| 1 | /* |
| 2 | * Copyright (c) 2015-2019, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | #include "fdr_internal.h" |
| 30 | #include "fdr_compile_internal.h" |
| 31 | #include "fdr_confirm.h" |
| 32 | #include "engine_description.h" |
| 33 | #include "teddy_engine_description.h" |
| 34 | #include "ue2common.h" |
| 35 | #include "util/alloc.h" |
| 36 | #include "util/bitutils.h" |
| 37 | #include "util/compare.h" |
| 38 | #include "util/container.h" |
| 39 | #include "util/verify_types.h" |
| 40 | |
| 41 | #include <algorithm> |
| 42 | #include <cstring> |
| 43 | #include <set> |
| 44 | |
| 45 | using namespace std; |
| 46 | |
| 47 | namespace ue2 { |
| 48 | |
| 49 | using BC2CONF = map<BucketIndex, bytecode_ptr<FDRConfirm>>; |
| 50 | |
| 51 | static |
| 52 | u64a make_u64a_mask(const vector<u8> &v) { |
| 53 | assert(v.size() <= sizeof(u64a)); |
| 54 | if (v.size() > sizeof(u64a)) { |
| 55 | throw std::exception(); |
| 56 | } |
| 57 | |
| 58 | u64a mask = 0; |
| 59 | size_t vlen = v.size(); |
| 60 | size_t len = std::min(vlen, sizeof(mask)); |
| 61 | unsigned char *m = (unsigned char *)&mask; |
| 62 | memcpy(m + sizeof(mask) - len, &v[vlen - len], len); |
| 63 | return mask; |
| 64 | } |
| 65 | |
| 66 | /** |
| 67 | * Build a temporary vector of LitInfo structures (without the corresponding |
| 68 | * pointers to the actual strings; these cannot be laid out yet). These |
| 69 | * stay in 1:1 correspondence with the lits[] vector as that's the only |
| 70 | * place we have to obtain our full strings. |
| 71 | */ |
| 72 | static |
| 73 | void fillLitInfo(const vector<hwlmLiteral> &lits, vector<LitInfo> &tmpLitInfo, |
| 74 | CONF_TYPE &andmsk) { |
| 75 | const CONF_TYPE all_ones = ~(u64a)0; |
| 76 | andmsk = all_ones; // fill in with 'and' of all literal masks |
| 77 | |
| 78 | for (LiteralIndex i = 0; i < lits.size(); i++) { |
| 79 | const hwlmLiteral &lit = lits[i]; |
| 80 | LitInfo &info = tmpLitInfo[i]; |
| 81 | memset(&info, 0, sizeof(info)); |
| 82 | info.id = lit.id; |
| 83 | u8 flags = 0; |
| 84 | if (lit.noruns) { |
| 85 | flags |= FDR_LIT_FLAG_NOREPEAT; |
| 86 | } |
| 87 | info.flags = flags; |
| 88 | info.size = verify_u8(max(lit.msk.size(), lit.s.size())); |
| 89 | info.groups = lit.groups; |
| 90 | info.pure = lit.pure; |
| 91 | |
| 92 | // these are built up assuming a LE machine |
| 93 | CONF_TYPE msk = all_ones; |
| 94 | CONF_TYPE val = 0; |
| 95 | for (u32 j = 0; j < sizeof(CONF_TYPE); j++) { |
| 96 | u32 shiftLoc = (sizeof(CONF_TYPE) - j - 1) * 8; |
| 97 | if (j >= lit.s.size()) { |
| 98 | msk &= ~((CONF_TYPE)0xff << shiftLoc); |
| 99 | } else { |
| 100 | u8 c = lit.s[lit.s.size() - j - 1]; |
| 101 | if (lit.nocase && ourisalpha(c)) { |
| 102 | msk &= ~((CONF_TYPE)CASE_BIT << shiftLoc); |
| 103 | val |= (CONF_TYPE)(c & CASE_CLEAR) << shiftLoc; |
| 104 | } else { |
| 105 | val |= (CONF_TYPE)c << shiftLoc; |
