| 1 | /* |
| 2 | * Copyright (c) 2015-2017, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /** \file |
| 30 | * \brief Mask-based state compression, used by the NFA. |
| 31 | */ |
| 32 | #include "config.h" |
| 33 | #include "ue2common.h" |
| 34 | #include "arch.h" |
| 35 | #include "bitutils.h" |
| 36 | #include "unaligned.h" |
| 37 | #include "pack_bits.h" |
| 38 | #include "partial_store.h" |
| 39 | #include "popcount.h" |
| 40 | #include "state_compress.h" |
| 41 | |
| 42 | #include <string.h> |
| 43 | |
| 44 | /* |
| 45 | * 32-bit store/load. |
| 46 | */ |
| 47 | |
| 48 | void storecompressed32(void *ptr, const u32 *x, const u32 *m, u32 bytes) { |
| 49 | assert(popcount32(*m) <= bytes * 8); |
| 50 | |
| 51 | u32 v = compress32(*x, *m); |
| 52 | partial_store_u32(ptr, v, bytes); |
| 53 | } |
| 54 | |
| 55 | void loadcompressed32(u32 *x, const void *ptr, const u32 *m, u32 bytes) { |
| 56 | assert(popcount32(*m) <= bytes * 8); |
| 57 | |
| 58 | u32 v = partial_load_u32(ptr, bytes); |
| 59 | *x = expand32(v, *m); |
| 60 | } |
| 61 | |
| 62 | /* |
| 63 | * 64-bit store/load. |
| 64 | */ |
| 65 | |
| 66 | void storecompressed64(void *ptr, const u64a *x, const u64a *m, u32 bytes) { |
| 67 | assert(popcount64(*m) <= bytes * 8); |
| 68 | |
| 69 | u64a v = compress64(*x, *m); |
| 70 | partial_store_u64a(ptr, v, bytes); |
| 71 | } |
| 72 | |
| 73 | void loadcompressed64(u64a *x, const void *ptr, const u64a *m, u32 bytes) { |
| 74 | assert(popcount64(*m) <= bytes * 8); |
| 75 | |
| 76 | u64a v = partial_load_u64a(ptr, bytes); |
| 77 | *x = expand64(v, *m); |
| 78 | } |
| 79 | |
| 80 | /* |
| 81 | * 128-bit store/load. |
| 82 | */ |
| 83 | |
| 84 | #if defined(ARCH_32_BIT) |
| 85 | static really_inline |
| 86 | void storecompressed128_32bit(void *ptr, m128 xvec, m128 mvec) { |
| 87 | // First, decompose our vectors into 32-bit chunks. |
| 88 | u32 x[4]; |
| 89 | memcpy(x, &xvec, sizeof(xvec)); |
| 90 | u32 m[4]; |
| 91 | memcpy(m, &mvec, sizeof(mvec)); |
| 92 | |
| 93 | // Count the number of bits of compressed state we're writing out per |
| 94 | // chunk. |
| 95 | u32 bits[4] = { popcount32(m[0]), popcount32(m[1]), |
| 96 | popcount32(m[2]), popcount32(m[3]) }; |
| 97 | |
| 98 | // Compress each 32-bit chunk individually. |
| 99 | u32 v[4] = { compress32(x[0], m[0]), compress32(x[1], m[1]), |
| 100 | compress32(x[2], m[2]), compress32(x[3], m[3]) }; |
| 101 | |
| 102 | // Write packed data out. |
| 103 | pack_bits_32(ptr, v, bits, 4); |
| 104 | } |
| 105 | #endif |
| 106 | |
| 107 | #if defined(ARCH_64_BIT) |
| 108 | static really_inline |
| 109 | void storecompressed128_64bit(void *ptr, m128 xvec, m128 mvec) { |
| 110 | // First, decompose our vectors into 64-bit chunks. |
