| 1 | /* |
| 2 | * Copyright (c) 2015-2017, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /** \file |
| 30 | * \brief Utility functions related to SOM ("Start of Match"). |
| 31 | */ |
| 32 | #include "ng_som_util.h" |
| 33 | |
| 34 | #include "ng_depth.h" |
| 35 | #include "ng_execute.h" |
| 36 | #include "ng_holder.h" |
| 37 | #include "ng_prune.h" |
| 38 | #include "ng_util.h" |
| 39 | #include "util/container.h" |
| 40 | #include "util/graph_range.h" |
| 41 | |
| 42 | using namespace std; |
| 43 | |
| 44 | namespace ue2 { |
| 45 | |
| 46 | static |
| 47 | void wireSuccessorsToStart(NGHolder &g, NFAVertex u) { |
| 48 | for (auto v : adjacent_vertices_range(u, g)) { |
| 49 | add_edge_if_not_present(g.start, v, g); |
| 50 | } |
| 51 | } |
| 52 | |
| 53 | vector<DepthMinMax> getDistancesFromSOM(const NGHolder &g_orig) { |
| 54 | // We operate on a temporary copy of the original graph here, so we don't |
| 55 | // have to mutate the original. |
| 56 | NGHolder g; |
| 57 | unordered_map<NFAVertex, NFAVertex> vmap; // vertex in g_orig to vertex in g |
| 58 | cloneHolder(g, g_orig, &vmap); |
| 59 | |
| 60 | vector<NFAVertex> vstarts; |
| 61 | for (auto v : vertices_range(g)) { |
| 62 | if (is_virtual_start(v, g)) { |
| 63 | vstarts.push_back(v); |
| 64 | } |
| 65 | } |
| 66 | vstarts.push_back(g.startDs); |
| 67 | |
| 68 | // wire the successors of every virtual start or startDs to g.start. |
| 69 | for (auto v : vstarts) { |
| 70 | wireSuccessorsToStart(g, v); |
| 71 | } |
| 72 | |
| 73 | // drop the in-edges of every virtual start so that they don't participate |
| 74 | // in the depth calculation. |
| 75 | for (auto v : vstarts) { |
| 76 | clear_in_edges(v, g); |
| 77 | } |
| 78 | |
| 79 | //dumpGraph("som_depth.dot", g); |
| 80 | |
| 81 | // Find depths, indexed by vertex index in g |
| 82 | auto temp_depths = calcDepthsFrom(g, g.start); |
| 83 | |
| 84 | // Transfer depths, indexed by vertex index in g_orig. |
| 85 | vector<DepthMinMax> depths(num_vertices(g_orig)); |
| 86 | |
| 87 | for (auto v_orig : vertices_range(g_orig)) { |
| 88 | assert(contains(vmap, v_orig)); |
| 89 | NFAVertex v_new = vmap[v_orig]; |
| 90 | |
| 91 | u32 orig_idx = g_orig[v_orig].index; |
| 92 | |
| 93 | DepthMinMax &d = depths.at(orig_idx); |
| 94 | |
| 95 | if (v_orig == g_orig.startDs || is_virtual_start(v_orig, g_orig)) { |
| 96 | // StartDs and virtual starts always have zero depth. |
| 97 | d = DepthMinMax(depth(0), depth(0)); |
| 98 | } else { |
| 99 | u32 new_idx = g[v_new].index; |
| 100 | d = temp_depths.at(new_idx); |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | return depths; |
| 105 | } |
| 106 | |
| 107 | bool firstMatchIsFirst(const NGHolder &p) { |
| 108 | /* If the first match (by end offset) is not the first match (by start |
| 109 | * offset) then we can't create a lock after it. |
| 110 | * |
| 111 | * Consider: 4009:/(foobar|ob).*bugger/s |
| 112 | * |
| 113 | * We don't care about races on the last byte as they can be resolved easily |
| 114 | * at runtime /(foobar|obar).*hi/ |
| 115 | * |
| 116 | * It should be obvious we don't care about one match being a prefix |
| 117 | * of another as they share the same start offset. |
| 118 | * |
| 119 | * Therefore, the case were we cannot establish that the som does not |
| 120 | * regress is when there exists s1 and s2 in the language of p and s2 is a |
| 121 | * proper infix of s1. |
| 122 | * |
| 123 | * It is tempting to add the further restriction that there does not exist a |
| 124 | * prefix of s1 that is in the language of p (as in which case we would |
| 125 | * presume, the lock has already been set). However, we have no way of |
| 126 | * knowing if the lock can be cleared by some characters, and if so, if it |
| 127 | * is still set. TODO: if we knew the lock's escapes where we could verify |
| 128 | * that the rest of s1 does not clear the lock. (1) |
| 129 | */ |
| 130 | |
| 131 | DEBUG_PRINTF("entry\n" ); |
| 132 | |
| 133 | /* If there are any big cycles throw up our hands in despair */ |
| 134 | if (hasBigCycles(p)) { |
| 135 | DEBUG_PRINTF("fail, big cycles\n" ); |
