| 1 | /* |
| 2 | * Copyright (c) 2015-2017, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /** |
| 30 | * \file |
| 31 | * \brief NFA graph vertex depth calculations. |
| 32 | */ |
| 33 | #include "ng_depth.h" |
| 34 | #include "ng_util.h" |
| 35 | #include "ue2common.h" |
| 36 | #include "util/graph_range.h" |
| 37 | #include "util/graph_small_color_map.h" |
| 38 | |
| 39 | #include <deque> |
| 40 | #include <vector> |
| 41 | |
| 42 | #include <boost/graph/breadth_first_search.hpp> |
| 43 | #include <boost/graph/dag_shortest_paths.hpp> |
| 44 | #include <boost/graph/depth_first_search.hpp> |
| 45 | #include <boost/graph/filtered_graph.hpp> |
| 46 | #include <boost/graph/property_maps/constant_property_map.hpp> |
| 47 | #include <boost/graph/reverse_graph.hpp> |
| 48 | #include <boost/graph/topological_sort.hpp> |
| 49 | #include <boost/range/adaptor/reversed.hpp> |
| 50 | |
| 51 | using namespace std; |
| 52 | using boost::filtered_graph; |
| 53 | using boost::make_filtered_graph; |
| 54 | using boost::make_constant_property; |
| 55 | using boost::reverse_graph; |
| 56 | using boost::adaptors::reverse; |
| 57 | |
| 58 | namespace ue2 { |
| 59 | |
| 60 | namespace { |
| 61 | |
| 62 | /** Distance value used to indicate that the vertex can't be reached. */ |
| 63 | static constexpr int DIST_UNREACHABLE = INT_MAX; |
| 64 | |
| 65 | /** |
| 66 | * Distance value used to indicate that the distance to a vertex is infinite |
| 67 | * (for example, it's the max distance and there's a cycle in the path) or so |
| 68 | * large that we should consider it effectively infinite. |
| 69 | */ |
| 70 | static constexpr int DIST_INFINITY = INT_MAX - 1; |
| 71 | |
| 72 | // |
| 73 | // Filters |
| 74 | // |
| 75 | |
| 76 | template <class GraphT> |
| 77 | struct NodeFilter { |
| 78 | typedef typename GraphT::edge_descriptor EdgeT; |
| 79 | NodeFilter() {} // BGL filters must be default-constructible. |
| 80 | NodeFilter(const vector<bool> *bad_in, const GraphT *g_in) |
| 81 | : bad(bad_in), g(g_in) { } |
| 82 | bool operator()(const EdgeT &e) const { |
| 83 | assert(g && bad); |
| 84 | |
| 85 | u32 src_idx = (*g)[source(e, *g)].index; |
| 86 | u32 tar_idx = (*g)[target(e, *g)].index; |
| 87 | |
| 88 | if (tar_idx == NODE_START_DOTSTAR) { |
| 89 | return false; |
| 90 | } |
| 91 | |
| 92 | return !(*bad)[src_idx] && !(*bad)[tar_idx]; |
| 93 | } |
| 94 | |
| 95 | private: |
| 96 | const vector<bool> *bad = nullptr; |
| 97 | const GraphT *g = nullptr; |
| 98 | }; |
| 99 | |
| 100 | template <class GraphT> |
| 101 | struct StartFilter { |
| 102 | typedef typename GraphT::edge_descriptor EdgeT; |
| 103 | StartFilter() {} // BGL filters must be default-constructible. |
| 104 | explicit StartFilter(const GraphT *g_in) : g(g_in) { } |
| 105 | bool operator()(const EdgeT &e) const { |
| 106 | assert(g); |
| 107 | |
| 108 | u32 src_idx = (*g)[source(e, *g)].index; |
| 109 | u32 tar_idx = (*g)[target(e, *g)].index; |
| 110 | |
| 111 | // Remove our stylised edges from anchored start to startDs. |
| 112 | if (src_idx == NODE_START && tar_idx == NODE_START_DOTSTAR) { |
| 113 | return false; |
| 114 | } |
| 115 | // Also remove the equivalent in the reversed direction. |
| 116 | if (src_idx == NODE_ACCEPT_EOD && tar_idx == NODE_ACCEPT) { |
| 117 | return false; |
| 118 | } |
| 119 | return true; |
| 120 | } |
| 121 | |
| 122 | private: |
| 123 | const GraphT *g = nullptr; |
| 124 | }; |
| 125 | |
| 126 | } // namespace |
