 139 | * confirms. |
| 140 | */ |
| 141 | static really_inline |
| 142 | m128 getInitState(const struct FDR *fdr, u8 len_history, const u64a *ft, |
| 143 | const struct zone *z) { |
| 144 | m128 s; |
| 145 | if (len_history) { |
| 146 | /* +1: the zones ensure that we can read the byte at z->end */ |
| 147 | u32 tmp = lv_u16(z->start + z->shift - 1, z->buf, z->end + 1); |
| 148 | tmp &= fdr->domainMask; |
| 149 | s = load_m128_from_u64a(ft + tmp); |
| 150 | s = rshiftbyte_m128(s, 1); |
| 151 | } else { |
| 152 | s = fdr->start; |
| 153 | } |
| 154 | return s; |
| 155 | } |
| 156 | |
| 157 | static really_inline |
| 158 | void get_conf_stride_1(const u8 *itPtr, UNUSED const u8 *start_ptr, |
| 159 | UNUSED const u8 *end_ptr, u32 domain_mask_flipped, |
| 160 | const u64a *ft, u64a *conf0, u64a *conf8, m128 *s) { |
| 161 | /* +1: the zones ensure that we can read the byte at z->end */ |
| 162 | assert(itPtr >= start_ptr && itPtr + ITER_BYTES <= end_ptr); |
| 163 | u64a reach0 = andn(domain_mask_flipped, itPtr); |
| 164 | u64a reach1 = andn(domain_mask_flipped, itPtr + 1); |
| 165 | u64a reach2 = andn(domain_mask_flipped, itPtr + 2); |
| 166 | u64a reach3 = andn(domain_mask_flipped, itPtr + 3); |
| 167 | |
| 168 | m128 st0 = load_m128_from_u64a(ft + reach0); |
| 169 | m128 st1 = load_m128_from_u64a(ft + reach1); |
| 170 | m128 st2 = load_m128_from_u64a(ft + reach2); |
| 171 | m128 st3 = load_m128_from_u64a(ft + reach3); |
| 172 | |
| 173 | u64a reach4 = andn(domain_mask_flipped, itPtr + 4); |
| 174 | u64a reach5 = andn(domain_mask_flipped, itPtr + 5); |
| 175 | u64a reach6 = andn(domain_mask_flipped, itPtr + 6); |
| 176 | u64a reach7 = andn(domain_mask_flipped, itPtr + 7); |
| 177 | |
| 178 | m128 st4 = load_m128_from_u64a(ft + reach4); |
| 179 | m128 st5 = load_m128_from_u64a(ft + reach5); |
| 180 | m128 st6 = load_m128_from_u64a(ft + reach6); |
| 181 | m128 st7 = load_m128_from_u64a(ft + reach7); |
| 182 | |
| 183 | st1 = lshiftbyte_m128(st1, 1); |
| 184 | st2 = lshiftbyte_m128(st2, 2); |
| 185 | st3 = lshiftbyte_m128(st3, 3); |
| 186 | st4 = lshiftbyte_m128(st4, 4); |
| 187 | st5 = lshiftbyte_m128(st5, 5); |
| 188 | st6 = lshiftbyte_m128(st6, 6); |
| 189 | st7 = lshiftbyte_m128(st7, 7); |
| 190 | |
| 191 | st0 = or128(st0, st1); |
| 192 | st2 = or128(st2, st3); |
| 193 | st4 = or128(st4, st5); |
| 194 | st6 = or128(st6, st7); |
| 195 | st0 = or128(st0, st2); |
| 196 | st4 = or128(st4, st6); |
| 197 | st0 = or128(st0, st4); |
| 198 | *s = or128(*s, st0); |
| 199 | |
| 200 | *conf0 = movq(*s); |
| 201 | *s = rshiftbyte_m128(*s, 8); |
| 202 | *conf0 ^= ~0ULL; |
| 203 | |
| 204 | u64a reach8 = andn(domain_mask_flipped, itPtr + 8); |
| 205 | u64a reach9 = andn(domain_mask_flipped, itPtr + 9); |
| 206 | u64a reach10 = andn(domain_mask_flipped, itPtr + 10); |
| 207 | u64a reach11 = andn(domain_mask_flipped, itPtr + 11); |
| 208 | |
| 209 | m128 st8 = load_m128_from_u64a(ft + reach8); |
| 210 | m128 st9 = load_m128_from_u64a(ft + reach9); |
| 211 | m128 st10 = load_m128_from_u64a(ft + reach10); |
| 212 | m128 st11 = load_m128_from_u64a(ft + reach11); |
| 213 | |
| 214 | u64a reach12 = andn(domain_mask_flipped, itPtr + 12); |
| 215 | u64a reach13 = andn(domain_mask_flipped, itPtr + 13); |
| 216 | u64a reach14 = andn(domain_mask_flipped, itPtr + 14); |
| 217 | u64a reach15 = andn(domain_mask_flipped, itPtr + 15); |
| 218 | |
| 219 | m128 st12 = load_m128_from_u64a(ft + reach12); |
| 220 | m128 st13 = load_m128_from_u64a(ft + reach13); |
| 221 | m128 st14 = load_m128_from_u64a(ft + reach14); |
| 222 | m128 st15 = load_m128_from_u64a(ft + reach15); |
| 223 | |
| 224 | st9 = lshiftbyte_m128(st9, 1); |
| 225 | st10 = lshiftbyte_m128(st10, 2); |