| 111 | u64a x[2]; |
| 112 | memcpy(x, &xvec, sizeof(xvec)); |
| 113 | u64a m[2]; |
| 114 | memcpy(m, &mvec, sizeof(mvec)); |
| 115 | |
| 116 | // Count the number of bits of compressed state we're writing out per |
| 117 | // chunk. |
| 118 | u32 bits[2] = { popcount64(m[0]), popcount64(m[1]) }; |
| 119 | |
| 120 | // Compress each 64-bit chunk individually. |
| 121 | u64a v[2] = { compress64(x[0], m[0]), compress64(x[1], m[1]) }; |
| 122 | |
| 123 | // Write packed data out. |
| 124 | pack_bits_64(ptr, v, bits, 2); |
| 125 | } |
| 126 | #endif |
| 127 | |
| 128 | void storecompressed128(void *ptr, const m128 *x, const m128 *m, |
| 129 | UNUSED u32 bytes) { |
| 130 | #if defined(ARCH_64_BIT) |
| 131 | storecompressed128_64bit(ptr, *x, *m); |
| 132 | #else |
| 133 | storecompressed128_32bit(ptr, *x, *m); |
| 134 | #endif |
| 135 | } |
| 136 | |
| 137 | #if defined(ARCH_32_BIT) |
| 138 | static really_inline |
| 139 | m128 loadcompressed128_32bit(const void *ptr, m128 mvec) { |
| 140 | // First, decompose our vectors into 32-bit chunks. |
| 141 | u32 m[8]; |
| 142 | memcpy(m, &mvec, sizeof(mvec)); |
| 143 | |
| 144 | u32 bits[4] = { popcount32(m[0]), popcount32(m[1]), |
| 145 | popcount32(m[2]), popcount32(m[3]) }; |
| 146 | u32 v[4]; |
| 147 | |
| 148 | unpack_bits_32(v, (const u8 *)ptr, bits, 4); |
| 149 | |
| 150 | u32 x[4] = { expand32(v[0], m[0]), expand32(v[1], m[1]), |
| 151 | expand32(v[2], m[2]), expand32(v[3], m[3]) }; |
| 152 | |
| 153 | return _mm_set_epi32(x[3], x[2], x[1], x[0]); |
| 154 | } |
| 155 | #endif |
| 156 | |
| 157 | #if defined(ARCH_64_BIT) |
| 158 | static really_inline |
| 159 | m128 loadcompressed128_64bit(const void *ptr, m128 mvec) { |
| 160 | // First, decompose our vectors into 64-bit chunks. |
| 161 | u64a m[2] = { movq(mvec), movq(_mm_srli_si128(mvec, 8)) }; |
| 162 | |
| 163 | u32 bits[2] = { popcount64(m[0]), popcount64(m[1]) }; |
| 164 | u64a v[2]; |
| 165 | |
| 166 | unpack_bits_64(v, (const u8 *)ptr, bits, 2); |
| 167 | |
| 168 | u64a x[2] = { expand64(v[0], m[0]), expand64(v[1], m[1]) }; |
| 169 | |
| 170 | return _mm_set_epi64x(x[1], x[0]); |
| 171 | } |
| 172 | #endif |
| 173 | |
| 174 | void loadcompressed128(m128 *x, const void *ptr, const m128 *m, |
| 175 | UNUSED u32 bytes) { |
| 176 | #if defined(ARCH_64_BIT) |
| 177 | *x = loadcompressed128_64bit(ptr, *m); |
| 178 | #else |
| 179 | *x = loadcompressed128_32bit(ptr, *m); |
| 180 | #endif |
| 181 | } |
| 182 | |
| 183 | /* |
| 184 | * 256-bit store/load. |
| 185 | */ |
| 186 | |
| 187 | #if defined(ARCH_32_BIT) |
| 188 | static really_inline |
| 189 | void storecompressed256_32bit(void *ptr, m256 xvec, m256 mvec) { |