| 136 | return false; |
| 137 | } |
| 138 | |
| 139 | flat_set<NFAVertex> states; |
| 140 | /* turn on all states (except starts - avoid suffix matches) */ |
| 141 | /* If we were doing (1) we would also except states leading to accepts - |
| 142 | avoid prefix matches */ |
| 143 | for (auto v : vertices_range(p)) { |
| 144 | assert(!is_virtual_start(v, p)); |
| 145 | if (!is_special(v, p)) { |
| 146 | DEBUG_PRINTF("turning on %zu\n" , p[v].index); |
| 147 | states.insert(v); |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | /* run the prefix the main graph */ |
| 152 | states = execute_graph(p, p, states); |
| 153 | |
| 154 | for (auto v : states) { |
| 155 | /* need to check if this vertex may represent an infix match - ie |
| 156 | * it does not have an edge to accept. */ |
| 157 | DEBUG_PRINTF("check %zu\n" , p[v].index); |
| 158 | if (!edge(v, p.accept, p).second) { |
| 159 | DEBUG_PRINTF("fail %zu\n" , p[v].index); |
| 160 | return false; |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | DEBUG_PRINTF("done first is first check\n" ); |
| 165 | return true; |
| 166 | } |
| 167 | |
| 168 | bool somMayGoBackwards(NFAVertex u, const NGHolder &g, |
| 169 | const unordered_map<NFAVertex, u32> ®ion_map, |
| 170 | smgb_cache &cache) { |
| 171 | /* Need to ensure all matches of the graph g up to u contain no infixes |
| 172 | * which are also matches of the graph to u. |
| 173 | * |
| 174 | * This is basically the same as firstMatchIsFirst except we g is not |
| 175 | * always a dag. As we haven't gotten around to writing an execute_graph |
| 176 | * that operates on general graphs, we take some (hopefully) conservative |
| 177 | * short cuts. |
| 178 | * |
| 179 | * Note: if the u can be jumped we will take jump edges |
| 180 | * into account as a possibility of som going backwards |
| 181 | * |
| 182 | * TODO: write a generalised ng_execute_graph/make this less hacky |
| 183 | */ |
| 184 | assert(&g == &cache.g); |
| 185 | if (contains(cache.smgb, u)) { |
| 186 | return cache.smgb[u]; |
| 187 | } |
| 188 | |
| 189 | DEBUG_PRINTF("checking if som can go backwards on %zu\n" , g[u].index); |
| 190 | |
| 191 | set<NFAEdge> be; |
| 192 | BackEdges<set<NFAEdge>> backEdgeVisitor(be); |
| 193 | boost::depth_first_search(g, visitor(backEdgeVisitor).root_vertex(g.start)); |
| 194 | |
| 195 | bool rv; |
| 196 | if (0) { |
| 197 | exit: |
| 198 | DEBUG_PRINTF("using cached result\n" ); |
| 199 | cache.smgb[u] = rv; |
| 200 | return rv; |
| 201 | } |
| 202 | |
| 203 | assert(contains(region_map, u)); |
| 204 | const u32 u_region = region_map.at(u); |
| 205 | |
| 206 | for (const auto &e : be) { |
| 207 | NFAVertex s = source(e, g); |
| 208 | NFAVertex t = target(e, g); |
| 209 | /* only need to worry about big cycles including/before u */ |
| 210 | DEBUG_PRINTF("back edge %zu %zu\n" , g[s].index, g[t].index); |
| 211 | if (s != t && region_map.at(s) <= u_region) { |
| 212 | DEBUG_PRINTF("eek big cycle\n" ); |
| 213 | rv = true; /* big cycle -> eek */ |
| 214 | goto exit; |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | unordered_map<NFAVertex, NFAVertex> orig_to_copy; |
| 219 | NGHolder c_g; |
| 220 | cloneHolder(c_g, g, &orig_to_copy); |
| 221 | |
| 222 | /* treat virtual starts as unconditional - wire to startDs instead */ |
| 223 | for (NFAVertex v : vertices_range(g)) { |
| 224 | if (!is_virtual_start(v, g)) { |
| 225 | continue; |
| 226 | } |
| 227 | NFAVertex c_v = orig_to_copy[v]; |
| 228 | orig_to_copy[v] = c_g.startDs; |
| 229 | for (NFAVertex c_w : adjacent_vertices_range(c_v, c_g)) { |
| 230 | add_edge_if_not_present(c_g.startDs, c_w, c_g); |
| 231 | } |
| 232 | clear_vertex(c_v, c_g); |
| 233 | } |
| 234 | |
| 235 | /* treat u as the only accept state */ |
| 236 | NFAVertex c_u = orig_to_copy[u]; |
| 237 | clear_in_edges(c_g.acceptEod, c_g); |
| 238 | add_edge(c_g.accept, c_g.acceptEod, c_g); |
| 239 | clear_in_edges(c_g.accept, c_g); |
| 240 | clear_out_edges(c_u, c_g); |
| 241 | if (hasSelfLoop(u, g)) { |
| 242 | add_edge(c_u, c_u, c_g); |
| 243 | } |
| 244 | add_edge(c_u, c_g.accept, c_g); |
| 245 | |
| 246 | set<NFAVertex> u_succ; |