| 226 | st11 = lshiftbyte_m128(st11, 3); |
| 227 | st12 = lshiftbyte_m128(st12, 4); |
| 228 | st13 = lshiftbyte_m128(st13, 5); |
| 229 | st14 = lshiftbyte_m128(st14, 6); |
| 230 | st15 = lshiftbyte_m128(st15, 7); |
| 231 | |
| 232 | st8 = or128(st8, st9); |
| 233 | st10 = or128(st10, st11); |
| 234 | st12 = or128(st12, st13); |
| 235 | st14 = or128(st14, st15); |
| 236 | st8 = or128(st8, st10); |
| 237 | st12 = or128(st12, st14); |
| 238 | st8 = or128(st8, st12); |
| 239 | *s = or128(*s, st8); |
| 240 | |
| 241 | *conf8 = movq(*s); |
| 242 | *s = rshiftbyte_m128(*s, 8); |
| 243 | *conf8 ^= ~0ULL; |
| 244 | } |
| 245 | |
| 246 | static really_inline |
| 247 | void get_conf_stride_2(const u8 *itPtr, UNUSED const u8 *start_ptr, |
| 248 | UNUSED const u8 *end_ptr, u32 domain_mask_flipped, |
| 249 | const u64a *ft, u64a *conf0, u64a *conf8, m128 *s) { |
| 250 | assert(itPtr >= start_ptr && itPtr + ITER_BYTES <= end_ptr); |
| 251 | u64a reach0 = andn(domain_mask_flipped, itPtr); |
| 252 | u64a reach2 = andn(domain_mask_flipped, itPtr + 2); |
| 253 | u64a reach4 = andn(domain_mask_flipped, itPtr + 4); |
| 254 | u64a reach6 = andn(domain_mask_flipped, itPtr + 6); |
| 255 | |
| 256 | m128 st0 = load_m128_from_u64a(ft + reach0); |
| 257 | m128 st2 = load_m128_from_u64a(ft + reach2); |
| 258 | m128 st4 = load_m128_from_u64a(ft + reach4); |
| 259 | m128 st6 = load_m128_from_u64a(ft + reach6); |
| 260 | |
| 261 | u64a reach8 = andn(domain_mask_flipped, itPtr + 8); |
| 262 | u64a reach10 = andn(domain_mask_flipped, itPtr + 10); |
| 263 | u64a reach12 = andn(domain_mask_flipped, itPtr + 12); |
| 264 | u64a reach14 = andn(domain_mask_flipped, itPtr + 14); |
| 265 | |
| 266 | m128 st8 = load_m128_from_u64a(ft + reach8); |
| 267 | m128 st10 = load_m128_from_u64a(ft + reach10); |
| 268 | m128 st12 = load_m128_from_u64a(ft + reach12); |
| 269 | m128 st14 = load_m128_from_u64a(ft + reach14); |
| 270 | |
| 271 | st2 = lshiftbyte_m128(st2, 2); |
| 272 | st4 = lshiftbyte_m128(st4, 4); |
| 273 | st6 = lshiftbyte_m128(st6, 6); |
| 274 | |
| 275 | *s = or128(*s, st0); |
| 276 | *s = or128(*s, st2); |
| 277 | *s = or128(*s, st4); |
| 278 | *s = or128(*s, st6); |
| 279 | |
| 280 | *conf0 = movq(*s); |
| 281 | *s = rshiftbyte_m128(*s, 8); |
| 282 | *conf0 ^= ~0ULL; |
| 283 | |
| 284 | st10 = lshiftbyte_m128(st10, 2); |
| 285 | st12 = lshiftbyte_m128(st12, 4); |
| 286 | st14 = lshiftbyte_m128(st14, 6); |
| 287 | |
| 288 | *s = or128(*s, st8); |
| 289 | *s = or128(*s, st10); |
| 290 | *s = or128(*s, st12); |
| 291 | *s = or128(*s, st14); |
| 292 | |
| 293 | *conf8 = movq(*s); |
| 294 | *s = rshiftbyte_m128(*s, 8); |
| 295 | *conf8 ^= ~0ULL; |
| 296 | } |
| 297 | |
| 298 | static really_inline |
| 299 | void get_conf_stride_4(const u8 *itPtr, UNUSED const u8 *start_ptr, |
| 300 | UNUSED const u8 *end_ptr, u32 domain_mask_flipped, |
| 301 | const u64a *ft, u64a *conf0, u64a *conf8, m128 *s) { |
| 302 | assert(itPtr >= start_ptr && itPtr + ITER_BYTES <= end_ptr); |
| 303 | u64a reach0 = andn(domain_mask_flipped, itPtr); |
| 304 | u64a reach4 = andn(domain_mask_flipped, itPtr + 4); |
| 305 | u64a reach8 = andn(domain_mask_flipped, itPtr + 8); |
| 306 | u64a reach12 = andn(domain_mask_flipped, itPtr + 12); |
| 307 | |
| 308 | m128 st0 = load_m128_from_u64a(ft + reach0); |
| 309 | m128 st4 = load_m128_from_u64a(ft + reach4); |
| 310 | m128 st8 = load_m128_from_u64a(ft + reach8); |
| 311 | m128 st12 = load_m128_from_u64a(ft + reach12); |
| 312 | |
| 313 | st4 = lshiftbyte_m128(st4, 4); |
| 314 | st12 = lshiftbyte_m128(st12, 4); |
| 315 | |
| 316 | *s = or128(*s, st0); |
| 317 | *s = or128(*s, st4); |
| 318 | *conf0 = movq(*s); |
| 319 | *s = rshiftbyte_m128(*s, 8); |
| 320 | *conf0 ^= ~0ULL; |
