| 1 | /* |
| 2 | * Copyright (c) 2015-2017, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /** \file |
| 30 | * \brief Edge redundancy graph reductions. |
| 31 | */ |
| 32 | #include "ng_edge_redundancy.h" |
| 33 | |
| 34 | #include "ng_holder.h" |
| 35 | #include "ng_prune.h" |
| 36 | #include "ng_util.h" |
| 37 | #include "ue2common.h" |
| 38 | #include "parser/position.h" |
| 39 | #include "util/compile_context.h" |
| 40 | #include "util/container.h" |
| 41 | #include "util/flat_containers.h" |
| 42 | #include "util/graph_range.h" |
| 43 | |
| 44 | #include <set> |
| 45 | #include <vector> |
| 46 | |
| 47 | using namespace std; |
| 48 | |
| 49 | namespace ue2 { |
| 50 | |
| 51 | /* reverse edge redundancy removal is possible but is not implemented as it |
| 52 | * regressed rose pattern support in the regression suite: 19026 - 19027 |
| 53 | * (foo.{1,5}b?ar) |
| 54 | * |
| 55 | * If rose becomes smarter we can reimplement. |
| 56 | */ |
| 57 | |
| 58 | static never_inline |
| 59 | bool checkVerticesFwd(const NGHolder &g, const set<NFAVertex> &sad, |
| 60 | const set<NFAVertex> &happy) { |
| 61 | /* need to check if for each vertex in sad if it has an edge to a happy |
| 62 | * vertex */ |
| 63 | for (auto u : sad) { |
| 64 | bool ok = false; |
| 65 | for (auto v : adjacent_vertices_range(u, g)) { |
| 66 | if (contains(happy, v)) { |
| 67 | ok = true; |
| 68 | break; |
| 69 | } |
| 70 | } |
| 71 | |
| 72 | if (!ok) { |
| 73 | return false; |
| 74 | } |
| 75 | } |
| 76 | |
| 77 | return true; |
| 78 | } |
| 79 | |
| 80 | static never_inline |
| 81 | bool checkVerticesRev(const NGHolder &g, const set<NFAVertex> &sad, |
| 82 | const set<NFAVertex> &happy) { |
| 83 | /* need to check if for each vertex in sad if it has an edge to a happy |
| 84 | * vertex */ |
| 85 | for (auto v : sad) { |
| 86 | bool ok = false; |
| 87 | for (auto u : inv_adjacent_vertices_range(v, g)) { |
| 88 | if (contains(happy, u)) { |
| 89 | ok = true; |
| 90 | break; |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | if (!ok) { |
| 95 | return false; |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | return true; |
| 100 | } |
| 101 | |
| 102 | /** \brief Redundant self-loop removal. |
| 103 | * |
| 104 | * A self loop on a vertex v can be removed if: |
| 105 | * |
| 106 | * For every vertex u in pred(v) either: |
| 107 | * 1: u has a self loop and cr(v) subset of cr(u) |
| 108 | * OR |
| 109 | * 2: u has an edge to vertex satisfying criterion 1 |
| 110 | * |
| 111 | * Note: we remove all dead loops at the end of the pass and do not check the |
| 112 | * live status of the loops we are depending on during the analysis. |
| 113 | * |
| 114 | * We don't end up in situations where we remove a group of loops which depend |
| 115 | * on each other as: |
| 116 | * |
| 117 | * - there must be at least one vertex not in the group which is a pred of some |
| 118 | * member of the group (as we don't remove loops on specials) |
| 119 | * |
| 120 | * For each pred vertex of the group: |
| 121 | * - the vertex must be 'sad' as it is not part of the group |
| 122 | * - therefore it must have edges to each member of the group (to happy, trans) |
| 123 | * - therefore the group is enabled simultaneously |