| 247 | insert(&u_succ, adjacent_vertices(u, g)); |
| 248 | u_succ.erase(u); |
| 249 | |
| 250 | for (auto t : inv_adjacent_vertices_range(u, g)) { |
| 251 | if (t == u) { |
| 252 | continue; |
| 253 | } |
| 254 | for (auto v : adjacent_vertices_range(t, g)) { |
| 255 | if (contains(u_succ, v)) { |
| 256 | /* due to virtual starts being aliased with normal starts in the |
| 257 | * copy of the graph, we may have already added the edges. */ |
| 258 | add_edge_if_not_present(orig_to_copy[t], c_g.accept, c_g); |
| 259 | break; |
| 260 | } |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | pruneUseless(c_g); |
| 265 | |
| 266 | be.clear(); |
| 267 | boost::depth_first_search(c_g, visitor(backEdgeVisitor) |
| 268 | .root_vertex(c_g.start)); |
| 269 | |
| 270 | for (const auto &e : be) { |
| 271 | NFAVertex s = source(e, c_g); |
| 272 | NFAVertex t = target(e, c_g); |
| 273 | DEBUG_PRINTF("back edge %zu %zu\n" , c_g[s].index, c_g[t].index); |
| 274 | if (s != t) { |
| 275 | assert(0); |
| 276 | DEBUG_PRINTF("eek big cycle\n" ); |
| 277 | rv = true; /* big cycle -> eek */ |
| 278 | goto exit; |
| 279 | } |
| 280 | } |
| 281 | |
| 282 | DEBUG_PRINTF("checking acyclic+selfloop graph\n" ); |
| 283 | |
| 284 | rv = !firstMatchIsFirst(c_g); |
| 285 | DEBUG_PRINTF("som may regress? %d\n" , (int)rv); |
| 286 | goto exit; |
| 287 | } |
| 288 | |
| 289 | bool sentClearsTail(const NGHolder &g, |
| 290 | const unordered_map<NFAVertex, u32> ®ion_map, |
| 291 | const NGHolder &sent, u32 last_head_region, |
| 292 | u32 *bad_region) { |
| 293 | /* if a subsequent match from the prefix clears the rest of the pattern |
| 294 | * we can just keep track of the last match of the prefix. |
| 295 | * To see if this property holds, we could: |
| 296 | * |
| 297 | * 1A: turn on all states in the tail and run all strings that may |
| 298 | * match the prefix past the tail, if we are still in any states then |
| 299 | * this property does not hold. |
| 300 | * |
| 301 | * 1B: we turn on the initial states of the tail and run any strings which |
| 302 | * may finish any partial matches in the prefix and see if we end up with |
| 303 | * anything which would also imply that this property does not hold. |
| 304 | * |
| 305 | * OR |
| 306 | * |
| 307 | * 2: we just turn everything and run the prefix inputs past it and see what |
| 308 | * we are left with. I think that is equivalent to scheme 1 and is easier to |
| 309 | * implement. TODO: ponder |
| 310 | * |
| 311 | * Anyway, we are going with scheme 2 until further notice. |
| 312 | */ |
| 313 | |
| 314 | u32 first_bad_region = ~0U; |
| 315 | flat_set<NFAVertex> states; |
| 316 | /* turn on all states */ |
| 317 | DEBUG_PRINTF("region %u is cutover\n" , last_head_region); |
| 318 | for (auto v : vertices_range(g)) { |
| 319 | if (v != g.accept && v != g.acceptEod) { |
| 320 | states.insert(v); |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | for (UNUSED auto v : states) { |
| 325 | DEBUG_PRINTF("start state: %zu\n" , g[v].index); |
| 326 | } |
| 327 | |
| 328 | /* run the prefix the main graph */ |
| 329 | states = execute_graph(g, sent, states); |
| 330 | |
| 331 | /* .. and check if we are left with anything in the tail region */ |
| 332 | for (auto v : states) { |
| 333 | if (v == g.start || v == g.startDs) { |
| 334 | continue; /* not in tail */ |
| 335 | } |
| 336 | |
| 337 | DEBUG_PRINTF("v %zu is still on\n" , g[v].index); |
| 338 | assert(v != g.accept && v != g.acceptEod); /* no cr */ |
| 339 | |
| 340 | assert(contains(region_map, v)); |
| 341 | const u32 v_region = region_map.at(v); |
| 342 | if (v_region > last_head_region) { |
| 343 | DEBUG_PRINTF("bailing, %u > %u\n" , v_region, last_head_region); |
| 344 | first_bad_region = min(first_bad_region, v_region); |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | if (first_bad_region != ~0U) { |
| 349 | DEBUG_PRINTF("first bad region is %u\n" , first_bad_region); |
| 350 | *bad_region = first_bad_region; |
| 351 | return false; |
| 352 | } |
| 353 | |
| 354 | return true; |
| 355 | } |
| 356 | |
| 357 | } // namespace ue2 |
| 358 | |