| 321 | |
| 322 | *s = or128(*s, st8); |
| 323 | *s = or128(*s, st12); |
| 324 | *conf8 = movq(*s); |
| 325 | *s = rshiftbyte_m128(*s, 8); |
| 326 | *conf8 ^= ~0ULL; |
| 327 | } |
| 328 | |
| 329 | static really_inline |
| 330 | void do_confirm_fdr(u64a *conf, u8 offset, hwlmcb_rv_t *control, |
| 331 | const u32 *confBase, const struct FDR_Runtime_Args *a, |
| 332 | const u8 *ptr, u32 *last_match_id, struct zone *z) { |
| 333 | const u8 bucket = 8; |
| 334 | |
| 335 | if (likely(!*conf)) { |
| 336 | return; |
| 337 | } |
| 338 | |
| 339 | /* ptr is currently referring to a location in the zone's buffer, we also |
| 340 | * need a pointer in the original, main buffer for the final string compare. |
| 341 | */ |
| 342 | const u8 *ptr_main = (const u8 *)((uintptr_t)ptr + z->zone_pointer_adjust); |
| 343 | |
| 344 | const u8 *confLoc = ptr; |
| 345 | |
| 346 | do { |
| 347 | u32 bit = findAndClearLSB_64(conf); |
| 348 | u32 byte = bit / bucket + offset; |
| 349 | u32 bitRem = bit % bucket; |
| 350 | u32 idx = bitRem; |
| 351 | u32 cf = confBase[idx]; |
| 352 | if (!cf) { |
| 353 | continue; |
| 354 | } |
| 355 | const struct FDRConfirm *fdrc = (const struct FDRConfirm *) |
| 356 | ((const u8 *)confBase + cf); |
| 357 | if (!(fdrc->groups & *control)) { |
| 358 | continue; |
| 359 | } |
| 360 | u64a confVal = unaligned_load_u64a(confLoc + byte - sizeof(u64a) + 1); |
| 361 | confWithBit(fdrc, a, ptr_main - a->buf + byte, control, |
| 362 | last_match_id, confVal, conf, bit); |
| 363 | } while (unlikely(!!*conf)); |
| 364 | } |
| 365 | |
| 366 | static really_inline |
| 367 | void dumpZoneInfo(UNUSED struct zone *z, UNUSED size_t zone_id) { |
| 368 | #ifdef DEBUG |
| 369 | DEBUG_PRINTF("zone: zone=%zu, bufPtr=%p\n" , zone_id, z->buf); |
| 370 | DEBUG_PRINTF("zone: startPtr=%p, endPtr=%p, shift=%u\n" , |
| 371 | z->start, z->end, z->shift); |
| 372 | DEBUG_PRINTF("zone: zone_pointer_adjust=%zd, floodPtr=%p\n" , |
| 373 | z->zone_pointer_adjust, z->floodPtr); |
| 374 | DEBUG_PRINTF("zone buf:" ); |
| 375 | for (size_t i = 0; i < ZONE_TOTAL_SIZE; i++) { |
| 376 | if (i % 8 == 0) { |
| 377 | printf("_" ); |
| 378 | } |
| 379 | if (z->buf[i]) { |
| 380 | printf("%02x" , z->buf[i]); |
| 381 | } else { |
| 382 | printf(".." ); |
| 383 | } |
| 384 | } |
| 385 | printf("\n" ); |
| 386 | #endif |
| 387 | }; |
| 388 | |
| 389 | /** |
| 390 | * \brief Updates attributes for non-boundary region zone. |
| 391 | */ |
| 392 | static really_inline |
| 393 | void createMainZone(const u8 *flood, const u8 *begin, const u8 *end, |
| 394 | struct zone *z) { |
| 395 | z->zone_pointer_adjust = 0; /* zone buffer is the main buffer */ |
| 396 | z->start = begin; |
| 397 | z->end = end; |
| 398 | z->floodPtr = flood; |
| 399 | z->shift = 0; |
| 400 | } |
| 401 | |
| 402 | /** |
| 403 | * \brief Create zone for short cases (<= ITER_BYTES). |
| 404 | * |
| 405 | * For this case we need to copy everything into the zone's internal buffer. |
| 406 | * |
| 407 | * We need to ensure that we run over real data if it exists (in history or |
| 408 | * before zone begin). We also need to ensure 8 bytes before any data being |
| 409 | * matched can be read (to perform a conf hash). |
| 410 | * |
| 411 | * We also need to ensure that the data at z->end can be read. |
| 412 | * |
| 413 | * Hence, the zone consists of: |
| 414 | * 16 bytes of history, |
| 415 | * 1 - 24 bytes of data form the buffer (ending at end), |
| 416 | * 1 byte of final padding |
| 417 | */ |
| 418 | static really_inline |
| 419 | void createShortZone(const u8 *buf, const u8 *hend, const u8 *begin, |
| 420 | const u8 *end, struct zone *z) { |
| 421 | /* the floodPtr for BOUNDARY zones are maximum of end of zone buf to avoid |