| 106 | } |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | info.v = val; |
| 111 | info.msk = msk; |
| 112 | if (!lit.msk.empty()) { |
| 113 | u64a l_msk = make_u64a_mask(lit.msk); |
| 114 | u64a l_cmp = make_u64a_mask(lit.cmp); |
| 115 | |
| 116 | // test for consistency - if there's intersection, then v and msk |
| 117 | // values must line up |
| 118 | UNUSED u64a intersection = l_msk & info.msk; |
| 119 | assert((info.v & intersection) == (l_cmp & intersection)); |
| 120 | |
| 121 | // incorporate lit.msk, lit.cmp into v and msk |
| 122 | info.msk |= l_msk; |
| 123 | info.v |= l_cmp; |
| 124 | } |
| 125 | |
| 126 | andmsk &= info.msk; |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | //#define FDR_CONFIRM_DUMP 1 |
| 131 | |
| 132 | static |
| 133 | bytecode_ptr<FDRConfirm> getFDRConfirm(const vector<hwlmLiteral> &lits, |
| 134 | bool make_small) { |
| 135 | // Every literal must fit within CONF_TYPE. |
| 136 | assert(all_of_in(lits, [](const hwlmLiteral &lit) { |
| 137 | return lit.s.size() <= sizeof(CONF_TYPE); |
| 138 | })); |
| 139 | |
| 140 | vector<LitInfo> tmpLitInfo(lits.size()); |
| 141 | CONF_TYPE andmsk; |
| 142 | fillLitInfo(lits, tmpLitInfo, andmsk); |
| 143 | |
| 144 | #ifdef FDR_CONFIRM_DUMP |
| 145 | printf("-------------------\n" ); |
| 146 | #endif |
| 147 | |
| 148 | // just magic numbers and crude measures for now |
| 149 | u32 nBits; |
| 150 | if (make_small) { |
| 151 | nBits = min(10U, lg2(lits.size()) + 1); |
| 152 | } else { |
| 153 | nBits = lg2(lits.size()) + 4; |
| 154 | } |
| 155 | |
| 156 | CONF_TYPE mult = (CONF_TYPE)0x0b4e0ef37bc32127ULL; |
| 157 | |
| 158 | // we can walk the vector and assign elements from the vectors to a |
| 159 | // map by hash value |
| 160 | map<u32, vector<LiteralIndex> > res2lits; |
| 161 | hwlm_group_t gm = 0; |
| 162 | for (LiteralIndex i = 0; i < lits.size(); i++) { |
| 163 | LitInfo & li = tmpLitInfo[i]; |
| 164 | u32 hash = CONF_HASH_CALL(li.v, andmsk, mult, nBits); |
| 165 | DEBUG_PRINTF("%016llx --> %u\n" , li.v, hash); |
| 166 | res2lits[hash].push_back(i); |
| 167 | gm |= li.groups; |
| 168 | } |
| 169 | |
| 170 | #ifdef FDR_CONFIRM_DUMP |
| 171 | // print out the literals reversed - makes it easier to line up analyses |
| 172 | // that are end-offset based |
| 173 | for (const auto &m : res2lits) { |
| 174 | const u32 &hash = m.first; |
| 175 | const vector<LiteralIndex> &vlidx = m.second; |
| 176 | if (vlidx.size() <= 1) { |
| 177 | continue; |
| 178 | } |
| 179 | printf("%x -> %zu literals\n" , hash, vlidx.size()); |
| 180 | size_t min_len = lits[vlidx.front()].s.size(); |
| 181 | |
| 182 | vector<set<u8>> vsl; // contains the set of chars at each location |
| 183 | // reversed from the end |
| 184 | |
| 185 | for (const auto &litIdx : vlidx) { |
| 186 | const auto &lit = lits[litIdx]; |
| 187 | if (lit.s.size() > vsl.size()) { |
| 188 | vsl.resize(lit.s.size()); |
| 189 | } |