| 190 | // First, decompose our vectors into 32-bit chunks. |
| 191 | u32 x[8]; |
| 192 | memcpy(x, &xvec, sizeof(xvec)); |
| 193 | u32 m[8]; |
| 194 | memcpy(m, &mvec, sizeof(mvec)); |
| 195 | |
| 196 | // Count the number of bits of compressed state we're writing out per |
| 197 | // chunk. |
| 198 | u32 bits[8] = { popcount32(m[0]), popcount32(m[1]), |
| 199 | popcount32(m[2]), popcount32(m[3]), |
| 200 | popcount32(m[4]), popcount32(m[5]), |
| 201 | popcount32(m[6]), popcount32(m[7])}; |
| 202 | |
| 203 | // Compress each 32-bit chunk individually. |
| 204 | u32 v[8] = { compress32(x[0], m[0]), compress32(x[1], m[1]), |
| 205 | compress32(x[2], m[2]), compress32(x[3], m[3]), |
| 206 | compress32(x[4], m[4]), compress32(x[5], m[5]), |
| 207 | compress32(x[6], m[6]), compress32(x[7], m[7]) }; |
| 208 | |
| 209 | // Write packed data out. |
| 210 | pack_bits_32(ptr, v, bits, 8); |
| 211 | } |
| 212 | #endif |
| 213 | |
| 214 | #if defined(ARCH_64_BIT) |
| 215 | static really_really_inline |
| 216 | void storecompressed256_64bit(void *ptr, m256 xvec, m256 mvec) { |
| 217 | // First, decompose our vectors into 64-bit chunks. |
| 218 | u64a x[4]; |
| 219 | memcpy(x, &xvec, sizeof(xvec)); |
| 220 | u64a m[4]; |
| 221 | memcpy(m, &mvec, sizeof(mvec)); |
| 222 | |
| 223 | // Count the number of bits of compressed state we're writing out per |
| 224 | // chunk. |
| 225 | u32 bits[4] = { popcount64(m[0]), popcount64(m[1]), |
| 226 | popcount64(m[2]), popcount64(m[3]) }; |
| 227 | |
| 228 | // Compress each 64-bit chunk individually. |
| 229 | u64a v[4] = { compress64(x[0], m[0]), compress64(x[1], m[1]), |
| 230 | compress64(x[2], m[2]), compress64(x[3], m[3]) }; |
| 231 | |
| 232 | // Write packed data out. |
| 233 | pack_bits_64(ptr, v, bits, 4); |
| 234 | } |
| 235 | #endif |
| 236 | |
| 237 | void storecompressed256(void *ptr, const m256 *x, const m256 *m, |
| 238 | UNUSED u32 bytes) { |
| 239 | #if defined(ARCH_64_BIT) |
| 240 | storecompressed256_64bit(ptr, *x, *m); |
| 241 | #else |
| 242 | storecompressed256_32bit(ptr, *x, *m); |
| 243 | #endif |
| 244 | } |
| 245 | |
| 246 | #if defined(ARCH_32_BIT) |
| 247 | static really_inline |
| 248 | m256 loadcompressed256_32bit(const void *ptr, m256 mvec) { |
| 249 | // First, decompose our vectors into 32-bit chunks. |
| 250 | u32 m[8]; |
| 251 | memcpy(m, &mvec, sizeof(mvec)); |
| 252 | |
| 253 | u32 bits[8] = { popcount32(m[0]), popcount32(m[1]), |
| 254 | popcount32(m[2]), popcount32(m[3]), |
| 255 | popcount32(m[4]), popcount32(m[5]), |
| 256 | popcount32(m[6]), popcount32(m[7])}; |
| 257 | u32 v[8]; |
| 258 | |
| 259 | unpack_bits_32(v, (const u8 *)ptr, bits, 8); |
| 260 | |
| 261 | u32 x[8] = { expand32(v[0], m[0]), expand32(v[1], m[1]), |