| 422 | * the checks in boundary zone. */ |
| 423 | z->floodPtr = z->buf + ZONE_TOTAL_SIZE; |
| 424 | |
| 425 | ptrdiff_t z_len = end - begin; |
| 426 | assert(z_len > 0); |
| 427 | assert(z_len <= ITER_BYTES); |
| 428 | |
| 429 | z->shift = ITER_BYTES - z_len; /* ignore bytes outside region specified */ |
| 430 | |
| 431 | static const size_t ZONE_SHORT_DATA_OFFSET = 16; /* after history */ |
| 432 | |
| 433 | /* we are guaranteed to always have 16 initialised bytes at the end of |
| 434 | * the history buffer (they may be garbage coming from the stream state |
| 435 | * preceding hbuf, but bytes that don't correspond to actual history |
| 436 | * shouldn't affect computations). */ |
| 437 | *(m128 *)z->buf = loadu128(hend - sizeof(m128)); |
| 438 | |
| 439 | /* The amount of data we have to copy from main buffer. */ |
| 440 | size_t copy_len = MIN((size_t)(end - buf), |
| 441 | ITER_BYTES + sizeof(CONF_TYPE)); |
| 442 | |
| 443 | u8 *zone_data = z->buf + ZONE_SHORT_DATA_OFFSET; |
| 444 | switch (copy_len) { |
| 445 | case 1: |
| 446 | *zone_data = *(end - 1); |
| 447 | break; |
| 448 | case 2: |
| 449 | *(u16 *)zone_data = unaligned_load_u16(end - 2); |
| 450 | break; |
| 451 | case 3: |
| 452 | *(u16 *)zone_data = unaligned_load_u16(end - 3); |
| 453 | *(zone_data + 2) = *(end - 1); |
| 454 | break; |
| 455 | case 4: |
| 456 | *(u32 *)zone_data = unaligned_load_u32(end - 4); |
| 457 | break; |
| 458 | case 5: |
| 459 | case 6: |
| 460 | case 7: |
| 461 | /* perform copy with 2 overlapping 4-byte chunks from buf. */ |
| 462 | *(u32 *)zone_data = unaligned_load_u32(end - copy_len); |
| 463 | unaligned_store_u32(zone_data + copy_len - sizeof(u32), |
| 464 | unaligned_load_u32(end - sizeof(u32))); |
| 465 | break; |
| 466 | case 8: |
| 467 | *(u64a *)zone_data = unaligned_load_u64a(end - 8); |
| 468 | break; |
| 469 | case 9: |
| 470 | case 10: |
| 471 | case 11: |
| 472 | case 12: |
| 473 | case 13: |
| 474 | case 14: |
| 475 | case 15: |
| 476 | /* perform copy with 2 overlapping 8-byte chunks from buf. */ |
| 477 | *(u64a *)zone_data = unaligned_load_u64a(end - copy_len); |
| 478 | unaligned_store_u64a(zone_data + copy_len - sizeof(u64a), |
| 479 | unaligned_load_u64a(end - sizeof(u64a))); |
| 480 | break; |
| 481 | case 16: |
| 482 | /* copy 16-bytes from buf. */ |
| 483 | *(m128 *)zone_data = loadu128(end - 16); |
| 484 | break; |
| 485 | default: |
| 486 | assert(copy_len <= sizeof(m128) + sizeof(u64a)); |
| 487 | |
| 488 | /* perform copy with (potentially overlapping) 8-byte and 16-byte chunks. |
| 489 | */ |
| 490 | *(u64a *)zone_data = unaligned_load_u64a(end - copy_len); |
| 491 | storeu128(zone_data + copy_len - sizeof(m128), |
| 492 | loadu128(end - sizeof(m128))); |
| 493 | break; |
| 494 | } |
| 495 | |
| 496 | /* set the start and end location of the zone buf |
| 497 | * to be scanned */ |
| 498 | u8 *z_end = z->buf + ZONE_SHORT_DATA_OFFSET + copy_len; |
| 499 | assert(ZONE_SHORT_DATA_OFFSET + copy_len >= ITER_BYTES); |
| 500 | |
| 501 | /* copy the post-padding byte; this is required for domain > 8 due to |
| 502 | * overhang */ |
| 503 | assert(ZONE_SHORT_DATA_OFFSET + copy_len + 3 < 64); |
| 504 | *z_end = 0; |
| 505 | |
| 506 | z->end = z_end; |
| 507 | z->start = z_end - ITER_BYTES; |
| 508 | z->zone_pointer_adjust = (ptrdiff_t)((uintptr_t)end - (uintptr_t)z_end); |
| 509 | assert(z->start + z->shift == z_end - z_len); |
| 510 | } |
| 511 | |
| 512 | /** |
| 513 | * \brief Create a zone for the start region. |
| 514 | * |
| 515 | * This function requires that there is > ITER_BYTES of data in the buffer to |
| 516 | * scan. The start zone itself is always responsible for scanning exactly |