| 124 | * - due to internal group edges, all members will still be active after the |
| 125 | * next character. |
| 126 | * |
| 127 | * Actually, the vertex redundancy code will merge the entire group into one |
| 128 | * cyclic state. |
| 129 | */ |
| 130 | static |
| 131 | bool removeEdgeRedundancyNearCyclesFwd(NGHolder &g, bool ignore_starts) { |
| 132 | unsigned dead_count = 0; |
| 133 | |
| 134 | set<NFAVertex> happy; |
| 135 | set<NFAVertex> sad; |
| 136 | |
| 137 | for (auto v : vertices_range(g)) { |
| 138 | if (is_special(v, g) || !hasSelfLoop(v, g)) { |
| 139 | continue; |
| 140 | } |
| 141 | |
| 142 | const CharReach &cr_v = g[v].char_reach; |
| 143 | |
| 144 | happy.clear(); |
| 145 | sad.clear(); |
| 146 | |
| 147 | for (auto u : inv_adjacent_vertices_range(v, g)) { |
| 148 | if (u == v) { |
| 149 | continue; |
| 150 | } |
| 151 | |
| 152 | if (!hasSelfLoop(u, g)) { |
| 153 | sad.insert(u); |
| 154 | continue; |
| 155 | } |
| 156 | |
| 157 | if (ignore_starts) { |
| 158 | if (u == g.startDs || is_virtual_start(u, g)) { |
| 159 | sad.insert(u); |
| 160 | continue; |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | const CharReach &cr_u = g[u].char_reach; |
| 165 | |
| 166 | if ((cr_u & cr_v) != cr_v) { |
| 167 | sad.insert(u); |
| 168 | continue; |
| 169 | } |
| 170 | |
| 171 | happy.insert(u); |
| 172 | } |
| 173 | |
| 174 | if (!happy.empty() && checkVerticesFwd(g, sad, happy)) { |
| 175 | dead_count++; |
| 176 | remove_edge(v, v, g); |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | DEBUG_PRINTF("found %u removable edges.\n" , dead_count); |
| 181 | return dead_count; |
| 182 | } |
| 183 | |
| 184 | static |
| 185 | bool checkReportsRev(const NGHolder &g, NFAVertex v, |
| 186 | const set<NFAVertex> &happy) { |
| 187 | if (g[v].reports.empty()) { |
| 188 | return true; |
| 189 | } |
| 190 | |
| 191 | assert(edge(v, g.accept, g).second || edge(v, g.acceptEod, g).second); |
| 192 | |
| 193 | /* an edge to accept takes priority over eod only accept */ |
| 194 | NFAVertex accept = edge(v, g.accept, g).second ? g.accept : g.acceptEod; |
| 195 | |
| 196 | flat_set<ReportID> happy_reports; |
| 197 | for (NFAVertex u : happy) { |
| 198 | if (edge(u, accept, g).second) { |
| 199 | insert(&happy_reports, g[u].reports); |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | return is_subset_of(g[v].reports, happy_reports); |
| 204 | } |
| 205 | |
| 206 | /** \brief Redundant self-loop removal (reverse version). |
| 207 | * |
| 208 | * A self loop on a vertex v can be removed if: |
| 209 | * |
| 210 | * For every vertex u in succ(v) either: |
| 211 | * 1: u has a self loop and cr(v) is a subset of cr(u). |
| 212 | * OR |
| 213 | * 2: u is not an accept and u has an edge from a vertex satisfying |
| 214 | * criterion 1. |
| 215 | * OR |
| 216 | * 3: u is in an accept and u has an edge from a vertex v' satisfying |
| 217 | * criterion 1 and report(v) == report(v'). |
| 218 | */ |
| 219 | static |
| 220 | bool removeEdgeRedundancyNearCyclesRev(NGHolder &g) { |
| 221 | unsigned dead_count = 0; |
| 222 | |
| 223 | set<NFAVertex> happy; |
| 224 | set<NFAVertex> sad; |
| 225 | |
| 226 | for (auto v : vertices_range(g)) { |
| 227 | if (is_special(v, g) || !hasSelfLoop(v, g)) { |
| 228 | continue; |
| 229 | } |
| 230 | |
| 231 | const CharReach &cr_v = g[v].char_reach; |