| 127 | |
| 128 | template<class Graph> |
| 129 | static |
| 130 | vector<bool> findLoopReachable(const Graph &g, |
| 131 | const typename Graph::vertex_descriptor src) { |
| 132 | vector<bool> deadNodes(num_vertices(g)); |
| 133 | |
| 134 | using Edge = typename Graph::edge_descriptor; |
| 135 | using Vertex = typename Graph::vertex_descriptor; |
| 136 | using EdgeSet = set<Edge>; |
| 137 | |
| 138 | EdgeSet deadEdges; |
| 139 | BackEdges<EdgeSet> be(deadEdges); |
| 140 | |
| 141 | auto colors = make_small_color_map(g); |
| 142 | |
| 143 | depth_first_search(g, be, colors, src); |
| 144 | auto af = make_bad_edge_filter(&deadEdges); |
| 145 | auto acyclic_g = make_filtered_graph(g, af); |
| 146 | |
| 147 | vector<Vertex> topoOrder; /* actually reverse topological order */ |
| 148 | topoOrder.reserve(deadNodes.size()); |
| 149 | topological_sort(acyclic_g, back_inserter(topoOrder), color_map(colors)); |
| 150 | |
| 151 | for (const auto &e : deadEdges) { |
| 152 | size_t srcIdx = g[source(e, g)].index; |
| 153 | if (srcIdx != NODE_START_DOTSTAR) { |
| 154 | deadNodes[srcIdx] = true; |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | for (auto v : reverse(topoOrder)) { |
| 159 | for (const auto &e : in_edges_range(v, g)) { |
| 160 | if (deadNodes[g[source(e, g)].index]) { |
| 161 | deadNodes[g[v].index] = true; |
| 162 | break; |
| 163 | } |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | return deadNodes; |
| 168 | } |
| 169 | |
| 170 | template <class GraphT> |
| 171 | static |
| 172 | void calcDepthFromSource(const GraphT &g, |
| 173 | typename GraphT::vertex_descriptor srcVertex, |
| 174 | const vector<bool> &deadNodes, vector<int> &dMin, |
| 175 | vector<int> &dMax) { |
| 176 | typedef typename GraphT::edge_descriptor EdgeT; |
| 177 | |
| 178 | const size_t numVerts = num_vertices(g); |
| 179 | |
| 180 | NodeFilter<GraphT> nf(&deadNodes, &g); |
| 181 | StartFilter<GraphT> sf(&g); |
| 182 | |
| 183 | /* minimum distance needs to run on a graph with .*start unreachable |
| 184 | * from start */ |
| 185 | typedef filtered_graph<GraphT, StartFilter<GraphT> > StartFilteredGraph; |
| 186 | const StartFilteredGraph mindist_g(g, sf); |
| 187 | |
| 188 | /* maximum distance needs to run on a graph without cycles & nodes |
| 189 | * reachable from cycles */ |
| 190 | typedef filtered_graph<GraphT, NodeFilter<GraphT> > NodeFilteredGraph; |
| 191 | const NodeFilteredGraph maxdist_g(g, nf); |
| 192 | |
| 193 | // Record distance of each vertex from source using one of the following |
| 194 | // algorithms. |
| 195 | |
| 196 | /* note: filtered graphs have same num_{vertices,edges} as base */ |
| 197 | |
| 198 | dMin.assign(numVerts, DIST_UNREACHABLE); |
| 199 | dMax.assign(numVerts, DIST_UNREACHABLE); |
| 200 | dMin[mindist_g[srcVertex].index] = 0; |
| 201 | |
| 202 | using boost::make_iterator_property_map; |
| 203 | |
| 204 | auto min_index_map = get(vertex_index, mindist_g); |
| 205 | |
| 206 | breadth_first_search(mindist_g, srcVertex, |
| 207 | visitor(make_bfs_visitor(record_distances( |
| 208 | make_iterator_property_map(dMin.begin(), |
| 209 | min_index_map), |
| 210 | boost::on_tree_edge()))) |
| 211 | .color_map(make_small_color_map(mindist_g))); |
| 212 | |
| 213 | auto max_index_map = get(vertex_index, maxdist_g); |
| 214 | |
| 215 | dag_shortest_paths(maxdist_g, srcVertex, |
| 216 | distance_map(make_iterator_property_map(dMax.begin(), |
| 217 | max_index_map)) |