| 517 | * ITER_BYTES of data - there are no warmup/junk bytes scanned. |
| 518 | * |
| 519 | * This zone ensures that the byte at z->end can be read and corresponds to |
| 520 | * the next byte of data. |
| 521 | * |
| 522 | * 8 bytes of history data are provided before z->start to allow proper hash |
| 523 | * generation in streaming mode. If buf != begin, upto 8 bytes of data |
| 524 | * prior to begin is also provided. |
| 525 | * |
| 526 | * Although we are not interested in bare literals which start before begin |
| 527 | * if buf != begin, lookarounds associated with the literal may require |
| 528 | * the data prior to begin for hash purposes. |
| 529 | */ |
| 530 | static really_inline |
| 531 | void createStartZone(const u8 *buf, const u8 *hend, const u8 *begin, |
| 532 | struct zone *z) { |
| 533 | assert(ITER_BYTES == sizeof(m128)); |
| 534 | assert(sizeof(CONF_TYPE) == 8); |
| 535 | static const size_t ZONE_START_BEGIN = sizeof(CONF_TYPE); |
| 536 | |
| 537 | const u8 *end = begin + ITER_BYTES; |
| 538 | |
| 539 | /* set floodPtr to the end of zone buf to avoid checks in start zone */ |
| 540 | z->floodPtr = z->buf + ZONE_TOTAL_SIZE; |
| 541 | |
| 542 | z->shift = 0; /* we are processing ITER_BYTES of real data */ |
| 543 | |
| 544 | /* we are guaranteed to always have 16 initialised bytes at the end of the |
| 545 | * history buffer (they may be garbage coming from the stream state |
| 546 | * preceding hbuf, but bytes that don't correspond to actual history |
| 547 | * shouldn't affect computations). However, for start zones, history is only |
| 548 | * required for conf hash purposes so we only need 8 bytes */ |
| 549 | unaligned_store_u64a(z->buf, unaligned_load_u64a(hend - sizeof(u64a))); |
| 550 | |
| 551 | /* The amount of data we have to copy from main buffer. */ |
| 552 | size_t copy_len = MIN((size_t)(end - buf), |
| 553 | ITER_BYTES + sizeof(CONF_TYPE)); |
| 554 | assert(copy_len >= 16); |
| 555 | |
| 556 | /* copy the post-padding byte; this is required for domain > 8 due to |
| 557 | * overhang. The start requires that there is data after the zone so it |
| 558 | * it safe to dereference end */ |
| 559 | z->buf[ZONE_START_BEGIN + copy_len] = *end; |
| 560 | |
| 561 | /* set the start and end location of the zone buf to be scanned */ |
| 562 | u8 *z_end = z->buf + ZONE_START_BEGIN + copy_len; |
| 563 | z->end = z_end; |
| 564 | z->start = z_end - ITER_BYTES; |
| 565 | |
| 566 | /* copy the first 8 bytes of the valid region */ |
| 567 | unaligned_store_u64a(z->buf + ZONE_START_BEGIN, |
| 568 | unaligned_load_u64a(end - copy_len)); |
| 569 | |
| 570 | /* copy the last 16 bytes, may overlap with the previous 8 byte write */ |
| 571 | storeu128(z_end - sizeof(m128), loadu128(end - sizeof(m128))); |
| 572 | |
| 573 | z->zone_pointer_adjust = (ptrdiff_t)((uintptr_t)end - (uintptr_t)z_end); |
| 574 | |
| 575 | assert(ZONE_START_BEGIN + copy_len + 3 < 64); |
| 576 | } |
| 577 | |
| 578 | /** |
| 579 | * \brief Create a zone for the end region. |
| 580 | * |
| 581 | * This function requires that there is > ITER_BYTES of data in the buffer to |
| 582 | * scan. The end zone is responsible for a scanning the <= ITER_BYTES rump of |
| 583 | * data and optional ITER_BYTES. The main zone cannot handle the last 3 bytes |
| 584 | * of the buffer. The end zone is required to handle an optional full |
| 585 | * ITER_BYTES from main zone when there are less than 3 bytes to scan. The |
| 586 | * main zone size is reduced by ITER_BYTES in this case. |
| 587 | * |
| 588 | * This zone ensures that the byte at z->end can be read by filling it with a |
| 589 | * padding character. |
| 590 | * |
| 591 | * Upto 8 bytes of data prior to begin is also provided for the purposes of |