| 262 | expand32(v[2], m[2]), expand32(v[3], m[3]), |
| 263 | expand32(v[4], m[4]), expand32(v[5], m[5]), |
| 264 | expand32(v[6], m[6]), expand32(v[7], m[7]) }; |
| 265 | |
| 266 | #if !defined(HAVE_AVX2) |
| 267 | m256 xvec = { .lo = _mm_set_epi32(x[3], x[2], x[1], x[0]), |
| 268 | .hi = _mm_set_epi32(x[7], x[6], x[5], x[4]) }; |
| 269 | #else |
| 270 | m256 xvec = _mm256_set_epi32(x[7], x[6], x[5], x[4], |
| 271 | x[3], x[2], x[1], x[0]); |
| 272 | #endif |
| 273 | return xvec; |
| 274 | } |
| 275 | #endif |
| 276 | |
| 277 | #if defined(ARCH_64_BIT) |
| 278 | static really_inline |
| 279 | m256 loadcompressed256_64bit(const void *ptr, m256 mvec) { |
| 280 | // First, decompose our vectors into 64-bit chunks. |
| 281 | u64a m[4]; |
| 282 | memcpy(m, &mvec, sizeof(mvec)); |
| 283 | |
| 284 | u32 bits[4] = { popcount64(m[0]), popcount64(m[1]), |
| 285 | popcount64(m[2]), popcount64(m[3]) }; |
| 286 | u64a v[4]; |
| 287 | |
| 288 | unpack_bits_64(v, (const u8 *)ptr, bits, 4); |
| 289 | |
| 290 | u64a x[4] = { expand64(v[0], m[0]), expand64(v[1], m[1]), |
| 291 | expand64(v[2], m[2]), expand64(v[3], m[3]) }; |
| 292 | |
| 293 | #if !defined(HAVE_AVX2) |
| 294 | m256 xvec = { .lo = _mm_set_epi64x(x[1], x[0]), |
| 295 | .hi = _mm_set_epi64x(x[3], x[2]) }; |
| 296 | #else |
| 297 | m256 xvec = _mm256_set_epi64x(x[3], x[2], x[1], x[0]); |
| 298 | #endif |
| 299 | return xvec; |
| 300 | } |
| 301 | #endif |
| 302 | |
| 303 | void loadcompressed256(m256 *x, const void *ptr, const m256 *m, |
| 304 | UNUSED u32 bytes) { |
| 305 | #if defined(ARCH_64_BIT) |
| 306 | *x = loadcompressed256_64bit(ptr, *m); |
| 307 | #else |
| 308 | *x = loadcompressed256_32bit(ptr, *m); |
| 309 | #endif |
| 310 | } |
| 311 | |
| 312 | /* |
| 313 | * 384-bit store/load. |
| 314 | */ |
| 315 | |
| 316 | #if defined(ARCH_32_BIT) |
| 317 | static really_inline |
| 318 | void storecompressed384_32bit(void *ptr, m384 xvec, m384 mvec) { |
| 319 | // First, decompose our vectors into 32-bit chunks. |
| 320 | u32 x[12]; |
| 321 | memcpy(x, &xvec, sizeof(xvec)); |
| 322 | u32 m[12]; |
| 323 | memcpy(m, &mvec, sizeof(mvec)); |
| 324 | |
| 325 | // Count the number of bits of compressed state we're writing out per |
| 326 | // chunk. |
| 327 | u32 bits[12] = { popcount32(m[0]), popcount32(m[1]), |
| 328 | popcount32(m[2]), popcount32(m[3]), |
| 329 | popcount32(m[4]), popcount32(m[5]), |
| 330 | popcount32(m[6]), popcount32(m[7]), |
| 331 | popcount32(m[8]), popcount32(m[9]), |
| 332 | popcount32(m[10]), popcount32(m[11]) }; |
| 333 | |
| 334 | // Compress each 32-bit chunk individually. |
| 335 | u32 v[12] = { compress32(x[0], m[0]), compress32(x[1], m[1]), |