| 218 | .weight_map(make_constant_property<EdgeT>(-1)) |
| 219 | .color_map(make_small_color_map(maxdist_g))); |
| 220 | |
| 221 | for (size_t i = 0; i < numVerts; i++) { |
| 222 | if (dMin[i] > DIST_UNREACHABLE) { |
| 223 | dMin[i] = DIST_UNREACHABLE; |
| 224 | } |
| 225 | DEBUG_PRINTF("%zu: dm %d %d\n" , i, dMin[i], dMax[i]); |
| 226 | if (dMax[i] >= DIST_UNREACHABLE && dMin[i] < DIST_UNREACHABLE) { |
| 227 | dMax[i] = -DIST_INFINITY; /* max depths currently negative */ |
| 228 | DEBUG_PRINTF("bumping max to %d\n" , dMax[i]); |
| 229 | } else if (dMax[i] >= DIST_UNREACHABLE |
| 230 | || dMax[i] < -DIST_UNREACHABLE) { |
| 231 | dMax[i] = -DIST_UNREACHABLE; |
| 232 | DEBUG_PRINTF("bumping max to %d\n" , dMax[i]); |
| 233 | } |
| 234 | } |
| 235 | } |
| 236 | |
| 237 | /** |
| 238 | * \brief Convert the integer distance we use in our shortest path calculations |
| 239 | * to a \ref depth value. |
| 240 | */ |
| 241 | static |
| 242 | depth depthFromDistance(int val) { |
| 243 | assert(val >= 0); |
| 244 | if (val >= DIST_UNREACHABLE) { |
| 245 | return depth::unreachable(); |
| 246 | } else if (val == DIST_INFINITY) { |
| 247 | return depth::infinity(); |
| 248 | } |
| 249 | return depth((u32)val); |
| 250 | } |
| 251 | |
| 252 | static |
| 253 | DepthMinMax getDepths(u32 idx, const vector<int> &dMin, |
| 254 | const vector<int> &dMax) { |
| 255 | DepthMinMax d(depthFromDistance(dMin[idx]), |
| 256 | depthFromDistance(-1 * dMax[idx])); |
| 257 | DEBUG_PRINTF("idx=%u, depths=%s\n" , idx, d.str().c_str()); |
| 258 | assert(d.min <= d.max); |
| 259 | return d; |
| 260 | } |
| 261 | |
| 262 | template<class Graph, class Output> |
| 263 | static |
| 264 | void calcAndStoreDepth(const Graph &g, |
| 265 | const typename Graph::vertex_descriptor src, |
| 266 | const vector<bool> &deadNodes, |
| 267 | vector<int> &dMin /* util */, |
| 268 | vector<int> &dMax /* util */, |
| 269 | vector<Output> &depths, |
| 270 | DepthMinMax Output::*store) { |
| 271 | calcDepthFromSource(g, src, deadNodes, dMin, dMax); |
| 272 | |
| 273 | for (auto v : vertices_range(g)) { |
| 274 | u32 idx = g[v].index; |
| 275 | assert(idx < depths.size()); |
| 276 | Output &d = depths.at(idx); |
| 277 | d.*store = getDepths(idx, dMin, dMax); |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | vector<NFAVertexDepth> calcDepths(const NGHolder &g) { |
| 282 | assert(hasCorrectlyNumberedVertices(g)); |
| 283 | const size_t numVertices = num_vertices(g); |
| 284 | |
| 285 | vector<NFAVertexDepth> depths(numVertices); |
| 286 | vector<int> dMin; |
| 287 | vector<int> dMax; |
| 288 | |
| 289 | /* |
| 290 | * create a filtered graph for max depth calculations: all nodes/edges |
| 291 | * reachable from a loop need to be removed |
| 292 | */ |
| 293 | auto deadNodes = findLoopReachable(g, g.start); |
| 294 | |
| 295 | DEBUG_PRINTF("doing start\n" ); |
| 296 | calcAndStoreDepth(g, g.start, deadNodes, dMin, dMax, depths, |
| 297 | &NFAVertexDepth::fromStart); |
| 298 | DEBUG_PRINTF("doing startds\n" ); |
| 299 | calcAndStoreDepth(g, g.startDs, deadNodes, dMin, dMax, depths, |
| 300 | &NFAVertexDepth::fromStartDotStar); |
| 301 | |
| 302 | return depths; |
| 303 | } |
| 304 | |
| 305 | vector<NFAVertexRevDepth> calcRevDepths(const NGHolder &g) { |
| 306 | assert(hasCorrectlyNumberedVertices(g)); |
| 307 | const size_t numVertices = num_vertices(g); |
| 308 | |
| 309 | vector<NFAVertexRevDepth> depths(numVertices); |