| 592 | * generating hashes. History is not copied, as all locations which require |
| 593 | * history for generating a hash are the responsiblity of the start zone. |
| 594 | */ |
| 595 | static really_inline |
| 596 | void createEndZone(const u8 *buf, const u8 *begin, const u8 *end, |
| 597 | struct zone *z) { |
| 598 | /* the floodPtr for BOUNDARY zones are maximum of end of zone buf to avoid |
| 599 | * the checks in boundary zone. */ |
| 600 | z->floodPtr = z->buf + ZONE_TOTAL_SIZE; |
| 601 | |
| 602 | ptrdiff_t z_len = end - begin; |
| 603 | assert(z_len > 0); |
| 604 | size_t iter_bytes_second = 0; |
| 605 | size_t z_len_first = z_len; |
| 606 | if (z_len > ITER_BYTES) { |
| 607 | z_len_first = z_len - ITER_BYTES; |
| 608 | iter_bytes_second = ITER_BYTES; |
| 609 | } |
| 610 | z->shift = ITER_BYTES - z_len_first; |
| 611 | |
| 612 | const u8 *end_first = end - iter_bytes_second; |
| 613 | /* The amount of data we have to copy from main buffer for the |
| 614 | * first iteration. */ |
| 615 | size_t copy_len_first = MIN((size_t)(end_first - buf), |
| 616 | ITER_BYTES + sizeof(CONF_TYPE)); |
| 617 | assert(copy_len_first >= 16); |
| 618 | |
| 619 | size_t total_copy_len = copy_len_first + iter_bytes_second; |
| 620 | assert(total_copy_len + 3 < 64); |
| 621 | |
| 622 | /* copy the post-padding byte; this is required for domain > 8 due to |
| 623 | * overhang */ |
| 624 | z->buf[total_copy_len] = 0; |
| 625 | |
| 626 | /* set the start and end location of the zone buf |
| 627 | * to be scanned */ |
| 628 | u8 *z_end = z->buf + total_copy_len; |
| 629 | z->end = z_end; |
| 630 | z->start = z_end - ITER_BYTES - iter_bytes_second; |
| 631 | assert(z->start + z->shift == z_end - z_len); |
| 632 | |
| 633 | u8 *z_end_first = z_end - iter_bytes_second; |
| 634 | /* copy the first 8 bytes of the valid region */ |
| 635 | unaligned_store_u64a(z->buf, |
| 636 | unaligned_load_u64a(end_first - copy_len_first)); |
| 637 | |
| 638 | /* copy the last 16 bytes, may overlap with the previous 8 byte write */ |
| 639 | storeu128(z_end_first - sizeof(m128), loadu128(end_first - sizeof(m128))); |
| 640 | if (iter_bytes_second) { |
| 641 | storeu128(z_end - sizeof(m128), loadu128(end - sizeof(m128))); |
| 642 | } |
| 643 | |
| 644 | z->zone_pointer_adjust = (ptrdiff_t)((uintptr_t)end - (uintptr_t)z_end); |
| 645 | } |
| 646 | |
| 647 | /** |
| 648 | * \brief Prepare zones. |
| 649 | * |
| 650 | * This function prepares zones with actual buffer and some padded bytes. |
| 651 | * The actual ITER_BYTES bytes in zone is preceded by main buf and/or |
| 652 | * history buf and succeeded by padded bytes possibly from main buf, |
| 653 | * if available. |
| 654 | */ |
| 655 | static really_inline |
| 656 | size_t prepareZones(const u8 *buf, size_t len, const u8 *hend, |
| 657 | size_t start, const u8 *flood, struct zone *zoneArr) { |
| 658 | const u8 *ptr = buf + start; |
| 659 | size_t remaining = len - start; |
| 660 | |
| 661 | if (remaining <= ITER_BYTES) { |
| 662 | /* enough bytes to make only one zone */ |
| 663 | createShortZone(buf, hend, ptr, buf + len, &zoneArr[0]); |
| 664 | return 1; |
| 665 | } |
| 666 | |
| 667 | /* enough bytes to make more than one zone */ |
| 668 | |
| 669 | size_t numZone = 0; |
| 670 | createStartZone(buf, hend, ptr, &zoneArr[numZone++]); |
| 671 | ptr += ITER_BYTES; |
| 672 | |
| 673 | assert(ptr < buf + len); |
| 674 | |
| 675 | /* find maximum buffer location that the main zone can scan |
| 676 | * - must be a multiple of ITER_BYTES, and |
| 677 | * - cannot contain the last 3 bytes (due to 3 bytes read behind the |
| 678 | end of buffer in FDR main loop) |
| 679 | */ |