| 336 | compress32(x[2], m[2]), compress32(x[3], m[3]), |
| 337 | compress32(x[4], m[4]), compress32(x[5], m[5]), |
| 338 | compress32(x[6], m[6]), compress32(x[7], m[7]), |
| 339 | compress32(x[8], m[8]), compress32(x[9], m[9]), |
| 340 | compress32(x[10], m[10]), compress32(x[11], m[11])}; |
| 341 | |
| 342 | // Write packed data out. |
| 343 | pack_bits_32(ptr, v, bits, 12); |
| 344 | } |
| 345 | #endif |
| 346 | |
| 347 | #if defined(ARCH_64_BIT) |
| 348 | static really_inline |
| 349 | void storecompressed384_64bit(void *ptr, m384 xvec, m384 mvec) { |
| 350 | // First, decompose our vectors into 64-bit chunks. |
| 351 | u64a x[6]; |
| 352 | memcpy(x, &xvec, sizeof(xvec)); |
| 353 | u64a m[6]; |
| 354 | memcpy(m, &mvec, sizeof(mvec)); |
| 355 | |
| 356 | // Count the number of bits of compressed state we're writing out per |
| 357 | // chunk. |
| 358 | u32 bits[6] = { popcount64(m[0]), popcount64(m[1]), |
| 359 | popcount64(m[2]), popcount64(m[3]), |
| 360 | popcount64(m[4]), popcount64(m[5]) }; |
| 361 | |
| 362 | // Compress each 64-bit chunk individually. |
| 363 | u64a v[6] = { compress64(x[0], m[0]), compress64(x[1], m[1]), |
| 364 | compress64(x[2], m[2]), compress64(x[3], m[3]), |
| 365 | compress64(x[4], m[4]), compress64(x[5], m[5]) }; |
| 366 | |
| 367 | // Write packed data out. |
| 368 | pack_bits_64(ptr, v, bits, 6); |
| 369 | } |
| 370 | #endif |
| 371 | |
| 372 | void storecompressed384(void *ptr, const m384 *x, const m384 *m, |
| 373 | UNUSED u32 bytes) { |
| 374 | #if defined(ARCH_64_BIT) |
| 375 | storecompressed384_64bit(ptr, *x, *m); |
| 376 | #else |
| 377 | storecompressed384_32bit(ptr, *x, *m); |
| 378 | #endif |
| 379 | } |
| 380 | |
| 381 | #if defined(ARCH_32_BIT) |
| 382 | static really_inline |
| 383 | m384 loadcompressed384_32bit(const void *ptr, m384 mvec) { |
| 384 | // First, decompose our vectors into 32-bit chunks. |
| 385 | u32 m[12]; |
| 386 | memcpy(m, &mvec, sizeof(mvec)); |
| 387 | |
| 388 | u32 bits[12] = { popcount32(m[0]), popcount32(m[1]), |
| 389 | popcount32(m[2]), popcount32(m[3]), |
| 390 | popcount32(m[4]), popcount32(m[5]), |
| 391 | popcount32(m[6]), popcount32(m[7]), |
| 392 | popcount32(m[8]), popcount32(m[9]), |
| 393 | popcount32(m[10]), popcount32(m[11]) }; |
| 394 | u32 v[12]; |
| 395 | |
| 396 | unpack_bits_32(v, (const u8 *)ptr, bits, 12); |
| 397 | |
| 398 | u32 x[12] = { expand32(v[0], m[0]), expand32(v[1], m[1]), |
| 399 | expand32(v[2], m[2]), expand32(v[3], m[3]), |
| 400 | expand32(v[4], m[4]), expand32(v[5], m[5]), |
| 401 | expand32(v[6], m[6]), expand32(v[7], m[7]), |
| 402 | expand32(v[8], m[8]), expand32(v[9], m[9]), |
| 403 | expand32(v[10], m[10]), expand32(v[11], m[11]) }; |
| 404 | |