| 310 | vector<int> dMin; |
| 311 | vector<int> dMax; |
| 312 | |
| 313 | /* reverse the graph before walking it */ |
| 314 | typedef reverse_graph<NGHolder, const NGHolder &> RevNFAGraph; |
| 315 | const RevNFAGraph rg(g); |
| 316 | |
| 317 | assert(num_vertices(g) == num_vertices(rg)); |
| 318 | |
| 319 | /* |
| 320 | * create a filtered graph for max depth calculations: all nodes/edges |
| 321 | * reachable from a loop need to be removed |
| 322 | */ |
| 323 | auto deadNodes = findLoopReachable(rg, g.acceptEod); |
| 324 | |
| 325 | DEBUG_PRINTF("doing accept\n" ); |
| 326 | calcAndStoreDepth<RevNFAGraph, NFAVertexRevDepth>( |
| 327 | rg, g.accept, deadNodes, dMin, dMax, depths, |
| 328 | &NFAVertexRevDepth::toAccept); |
| 329 | DEBUG_PRINTF("doing accepteod\n" ); |
| 330 | deadNodes[NODE_ACCEPT] = true; // Hide accept->acceptEod edge. |
| 331 | calcAndStoreDepth<RevNFAGraph, NFAVertexRevDepth>( |
| 332 | rg, g.acceptEod, deadNodes, dMin, dMax, depths, |
| 333 | &NFAVertexRevDepth::toAcceptEod); |
| 334 | |
| 335 | return depths; |
| 336 | } |
| 337 | |
| 338 | vector<NFAVertexBidiDepth> calcBidiDepths(const NGHolder &g) { |
| 339 | assert(hasCorrectlyNumberedVertices(g)); |
| 340 | const size_t numVertices = num_vertices(g); |
| 341 | |
| 342 | vector<NFAVertexBidiDepth> depths(numVertices); |
| 343 | vector<int> dMin; |
| 344 | vector<int> dMax; |
| 345 | |
| 346 | /* |
| 347 | * create a filtered graph for max depth calculations: all nodes/edges |
| 348 | * reachable from a loop need to be removed |
| 349 | */ |
| 350 | auto deadNodes = findLoopReachable(g, g.start); |
| 351 | |
| 352 | DEBUG_PRINTF("doing start\n" ); |
| 353 | calcAndStoreDepth<NGHolder, NFAVertexBidiDepth>( |
| 354 | g, g.start, deadNodes, dMin, dMax, depths, |
| 355 | &NFAVertexBidiDepth::fromStart); |
| 356 | DEBUG_PRINTF("doing startds\n" ); |
| 357 | calcAndStoreDepth<NGHolder, NFAVertexBidiDepth>( |
| 358 | g, g.startDs, deadNodes, dMin, dMax, depths, |
| 359 | &NFAVertexBidiDepth::fromStartDotStar); |
| 360 | |
| 361 | /* Now go backwards */ |
| 362 | typedef reverse_graph<NGHolder, const NGHolder &> RevNFAGraph; |
| 363 | const RevNFAGraph rg(g); |
| 364 | deadNodes = findLoopReachable(rg, g.acceptEod); |
| 365 | |
| 366 | DEBUG_PRINTF("doing accept\n" ); |
| 367 | calcAndStoreDepth<RevNFAGraph, NFAVertexBidiDepth>( |
| 368 | rg, g.accept, deadNodes, dMin, dMax, depths, |
| 369 | &NFAVertexBidiDepth::toAccept); |
| 370 | DEBUG_PRINTF("doing accepteod\n" ); |
| 371 | deadNodes[NODE_ACCEPT] = true; // Hide accept->acceptEod edge. |
| 372 | calcAndStoreDepth<RevNFAGraph, NFAVertexBidiDepth>( |
| 373 | rg, g.acceptEod, deadNodes, dMin, dMax, depths, |
| 374 | &NFAVertexBidiDepth::toAcceptEod); |
| 375 | |
| 376 | return depths; |
| 377 | } |
| 378 | |
| 379 | vector<DepthMinMax> calcDepthsFrom(const NGHolder &g, const NFAVertex src) { |
| 380 | assert(hasCorrectlyNumberedVertices(g)); |
| 381 | const size_t numVertices = num_vertices(g); |
| 382 | |
| 383 | auto deadNodes = findLoopReachable(g, g.start); |
| 384 | |
| 385 | vector<int> dMin, dMax; |
| 386 | calcDepthFromSource(g, src, deadNodes, dMin, dMax); |
| 387 | |
| 388 | vector<DepthMinMax> depths(numVertices); |
| 389 | |
| 390 | for (auto v : vertices_range(g)) { |
| 391 | auto idx = g[v].index; |
| 392 | depths.at(idx) = getDepths(idx, dMin, dMax); |
| 393 | } |
| 394 | |
| 395 | return depths; |
| 396 | } |
| 397 | |
| 398 | } // namespace ue2 |
| 399 | |