| 680 | const u8 *main_end = buf + start + ROUNDDOWN_N(len - start - 3, ITER_BYTES); |
| 681 | |
| 682 | /* create a zone if multiple of ITER_BYTES are found */ |
| 683 | if (main_end > ptr) { |
| 684 | createMainZone(flood, ptr, main_end, &zoneArr[numZone++]); |
| 685 | ptr = main_end; |
| 686 | } |
| 687 | /* create a zone with rest of the data from the main buffer */ |
| 688 | createEndZone(buf, ptr, buf + len, &zoneArr[numZone++]); |
| 689 | return numZone; |
| 690 | } |
| 691 | |
| 692 | #define INVALID_MATCH_ID (~0U) |
| 693 | |
| 694 | #define FDR_MAIN_LOOP(zz, s, get_conf_fn) \ |
| 695 | do { \ |
| 696 | const u8 *tryFloodDetect = zz->floodPtr; \ |
| 697 | const u8 *start_ptr = zz->start; \ |
| 698 | const u8 *end_ptr = zz->end; \ |
| 699 | \ |
| 700 | for (const u8 *itPtr = start_ptr; itPtr + ITER_BYTES <= end_ptr; \ |
| 701 | itPtr += ITER_BYTES) { \ |
| 702 | if (unlikely(itPtr > tryFloodDetect)) { \ |
| 703 | tryFloodDetect = floodDetect(fdr, a, &itPtr, tryFloodDetect,\ |
| 704 | &floodBackoff, &control, \ |
| 705 | ITER_BYTES); \ |
| 706 | if (unlikely(control == HWLM_TERMINATE_MATCHING)) { \ |
| 707 | return HWLM_TERMINATED; \ |
| 708 | } \ |
| 709 | } \ |
| 710 | __builtin_prefetch(itPtr + ITER_BYTES); \ |
| 711 | u64a conf0; \ |
| 712 | u64a conf8; \ |
| 713 | get_conf_fn(itPtr, start_ptr, end_ptr, domain_mask_flipped, \ |
| 714 | ft, &conf0, &conf8, &s); \ |
| 715 | do_confirm_fdr(&conf0, 0, &control, confBase, a, itPtr, \ |
| 716 | &last_match_id, zz); \ |
| 717 | do_confirm_fdr(&conf8, 8, &control, confBase, a, itPtr, \ |
| 718 | &last_match_id, zz); \ |
| 719 | if (unlikely(control == HWLM_TERMINATE_MATCHING)) { \ |
| 720 | return HWLM_TERMINATED; \ |
| 721 | } \ |
| 722 | } /* end for loop */ \ |
| 723 | } while (0) \ |
| 724 | |
| 725 | static never_inline |
| 726 | hwlm_error_t fdr_engine_exec(const struct FDR *fdr, |
| 727 | const struct FDR_Runtime_Args *a, |
| 728 | hwlm_group_t control) { |
| 729 | assert(ISALIGNED_CL(fdr)); |
| 730 | |
| 731 | u32 floodBackoff = FLOOD_BACKOFF_START; |
| 732 | u32 last_match_id = INVALID_MATCH_ID; |
| 733 | u32 domain_mask_flipped = ~fdr->domainMask; |
| 734 | u8 stride = fdr->stride; |
| 735 | const u64a *ft = |
| 736 | (const u64a *)((const u8 *)fdr + ROUNDUP_CL(sizeof(struct FDR))); |
| 737 | assert(ISALIGNED_CL(ft)); |
| 738 | const u32 *confBase = (const u32 *)((const u8 *)fdr + fdr->confOffset); |
| 739 | assert(ISALIGNED_CL(confBase)); |
| 740 | struct zone zones[ZONE_MAX]; |
| 741 | assert(fdr->domain > 8 && fdr->domain < 16); |
| 742 | |
| 743 | size_t numZone = prepareZones(a->buf, a->len, |
| 744 | a->buf_history + a->len_history, |
| 745 | a->start_offset, a->firstFloodDetect, zones); |
| 746 | assert(numZone <= ZONE_MAX); |
| 747 | m128 state = getInitState(fdr, a->len_history, ft, &zones[0]); |
| 748 | |
| 749 | for (size_t curZone = 0; curZone < numZone; curZone++) { |
| 750 | struct zone *z = &zones[curZone]; |
| 751 | dumpZoneInfo(z, curZone); |
| 752 | |
| 753 | /* When a zone contains less data than is processed in an iteration |
| 754 | * of FDR_MAIN_LOOP(), we need to scan over some extra data. |
| 755 | * |
| 756 | * We have chosen to scan this extra data at the start of the |
| 757 | * iteration. The extra data is either data we have already scanned or |
| 758 | * garbage (if it is earlier than offset 0), |
| 759 | * |
| 760 | * As a result we need to shift the incoming state back so that it will |
| 761 | * properly line up with the data being scanned. |
| 762 | * |
| 763 | * We also need to forbid reporting any matches in the data being |
| 764 | * rescanned as they have already been reported (or are over garbage but |
| 765 | * later stages should also provide that safety guarantee). |