| 405 | m384 xvec = { .lo = _mm_set_epi32(x[3], x[2], x[1], x[0]), |
| 406 | .mid = _mm_set_epi32(x[7], x[6], x[5], x[4]), |
| 407 | .hi = _mm_set_epi32(x[11], x[10], x[9], x[8]) }; |
| 408 | return xvec; |
| 409 | } |
| 410 | #endif |
| 411 | |
| 412 | #if defined(ARCH_64_BIT) |
| 413 | static really_inline |
| 414 | m384 loadcompressed384_64bit(const void *ptr, m384 mvec) { |
| 415 | // First, decompose our vectors into 64-bit chunks. |
| 416 | u64a m[6]; |
| 417 | memcpy(m, &mvec, sizeof(mvec)); |
| 418 | |
| 419 | u32 bits[6] = { popcount64(m[0]), popcount64(m[1]), |
| 420 | popcount64(m[2]), popcount64(m[3]), |
| 421 | popcount64(m[4]), popcount64(m[5]) }; |
| 422 | u64a v[6]; |
| 423 | |
| 424 | unpack_bits_64(v, (const u8 *)ptr, bits, 6); |
| 425 | |
| 426 | u64a x[6] = { expand64(v[0], m[0]), expand64(v[1], m[1]), |
| 427 | expand64(v[2], m[2]), expand64(v[3], m[3]), |
| 428 | expand64(v[4], m[4]), expand64(v[5], m[5]) }; |
| 429 | |
| 430 | m384 xvec = { .lo = _mm_set_epi64x(x[1], x[0]), |
| 431 | .mid = _mm_set_epi64x(x[3], x[2]), |
| 432 | .hi = _mm_set_epi64x(x[5], x[4]) }; |
| 433 | return xvec; |
| 434 | } |
| 435 | #endif |
| 436 | |
| 437 | void loadcompressed384(m384 *x, const void *ptr, const m384 *m, |
| 438 | UNUSED u32 bytes) { |
| 439 | #if defined(ARCH_64_BIT) |
| 440 | *x = loadcompressed384_64bit(ptr, *m); |
| 441 | #else |
| 442 | *x = loadcompressed384_32bit(ptr, *m); |
| 443 | #endif |
| 444 | } |
| 445 | |
| 446 | /* |
| 447 | * 512-bit store/load. |
| 448 | */ |
| 449 | |
| 450 | #if defined(ARCH_32_BIT) |
| 451 | static really_inline |
| 452 | void storecompressed512_32bit(void *ptr, m512 xvec, m512 mvec) { |
| 453 | // First, decompose our vectors into 32-bit chunks. |
| 454 | u32 x[16]; |
| 455 | memcpy(x, &xvec, sizeof(xvec)); |
| 456 | u32 m[16]; |
| 457 | memcpy(m, &mvec, sizeof(mvec)); |
| 458 | |
| 459 | // Count the number of bits of compressed state we're writing out per |
| 460 | // chunk. |
| 461 | u32 bits[16] = { popcount32(m[0]), popcount32(m[1]), |
| 462 | popcount32(m[2]), popcount32(m[3]), |
| 463 | popcount32(m[4]), popcount32(m[5]), |
| 464 | popcount32(m[6]), popcount32(m[7]), |
| 465 | popcount32(m[8]), popcount32(m[9]), |
| 466 | popcount32(m[10]), popcount32(m[11]), |
| 467 | popcount32(m[12]), popcount32(m[13]), |
| 468 | popcount32(m[14]), popcount32(m[15])}; |
| 469 | |
| 470 | // Compress each 32-bit chunk individually. |
| 471 | u32 v[16] = { compress32(x[0], m[0]), compress32(x[1], m[1]), |
| 472 | compress32(x[2], m[2]), compress32(x[3], m[3]), |
| 473 | compress32(x[4], m[4]), compress32(x[5], m[5]), |
| 474 | compress32(x[6], m[6]), compress32(x[7], m[7]), |
| 475 | compress32(x[8], m[8]), compress32(x[9], m[9]), |