| 232 | |
| 233 | happy.clear(); |
| 234 | sad.clear(); |
| 235 | |
| 236 | for (auto u : adjacent_vertices_range(v, g)) { |
| 237 | if (u == v) { |
| 238 | continue; |
| 239 | } |
| 240 | |
| 241 | if (!hasSelfLoop(u, g)) { |
| 242 | sad.insert(u); |
| 243 | continue; |
| 244 | } |
| 245 | |
| 246 | assert(!is_special(u, g)); |
| 247 | |
| 248 | const CharReach &cr_u = g[u].char_reach; |
| 249 | |
| 250 | if (!cr_v.isSubsetOf(cr_u)) { |
| 251 | sad.insert(u); |
| 252 | continue; |
| 253 | } |
| 254 | |
| 255 | happy.insert(u); |
| 256 | } |
| 257 | |
| 258 | if (!happy.empty() && checkVerticesRev(g, sad, happy) |
| 259 | && checkReportsRev(g, v, happy)) { |
| 260 | dead_count++; |
| 261 | remove_edge(v, v, g); |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | DEBUG_PRINTF("found %u removable edges.\n" , dead_count); |
| 266 | return dead_count; |
| 267 | } |
| 268 | |
| 269 | static |
| 270 | bool parentsSubsetOf(const NGHolder &g, NFAVertex v, |
| 271 | const flat_set<NFAVertex> &other_parents, NFAVertex other, |
| 272 | map<NFAVertex, bool> &done) { |
| 273 | map<NFAVertex, bool>::const_iterator dit = done.find(v); |
| 274 | if (dit != done.end()) { |
| 275 | return dit->second; |
| 276 | } |
| 277 | |
| 278 | for (auto u : inv_adjacent_vertices_range(v, g)) { |
| 279 | if (u == v && contains(other_parents, other)) { |
| 280 | continue; |
| 281 | } |
| 282 | |
| 283 | if (!contains(other_parents, u)) { |
| 284 | done[v] = false; |
| 285 | return false; |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | done[v] = true; |
| 290 | return true; |
| 291 | } |
| 292 | |
| 293 | static |
| 294 | bool checkFwdCandidate(const NGHolder &g, NFAVertex fixed_src, |
| 295 | const flat_set<NFAVertex> &fixed_parents, |
| 296 | const NFAEdge &candidate, |
| 297 | map<NFAVertex, bool> &done) { |
| 298 | NFAVertex w = source(candidate, g); |
| 299 | NFAVertex v = target(candidate, g); |
| 300 | const CharReach &cr_w = g[w].char_reach; |
| 301 | const CharReach &cr_u = g[fixed_src].char_reach; |
| 302 | |
| 303 | /* There is no reason why self loops cannot be considered by this |
| 304 | * transformation but the removal is already handled by many other |
| 305 | * transformations. */ |
| 306 | if (w == v) { |
| 307 | return false; |
| 308 | } |
| 309 | |
| 310 | if (is_special(w, g)) { |
| 311 | return false; |
| 312 | } |
| 313 | |
| 314 | if (!cr_w.isSubsetOf(cr_u)) { |
| 315 | return false; |
| 316 | } |
| 317 | |
| 318 | /* check that each parent of w is also a parent of u */ |
| 319 | if (!parentsSubsetOf(g, w, fixed_parents, fixed_src, done)) { |
| 320 | return false; |
| 321 | } |
| 322 | |
| 323 | DEBUG_PRINTF("edge (%zu, %zu) killed by edge (%zu, %zu)\n" , |
| 324 | g[w].index, g[v].index, g[fixed_src].index, g[v].index); |
| 325 | return true; |
| 326 | } |
| 327 | |
| 328 | static never_inline |
| 329 | void checkLargeOutU(const NGHolder &g, NFAVertex u, |
| 330 | const flat_set<NFAVertex> &parents_u, |
| 331 | flat_set<NFAVertex> &possible_w, |
| 332 | map<NFAVertex, bool> &done, |
| 333 | set<NFAEdge> *dead) { |
| 334 | /* only vertices with at least one parent in common with u need to be |
| 335 | * considered, and we also only consider potential siblings with subset |
| 336 | * reach. */ |