| 190 | for (size_t j = lit.s.size(); j != 0; j--) { |
| 191 | vsl[lit.s.size() - j].insert(lit.s[j - 1]); |
| 192 | } |
| 193 | min_len = min(min_len, lit.s.size()); |
| 194 | } |
| 195 | printf("common " ); |
| 196 | for (size_t j = 0; j < min_len; j++) { |
| 197 | if (vsl[j].size() == 1) { |
| 198 | printf("%02x" , *vsl[j].begin()); |
| 199 | } else { |
| 200 | printf("__" ); |
| 201 | } |
| 202 | } |
| 203 | printf("\n" ); |
| 204 | for (const auto &litIdx : vlidx) { |
| 205 | const auto &lit = lits[litIdx]; |
| 206 | printf("%8x %c" , lit.id, lit.nocase ? '!' : ' '); |
| 207 | for (size_t j = lit.s.size(); j != 0; j--) { |
| 208 | size_t dist_from_end = lit.s.size() - j; |
| 209 | if (dist_from_end < min_len && vsl[dist_from_end].size() == 1) { |
| 210 | printf("__" ); |
| 211 | } else { |
| 212 | printf("%02x" , lit.s[j - 1]); |
| 213 | } |
| 214 | } |
| 215 | printf("\n" ); |
| 216 | } |
| 217 | size_t total_compares = 0; |
| 218 | for (const auto &v : vsl) { |
| 219 | total_compares += v.size(); |
| 220 | } |
| 221 | size_t total_string_size = 0; |
| 222 | for (const auto &litIdx : vlidx) { |
| 223 | const auto &lit = lits[litIdx]; |
| 224 | total_string_size += lit.s.size(); |
| 225 | } |
| 226 | printf("Total compare load: %zu Total string size: %zu\n\n" , |
| 227 | total_compares, total_string_size); |
| 228 | } |
| 229 | #endif |
| 230 | |
| 231 | const size_t bitsToLitIndexSize = (1U << nBits) * sizeof(u32); |
| 232 | |
| 233 | // this size can now be a worst-case as we can always be a bit smaller |
| 234 | size_t size = ROUNDUP_N(sizeof(FDRConfirm), alignof(u32)) + |
| 235 | ROUNDUP_N(bitsToLitIndexSize, alignof(LitInfo)) + |
| 236 | sizeof(LitInfo) * lits.size(); |
| 237 | size = ROUNDUP_N(size, alignof(FDRConfirm)); |
| 238 | |
| 239 | auto fdrc = make_zeroed_bytecode_ptr<FDRConfirm>(size); |
| 240 | assert(fdrc); // otherwise would have thrown std::bad_alloc |
| 241 | |
| 242 | fdrc->andmsk = andmsk; |
| 243 | fdrc->mult = mult; |
| 244 | fdrc->nBits = nBits; |
| 245 | |
| 246 | fdrc->groups = gm; |
| 247 | |
| 248 | // After the FDRConfirm, we have the lit index array. |
| 249 | u8 *fdrc_base = (u8 *)fdrc.get(); |
| 250 | u8 *ptr = fdrc_base + sizeof(*fdrc); |
| 251 | ptr = ROUNDUP_PTR(ptr, alignof(u32)); |
| 252 | u32 *bitsToLitIndex = (u32 *)ptr; |
| 253 | ptr += bitsToLitIndexSize; |
| 254 | |
| 255 | // After the lit index array, we have the LitInfo structures themselves, |
| 256 | // which vary in size (as each may have a variable-length string after it). |
| 257 | ptr = ROUNDUP_PTR(ptr, alignof(LitInfo)); |
| 258 | |
| 259 | // Walk the map by hash value assigning indexes and laying out the |
| 260 | // elements (and their associated string confirm material) in memory. |
| 261 | for (const auto &m : res2lits) { |
| 262 | const u32 hash = m.first; |
| 263 | const vector<LiteralIndex> &vlidx = m.second; |