| 766 | */ |
| 767 | |
| 768 | u8 shift = z->shift; |
| 769 | |
| 770 | state = variable_byte_shift_m128(state, shift); |
| 771 | |
| 772 | state = or128(state, load128(zone_or_mask[shift])); |
| 773 | |
| 774 | switch (stride) { |
| 775 | case 1: |
| 776 | FDR_MAIN_LOOP(z, state, get_conf_stride_1); |
| 777 | break; |
| 778 | case 2: |
| 779 | FDR_MAIN_LOOP(z, state, get_conf_stride_2); |
| 780 | break; |
| 781 | case 4: |
| 782 | FDR_MAIN_LOOP(z, state, get_conf_stride_4); |
| 783 | break; |
| 784 | default: |
| 785 | break; |
| 786 | } |
| 787 | } |
| 788 | |
| 789 | return HWLM_SUCCESS; |
| 790 | } |
| 791 | |
| 792 | #if defined(HAVE_AVX2) |
| 793 | #define ONLY_AVX2(func) func |
| 794 | #else |
| 795 | #define ONLY_AVX2(func) NULL |
| 796 | #endif |
| 797 | |
| 798 | typedef hwlm_error_t (*FDRFUNCTYPE)(const struct FDR *fdr, |
| 799 | const struct FDR_Runtime_Args *a, |
| 800 | hwlm_group_t control); |
| 801 | |
| 802 | static const FDRFUNCTYPE funcs[] = { |
| 803 | fdr_engine_exec, |
| 804 | NULL, /* old: fast teddy */ |
| 805 | NULL, /* old: fast teddy */ |
| 806 | ONLY_AVX2(fdr_exec_fat_teddy_msks1), |
| 807 | ONLY_AVX2(fdr_exec_fat_teddy_msks1_pck), |
| 808 | ONLY_AVX2(fdr_exec_fat_teddy_msks2), |
| 809 | ONLY_AVX2(fdr_exec_fat_teddy_msks2_pck), |
| 810 | ONLY_AVX2(fdr_exec_fat_teddy_msks3), |
| 811 | ONLY_AVX2(fdr_exec_fat_teddy_msks3_pck), |
| 812 | ONLY_AVX2(fdr_exec_fat_teddy_msks4), |
| 813 | ONLY_AVX2(fdr_exec_fat_teddy_msks4_pck), |
| 814 | fdr_exec_teddy_msks1, |
| 815 | fdr_exec_teddy_msks1_pck, |
| 816 | fdr_exec_teddy_msks2, |
| 817 | fdr_exec_teddy_msks2_pck, |
| 818 | fdr_exec_teddy_msks3, |
| 819 | fdr_exec_teddy_msks3_pck, |
| 820 | fdr_exec_teddy_msks4, |
| 821 | fdr_exec_teddy_msks4_pck, |
| 822 | }; |
| 823 | |
| 824 | #define FAKE_HISTORY_SIZE 16 |
| 825 | static const u8 fake_history[FAKE_HISTORY_SIZE]; |
| 826 | |
| 827 | hwlm_error_t fdrExec(const struct FDR *fdr, const u8 *buf, size_t len, |
| 828 | size_t start, HWLMCallback cb, |
| 829 | struct hs_scratch *scratch, hwlm_group_t groups) { |
| 830 | // We guarantee (for safezone construction) that it is safe to read 16 |
| 831 | // bytes before the end of the history buffer. |
| 832 | const u8 *hbuf = fake_history + FAKE_HISTORY_SIZE; |
| 833 | |
| 834 | const struct FDR_Runtime_Args a = { |
| 835 | buf, |
| 836 | len, |
| 837 | hbuf, |
| 838 | 0, |
| 839 | start, |
| 840 | cb, |
| 841 | scratch, |
| 842 | nextFloodDetect(buf, len, FLOOD_BACKOFF_START), |
| 843 | 0 |
| 844 | }; |
| 845 | if (unlikely(a.start_offset >= a.len)) { |
| 846 | return HWLM_SUCCESS; |
| 847 | } else { |
| 848 | assert(funcs[fdr->engineID]); |
| 849 | return funcs[fdr->engineID](fdr, &a, groups); |
| 850 | } |
| 851 | } |
| 852 | |
| 853 | hwlm_error_t fdrExecStreaming(const struct FDR *fdr, const u8 *hbuf, |
| 854 | size_t hlen, const u8 *buf, size_t len, |
| 855 | size_t start, HWLMCallback cb, |
| 856 | struct hs_scratch *scratch, |
| 857 | hwlm_group_t groups) { |
| 858 | struct FDR_Runtime_Args a = { |
| 859 | buf, |
| 860 | len, |
| 861 | hbuf, |
| 862 | hlen, |
| 863 | start, |
| 864 | cb, |
| 865 | scratch, |
| 866 | nextFloodDetect(buf, len, FLOOD_BACKOFF_START), |
| 867 | /* we are guaranteed to always have 16 initialised bytes at the end of |
| 868 | * the history buffer (they may be garbage). */ |
| 869 | hbuf ? unaligned_load_u64a(hbuf + hlen - sizeof(u64a)) : (u64a)0 |
| 870 | }; |
| 871 | |
| 872 | hwlm_error_t ret; |
| 873 | if (unlikely(a.start_offset >= a.len)) { |
| 874 | ret = HWLM_SUCCESS; |
| 875 | } else { |
| 876 | assert(funcs[fdr->engineID]); |
| 877 | ret = funcs[fdr->engineID](fdr, &a, groups); |
| 878 | } |
| 879 | |
| 880 | return ret; |
| 881 | } |
| 882 | |