| 337 | possible_w.clear(); |
| 338 | const CharReach &cr_u = g[u].char_reach; |
| 339 | for (auto p : parents_u) { |
| 340 | for (auto v : adjacent_vertices_range(p, g)) { |
| 341 | const CharReach &cr_w = g[v].char_reach; |
| 342 | if (cr_w.isSubsetOf(cr_u)) { |
| 343 | possible_w.insert(v); |
| 344 | } |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | // If there's only one, it's us, and we have no work to do. |
| 349 | if (possible_w.size() <= 1) { |
| 350 | assert(possible_w.empty() || *possible_w.begin() == u); |
| 351 | return; |
| 352 | } |
| 353 | |
| 354 | for (const auto &e : out_edges_range(u, g)) { |
| 355 | const NFAVertex v = target(e, g); |
| 356 | |
| 357 | if (is_special(v, g)) { |
| 358 | continue; |
| 359 | } |
| 360 | |
| 361 | if (contains(*dead, e)) { |
| 362 | continue; |
| 363 | } |
| 364 | |
| 365 | /* Now need check to find any edges which can be removed due to the |
| 366 | * existence of edge e */ |
| 367 | for (const auto &e2 : in_edges_range(v, g)) { |
| 368 | if (e == e2 || contains(*dead, e2)) { |
| 369 | continue; |
| 370 | } |
| 371 | |
| 372 | const NFAVertex w = source(e2, g); |
| 373 | if (!contains(possible_w, w)) { |
| 374 | continue; |
| 375 | } |
| 376 | |
| 377 | if (checkFwdCandidate(g, u, parents_u, e2, done)) { |
| 378 | dead->insert(e2); |
| 379 | } |
| 380 | } |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | static never_inline |
| 385 | void checkSmallOutU(const NGHolder &g, NFAVertex u, |
| 386 | const flat_set<NFAVertex> &parents_u, |
| 387 | map<NFAVertex, bool> &done, |
| 388 | set<NFAEdge> *dead) { |
| 389 | for (const auto &e : out_edges_range(u, g)) { |
| 390 | const NFAVertex v = target(e, g); |
| 391 | |
| 392 | if (is_special(v, g)) { |
| 393 | continue; |
| 394 | } |
| 395 | |
| 396 | if (contains(*dead, e)) { |
| 397 | continue; |
| 398 | } |
| 399 | |
| 400 | /* Now need check to find any edges which can be removed due to the |
| 401 | * existence of edge e */ |
| 402 | for (const auto &e2 : in_edges_range(v, g)) { |
| 403 | if (e == e2 || contains(*dead, e2)) { |
| 404 | continue; |
| 405 | } |
| 406 | |
| 407 | if (checkFwdCandidate(g, u, parents_u, e2, done)) { |
| 408 | dead->insert(e2); |
| 409 | } |
| 410 | } |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | /** \brief Forward edge redundancy pass. |
| 415 | * |
| 416 | * An edge e from w to v is redundant if there exists an edge e' such that: |
| 417 | * e' is from u to v |
| 418 | * and: reach(w) is a subset of reach(u) |
| 419 | * and: proper_pred(w) is a subset of pred(u) |
| 420 | * and: self_loop(w) implies self_loop(u) or edge from (w to u) |
| 421 | * |
| 422 | * Note: edges to accepts also require report ID checks. |
| 423 | */ |
| 424 | static |
| 425 | bool removeEdgeRedundancyFwd(NGHolder &g, bool ignore_starts) { |
| 426 | set<NFAEdge> dead; |
| 427 | map<NFAVertex, bool> done; |
| 428 | flat_set<NFAVertex> parents_u; |
| 429 | flat_set<NFAVertex> possible_w; |
| 430 | |
| 431 | for (auto u : vertices_range(g)) { |
| 432 | if (ignore_starts && (u == g.startDs || is_virtual_start(u, g))) { |
| 433 | continue; |
| 434 | } |
| 435 | |
| 436 | parents_u.clear(); |
| 437 | pred(g, u, &parents_u); |
| 438 | |
| 439 | done.clear(); |
| 440 | if (out_degree(u, g) > 1) { |