| 264 | bitsToLitIndex[hash] = verify_u32(ptr - fdrc_base); |
| 265 | for (auto i = vlidx.begin(), e = vlidx.end(); i != e; ++i) { |
| 266 | LiteralIndex litIdx = *i; |
| 267 | |
| 268 | // Write LitInfo header. |
| 269 | LitInfo &finalLI = *(LitInfo *)ptr; |
| 270 | finalLI = tmpLitInfo[litIdx]; |
| 271 | |
| 272 | ptr += sizeof(LitInfo); // String starts directly after LitInfo. |
| 273 | assert(lits[litIdx].s.size() <= sizeof(CONF_TYPE)); |
| 274 | if (next(i) == e) { |
| 275 | finalLI.next = 0; |
| 276 | } else { |
| 277 | finalLI.next = 1; |
| 278 | } |
| 279 | } |
| 280 | assert((size_t)(ptr - fdrc_base) <= size); |
| 281 | } |
| 282 | |
| 283 | // Return actual used size, not worst-case size. Must be rounded up to |
| 284 | // FDRConfirm alignment so that the caller can lay out a sequence of these. |
| 285 | size_t actual_size = ROUNDUP_N((size_t)(ptr - fdrc_base), |
| 286 | alignof(FDRConfirm)); |
| 287 | assert(actual_size <= size); |
| 288 | fdrc.shrink(actual_size); |
| 289 | |
| 290 | return fdrc; |
| 291 | } |
| 292 | |
| 293 | bytecode_ptr<u8> |
| 294 | setupFullConfs(const vector<hwlmLiteral> &lits, |
| 295 | const EngineDescription &eng, |
| 296 | const map<BucketIndex, vector<LiteralIndex>> &bucketToLits, |
| 297 | bool make_small) { |
| 298 | unique_ptr<TeddyEngineDescription> teddyDescr = |
| 299 | getTeddyDescription(eng.getID()); |
| 300 | |
| 301 | BC2CONF bc2Conf; |
| 302 | u32 totalConfirmSize = 0; |
| 303 | for (BucketIndex b = 0; b < eng.getNumBuckets(); b++) { |
| 304 | if (contains(bucketToLits, b)) { |
| 305 | vector<hwlmLiteral> vl; |
| 306 | for (const LiteralIndex &lit_idx : bucketToLits.at(b)) { |
| 307 | vl.push_back(lits[lit_idx]); |
| 308 | } |
| 309 | |
| 310 | DEBUG_PRINTF("b %d sz %zu\n" , b, vl.size()); |
| 311 | auto fc = getFDRConfirm(vl, make_small); |
| 312 | totalConfirmSize += fc.size(); |
| 313 | bc2Conf.emplace(b, move(fc)); |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | u32 nBuckets = eng.getNumBuckets(); |
| 318 | u32 totalConfSwitchSize = ROUNDUP_CL(nBuckets * sizeof(u32)); |
| 319 | u32 totalSize = totalConfSwitchSize + totalConfirmSize; |
| 320 | |
| 321 | auto buf = make_zeroed_bytecode_ptr<u8>(totalSize, 64); |
| 322 | assert(buf); // otherwise would have thrown std::bad_alloc |
| 323 | |
| 324 | u32 *confBase = (u32 *)buf.get(); |
| 325 | u8 *ptr = buf.get() + totalConfSwitchSize; |
| 326 | assert(ISALIGNED_CL(ptr)); |
| 327 | |
| 328 | for (const auto &m : bc2Conf) { |
| 329 | const BucketIndex &idx = m.first; |
| 330 | const bytecode_ptr<FDRConfirm> &p = m.second; |
| 331 | // confirm offset is relative to the base of this structure, now |
| 332 | u32 confirm_offset = verify_u32(ptr - buf.get()); |
| 333 | memcpy(ptr, p.get(), p.size()); |
| 334 | ptr += p.size(); |
| 335 | confBase[idx] = confirm_offset; |
| 336 | } |
| 337 | |
| 338 | return buf; |
| 339 | } |
| 340 | |
| 341 | } // namespace ue2 |
| 342 | |