| 476 | compress32(x[10], m[10]), compress32(x[11], m[11]), |
| 477 | compress32(x[12], m[12]), compress32(x[13], m[13]), |
| 478 | compress32(x[14], m[14]), compress32(x[15], m[15]) }; |
| 479 | |
| 480 | // Write packed data out. |
| 481 | pack_bits_32(ptr, v, bits, 16); |
| 482 | } |
| 483 | #endif |
| 484 | |
| 485 | #if defined(ARCH_64_BIT) |
| 486 | static really_inline |
| 487 | void storecompressed512_64bit(void *ptr, m512 xvec, m512 mvec) { |
| 488 | // First, decompose our vectors into 64-bit chunks. |
| 489 | u64a m[8]; |
| 490 | memcpy(m, &mvec, sizeof(mvec)); |
| 491 | u64a x[8]; |
| 492 | memcpy(x, &xvec, sizeof(xvec)); |
| 493 | |
| 494 | // Count the number of bits of compressed state we're writing out per |
| 495 | // chunk. |
| 496 | u32 bits[8] = { popcount64(m[0]), popcount64(m[1]), |
| 497 | popcount64(m[2]), popcount64(m[3]), |
| 498 | popcount64(m[4]), popcount64(m[5]), |
| 499 | popcount64(m[6]), popcount64(m[7]) }; |
| 500 | |
| 501 | // Compress each 64-bit chunk individually. |
| 502 | u64a v[8] = { compress64(x[0], m[0]), compress64(x[1], m[1]), |
| 503 | compress64(x[2], m[2]), compress64(x[3], m[3]), |
| 504 | compress64(x[4], m[4]), compress64(x[5], m[5]), |
| 505 | compress64(x[6], m[6]), compress64(x[7], m[7]) }; |
| 506 | |
| 507 | // Write packed data out. |
| 508 | pack_bits_64(ptr, v, bits, 8); |
| 509 | } |
| 510 | #endif |
| 511 | |
| 512 | void storecompressed512(void *ptr, const m512 *x, const m512 *m, |
| 513 | UNUSED u32 bytes) { |
| 514 | #if defined(ARCH_64_BIT) |
| 515 | storecompressed512_64bit(ptr, *x, *m); |
| 516 | #else |
| 517 | storecompressed512_32bit(ptr, *x, *m); |
| 518 | #endif |
| 519 | } |
| 520 | |
| 521 | #if defined(ARCH_32_BIT) |
| 522 | static really_inline |
| 523 | m512 loadcompressed512_32bit(const void *ptr, m512 mvec) { |
| 524 | // First, decompose our vectors into 32-bit chunks. |
| 525 | u32 m[16]; |
| 526 | memcpy(m, &mvec, sizeof(mvec)); |
| 527 | |
| 528 | u32 bits[16] = { popcount32(m[0]), popcount32(m[1]), |
| 529 | popcount32(m[2]), popcount32(m[3]), |
| 530 | popcount32(m[4]), popcount32(m[5]), |
| 531 | popcount32(m[6]), popcount32(m[7]), |
| 532 | popcount32(m[8]), popcount32(m[9]), |
| 533 | popcount32(m[10]), popcount32(m[11]), |
| 534 | popcount32(m[12]), popcount32(m[13]), |
| 535 | popcount32(m[14]), popcount32(m[15]) }; |
| 536 | u32 v[16]; |
| 537 | |
| 538 | unpack_bits_32(v, (const u8 *)ptr, bits, 16); |
| 539 | |
| 540 | u32 x[16] = { expand32(v[0], m[0]), expand32(v[1], m[1]), |
| 541 | expand32(v[2], m[2]), expand32(v[3], m[3]), |
| 542 | expand32(v[4], m[4]), expand32(v[5], m[5]), |
| 543 | expand32(v[6], m[6]), expand32(v[7], m[7]), |