| 441 | checkLargeOutU(g, u, parents_u, possible_w, done, &dead); |
| 442 | } else { |
| 443 | checkSmallOutU(g, u, parents_u, done, &dead); |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | if (dead.empty()) { |
| 448 | return false; |
| 449 | } |
| 450 | |
| 451 | DEBUG_PRINTF("found %zu removable non-selfloops.\n" , dead.size()); |
| 452 | remove_edges(dead, g); |
| 453 | pruneUseless(g); |
| 454 | return true; |
| 455 | } |
| 456 | |
| 457 | /** Entry point: Runs all the edge redundancy passes. If SoM is tracked, |
| 458 | * don't consider startDs or virtual starts as cyclic vertices. */ |
| 459 | bool removeEdgeRedundancy(NGHolder &g, som_type som, const CompileContext &cc) { |
| 460 | if (!cc.grey.removeEdgeRedundancy) { |
| 461 | return false; |
| 462 | } |
| 463 | |
| 464 | bool changed = false; |
| 465 | changed |= removeEdgeRedundancyNearCyclesFwd(g, som); |
| 466 | changed |= removeEdgeRedundancyNearCyclesRev(g); |
| 467 | changed |= removeEdgeRedundancyFwd(g, som); |
| 468 | return changed; |
| 469 | } |
| 470 | |
| 471 | /** \brief Removes optional stuff from the front of floating patterns, since it's |
| 472 | * redundant with startDs. |
| 473 | * |
| 474 | * For each successor of startDs, remove any in-edges that aren't from either |
| 475 | * start or startDs. This allows us to prune redundant vertices at the start of |
| 476 | * a pattern: |
| 477 | * |
| 478 | * /(hat)?stand --> /stand/ |
| 479 | * |
| 480 | */ |
| 481 | bool removeSiblingsOfStartDotStar(NGHolder &g) { |
| 482 | vector<NFAEdge> dead; |
| 483 | |
| 484 | for (auto v : adjacent_vertices_range(g.startDs, g)) { |
| 485 | DEBUG_PRINTF("checking %zu\n" , g[v].index); |
| 486 | if (is_special(v, g)) { |
| 487 | continue; |
| 488 | } |
| 489 | |
| 490 | for (const auto &e : in_edges_range(v, g)) { |
| 491 | NFAVertex u = source(e, g); |
| 492 | if (is_special(u, g)) { |
| 493 | continue; |
| 494 | } |
| 495 | DEBUG_PRINTF("removing %zu->%zu\n" , g[u].index, g[v].index); |
| 496 | dead.push_back(e); |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | if (dead.empty()) { |
| 501 | return false; |
| 502 | } |
| 503 | |
| 504 | DEBUG_PRINTF("found %zu removable edges.\n" , dead.size()); |
| 505 | remove_edges(dead, g); |
| 506 | pruneUseless(g); |
| 507 | return true; |
| 508 | } |
| 509 | |
| 510 | /** Removes all edges into virtual starts other than those from start/startDs, |
| 511 | * providing there is an edge from startDs. This operation is an optimisation |
| 512 | * for SOM mode. (see UE-1544) */ |
| 513 | bool optimiseVirtualStarts(NGHolder &g) { |
| 514 | vector<NFAEdge> dead; |
| 515 | for (auto v : adjacent_vertices_range(g.startDs, g)) { |
| 516 | u32 flags = g[v].assert_flags; |
| 517 | if (!(flags & POS_FLAG_VIRTUAL_START)) { |
| 518 | continue; |
| 519 | } |
| 520 | |
| 521 | for (const auto &e : in_edges_range(v, g)) { |
| 522 | if (!is_any_start(source(e, g), g)) { |
| 523 | dead.push_back(e); |
| 524 | } |
| 525 | } |
| 526 | } |
| 527 | |
| 528 | if (dead.empty()) { |
| 529 | return false; |
| 530 | } |
| 531 | |
| 532 | DEBUG_PRINTF("removing %zu edges into virtual starts\n" , dead.size()); |
| 533 | remove_edges(dead, g); |
| 534 | pruneUseless(g); |
| 535 | return true; |
| 536 | } |
| 537 | |
| 538 | } // namespace ue2 |
| 539 | |