| 544 | expand32(v[8], m[8]), expand32(v[9], m[9]), |
| 545 | expand32(v[10], m[10]), expand32(v[11], m[11]), |
| 546 | expand32(v[12], m[12]), expand32(v[13], m[13]), |
| 547 | expand32(v[14], m[14]), expand32(v[15], m[15]) }; |
| 548 | |
| 549 | m512 xvec; |
| 550 | #if defined(HAVE_AVX512) |
| 551 | xvec = _mm512_set_epi32(x[15], x[14], x[13], x[12], |
| 552 | x[11], x[10], x[9], x[8], |
| 553 | x[7], x[6], x[5], x[4], |
| 554 | x[3], x[2], x[1], x[0]); |
| 555 | #elif defined(HAVE_AVX2) |
| 556 | xvec.lo = _mm256_set_epi32(x[7], x[6], x[5], x[4], |
| 557 | x[3], x[2], x[1], x[0]); |
| 558 | xvec.hi = _mm256_set_epi32(x[15], x[14], x[13], x[12], |
| 559 | x[11], x[10], x[9], x[8]); |
| 560 | #else |
| 561 | xvec.lo.lo = _mm_set_epi32(x[3], x[2], x[1], x[0]); |
| 562 | xvec.lo.hi = _mm_set_epi32(x[7], x[6], x[5], x[4]); |
| 563 | xvec.hi.lo = _mm_set_epi32(x[11], x[10], x[9], x[8]); |
| 564 | xvec.hi.hi = _mm_set_epi32(x[15], x[14], x[13], x[12]); |
| 565 | #endif |
| 566 | return xvec; |
| 567 | } |
| 568 | #endif |
| 569 | |
| 570 | #if defined(ARCH_64_BIT) |
| 571 | static really_inline |
| 572 | m512 loadcompressed512_64bit(const void *ptr, m512 mvec) { |
| 573 | // First, decompose our vectors into 64-bit chunks. |
| 574 | u64a m[8]; |
| 575 | memcpy(m, &mvec, sizeof(mvec)); |
| 576 | |
| 577 | u32 bits[8] = { popcount64(m[0]), popcount64(m[1]), |
| 578 | popcount64(m[2]), popcount64(m[3]), |
| 579 | popcount64(m[4]), popcount64(m[5]), |
| 580 | popcount64(m[6]), popcount64(m[7]) }; |
| 581 | u64a v[8]; |
| 582 | |
| 583 | unpack_bits_64(v, (const u8 *)ptr, bits, 8); |
| 584 | |
| 585 | u64a x[8] = { expand64(v[0], m[0]), expand64(v[1], m[1]), |
| 586 | expand64(v[2], m[2]), expand64(v[3], m[3]), |
| 587 | expand64(v[4], m[4]), expand64(v[5], m[5]), |
| 588 | expand64(v[6], m[6]), expand64(v[7], m[7]) }; |
| 589 | |
| 590 | #if defined(HAVE_AVX512) |
| 591 | m512 xvec = _mm512_set_epi64(x[7], x[6], x[5], x[4], |
| 592 | x[3], x[2], x[1], x[0]); |
| 593 | #elif defined(HAVE_AVX2) |
| 594 | m512 xvec = { .lo = _mm256_set_epi64x(x[3], x[2], x[1], x[0]), |
| 595 | .hi = _mm256_set_epi64x(x[7], x[6], x[5], x[4])}; |
| 596 | #else |
| 597 | m512 xvec = { .lo = { _mm_set_epi64x(x[1], x[0]), |
| 598 | _mm_set_epi64x(x[3], x[2]) }, |
| 599 | .hi = { _mm_set_epi64x(x[5], x[4]), |
| 600 | _mm_set_epi64x(x[7], x[6]) } }; |
| 601 | #endif |
| 602 | return xvec; |
| 603 | } |
| 604 | #endif |
| 605 | |
| 606 | void loadcompressed512(m512 *x, const void *ptr, const m512 *m, |
| 607 | UNUSED u32 bytes) { |
| 608 | #if defined(ARCH_64_BIT) |
| 609 | *x = loadcompressed512_64bit(ptr, *m); |
| 610 | #else |
| 611 | *x = loadcompressed512_32bit(ptr, *m); |
| 612 | #endif |
| 613 | } |
| 614 | |